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Abstract: 222Rn and 226Ra concentrations of less than a few to several thousands of Bq L−1 have been
observed in several underground bodies of water around the world. Although regulations for these
concentrations in water have been implemented internationally, there are currently no regulations
in place in Japan. However, concentrations that exceed these internationally recognized regulatory
values have also been observed in Japan. In this study, concentrations in spring water in the northern
part of Japan were measured and the effective dose from intake of the water was evaluated. 222Rn
concentrations were measured using a liquid scintillation counter, and 226Ra concentrations were
measured using a high purity germanium detector after chemical preparation. The measured 222Rn
concentrations (=12.7 ± 6.1 Bq L−1) and 226Ra concentrations (<0.019–0.022 Bq L−1) did not exceed
the reference values set by international and European/American organizations. A conservative
estimate of the annual effective ingestion dose of 8 µSv for 222Rn and 226Ra obtained in this study
is much smaller than the estimated overall annual effective dose of 2.2 mSv from natural radiation
to the Japanese population. However, this dosage accounts for 8% of the WHO individual dosing
criteria of 0.1 mSv/year for drinking water.

Keywords: 222Rn; 226Ra; spring water; activity concentration; dose assessment

1. Introduction

It is well known that 222Rn, a decay product of 226Ra, is the second leading cause of
lung cancer after tobacco smoking [1]. Since 226Ra and 222Rn are water soluble, groundwa-
ters may contain 226Ra and 222Rn. The sources of 226Ra to the groundwater-phase result
from the decay of dissolved 230Th, the dissolution of 226Ra-containing rocks, α-recoil as-
sociated with the α-decay of 230Th located in mineral surface layers, and the desorption
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reaction of 226Ra at the rock–water boundary [2]. The main source of 222Rn in water is due
to α-recoil associated with the α-decay of 226Ra in the aquifer and dissolution of 222Rn
generated in rocks [3]. In fact, 222Rn and 226Ra concentrations of less than a few to several
thousands of Bq L−1 have been observed in several underground bodies of water around
the world [4–8]. When these underground waters are used as drinking water, exposure due
to ingestion is considered. In addition, if these waters are for domestic use, exposure from
inhalation is also considered due to 222Rn released from the water into indoor air. Moreover,
226Ra is designated as a carcinogen (Group 1) in the International Agency for Research
on Cancer classification [9], and its dose coefficient for the intake by the International
Commission on Radiological Protection is relatively higher than that of other radionuclides.
It is, therefore, important to measure 222Rn concentrations and 226Ra concentrations in
underground water in the context of radiation protection of the public.

Under these circumstances, the United States Environment Protection Agency (USEPA)
has established a regulatory value for 222Rn concentration in water. The first regulatory
value (i.e., maximum contaminant level (MCL)) was proposed in 1991, and the value was
11 Bq L−1 [10]. The USEPA then conducted a further study in conjunction with the National
Academy of Sciences, and as a result, the National Research Council (NRC) published a
book entitled Risk Assessment of Radon in Drinking Water [11] in 1999. This study proposed
148 Bq L−1 as an Alternative MCL (AMCL), and this value is now used along with the
MCL [12]. In addition, both the World Health Organization (WHO) recommend a guidance
level [13] and European Union (EU) [14] recommend a parametric value of 100 Bq L−1 for
222Rn concentrations in drinking water. The USEPA [15] proposes 0.185 Bq L−1 as the MCL
for 226Ra, whereas the WHO [13] recommends 1 Bq L−1 as the guidance level for 226Ra.

Thus, although regulations for 222Rn concentration and 226Ra concentrations in water
have been implemented internationally, there are no regulations in place in Japan. How-
ever, 222Rn and 226Ra concentrations that exceed the international levels outlined above
have also been observed in Japan [3,16,17]. It is, therefore, important to measure these
concentrations in underground water, especially if it is used as drinking water, and estimate
the effective dose for intake. However, only a limited number of these evaluations have
been conducted in the past. In addition, the accumulation of measurement data may lead
to the introduction of regulations in Japan in the future. In this study, 222Rn and 226Ra
concentrations of spring water in Hirosaki City, where radioactivity in drinking water and
dose assessment has not yet been carried out, was measured, and the effective dose from
ingestion of the water was evaluated. There are about 20 sites where spring water can be
collected in Hirosaki City, and although the chemistry of some spring waters is evaluated
by administrative organizations, no analysis of radioactivity or evaluation of the effective
dose due to ingestion has been conducted.

2. Materials and Methods
2.1. Water Sampling

Spring water samples were collected at 15 locations in Hirosaki City, Aomori Prefec-
ture (Figure 1). Hirosaki City (40◦28′ N–40◦45′ N, 140◦09′ E–140◦36′ E) is located in the
southwestern part of Aomori Prefecture, which is located in the northern part of Honshu
Island in the Japanese archipelago. The 15 sampling sites were selected from the spring
waters that are known drinking water supplies and where sampling was possible. The
basement geology of the sampling sites is shown in Table 1 [18]. According to Nemoto and
Ujiie [18], the bedrock in Aomori Prefecture that includes the sampling sites are mainly
composed of Jurassic accretionary complex and plutonic rocks of Cretaceous, which is
penetrated Jurassic accretionary complex. This bedrock is covered in parts by a Neogene
system and is also covered by sediments of post-Pleistocene and volcanic products. The
aquifers at the sampling sites are located in Neogene Pliocene to Quaternary Pleistocene
strata [19]. The basement geology and stratigraphic succession of Hirosaki City are de-
scribed and shown in detail in the reports of Nemoto and Ujiie [18], Kogawa [19], and the
National Institute of Advanced Industrial Science and Technology [20].
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Table 1. The basement geology and sampling dates of the 15 sampling sites.

Site No. Basement Geology Sampling Date

1 Alluvium 4 August 2016
2 Dacite–Andesite Lava (after the Pliocene) 17 August 2016
3 Dacite–Andesite Lava (after the Pliocene) 18 August 2016
4 Alluvium 21 August 2016
5 Dacite–Andesite Lava (after the Pliocene) 22 August 2016
6 Dacite–Andesite Lava (after the Pliocene) 25 August 2016

7 Andesite Lava/Pyroclastic Rock
(middle-upper Miocene) 29 August 2016

8 Terrace deposit 5 September 2016
9 Alluvium 7 September 2016
10 Terrace Deposit 8 September 2016
11 Pyroclastic Rock (after middle Pleistocene) 15 September 2016
12 Pyroclastic Rock (after middle Pleistocene) 16 September 2016
13 Pyroclastic Rock (after middle Pleistocene) 19 September 2016

14 Andesite Lava/Pyroclastic Rock
(middle-upper Miocene) 26 September 2016

15 Alluvium 17 June 2016–21 June 2017

In this study, spring water samples were collected in 100 mL containers for 222Rn
measurement, and approximately 10 L was collected in polyethylene containers for 226Ra
measurement. One 100 mL and one 10 L sample from each of the sites were collected
between August 2016 and September 2016. At Site No. 15, which is selected as one of
“Meisui-100-sen” (100 best bodies of water) by the Ministry of the Environment, Japan [21],
additional spring water samples were collected in 100 mL containers once a week from
June 2016 to June 2017 to observe whether there existed any seasonal variation of radon
concentrations. In addition, the pH, electric conductivity (EC), water temperature of the
spring water samples, and atmospheric temperatures were measured. The pH, EC, and
temperatures were measured using a pH meter (AS-711, HORIBA, Kyoto, Japan), an EC
meter (B-771, HORIBA, Kyoto, Japan), and a thermometer (CT-220, CUSTOM Corporation,
Tokyo, Japan), respectively. Moreover, the collected spring water was measured directly for
gamma rays using a p-type high purity germanium (HPGe) detector (GEM30P4-70, ORTEC,
Oak Ridge, USA), in order to confirm whether 134Cs and 137Cs, which was released as a
result of the nuclear accident at the Fukushima Daiichi Nuclear Power Station (FDNPS),
was observed.
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2.2. 222Rn in Water Measurement

A total of 10 mL of sample was placed in a 20 mL glass vial containing a 10 mL liquid
scintillator (High-Efficiency Mineral Oil Scintillator, PerkinElmer, Inc., Waltham, USA).
The vial was shaken for 30 s and measured using a portable liquid scintillation counter
(Triathler LSC, HIDEX, Turku, Finland) for 60 min at Hirosaki University, after leaving it
for more than 4 h in a light-shielded area. Three samples were prepared for 222Rn analysis
for each of the spring water sampling locations. 222Rn concentrations, CRn (Bq L−1), were
evaluated using the following equation [22]:

CRn = (A0 − B0)× exp
(

0.693× te

T

)
× 1

f
× 1

V
× CF (1)

where A0 is the integral counting rate of the sample (cps), B0 is the integral counting rate
of the background sample (cps), te is the elapsed period from sampling (days), T is the
half-life of 222Rn (=3.824 days), f is the sensitivity of the Triathler based on the previous
report (=4.5 cps Bq−1) [22], V is the sampling volume (=10−2 L), and CF is calibration
factor of the Triathler. A0 and B0 were calculated by the integral counting method [22–24],
which is a method to evaluate the 222Rn concentration based on the integral counting rates
of three-channel windows (50–1000 ch, 75–1000 ch, and 100–1000 ch). CF was evaluated
by an interlaboratory intercomparison. For proper evaluation of 222Rn concentrations in
water, an intercomparison was carried out between Hirosaki University and the Office of
Radiation Protection and Environmental Monitoring, Environmental Protection Agency,
Ireland (EPA-ORM). EPA–ORM is a radon-in-water measurement technique accredited
to ISO 17025:2005 [25]. The water chosen for the intercomparison was a private domestic
groundwater supply located in the southeast of Ireland, with a 222Rn concentration of
approximately 750 Bq L−1, and five samples were prepared and measured. The arithmetic
mean (± uncertainty (k = 1)) of the radon in water measurements analyzed by EPA–ORM
was 765 ± 24 Bq L−1, and arithmetic mean (± uncertainty (k = 1)) for the measurements by
Hirosaki University was 748 ± 8 Bq L−1. Therefore, the calibration factor was evaluated to
be 1.02 ± 0.03 (uncertainty; k = 1), and this value was used as the CF in Equation (1).

2.3. 226Ra in Water Measurement

The chemical preparation of spring water samples was carried out according to an
EPA–ORM test procedure, which is a barium sulfate (BaSO4) coprecipitation method and
summarized by Hosoda et al. [26]. In this study, the sampling volume was 4 L. The
precipitate was collected on a glass microfiber filter (Whatman GF/C 47 mmϕ, Cytiva,
Tokyo, Japan). The precipitate on the filter was dried overnight to prepare the sample for
measurement. A sample was prepared for each spring water sample. The yield of barium
was calculated by the gravimetric method according to Hosoda et al. [26].

The filter sample was placed with the precipitate side down in the measuring con-
tainer. This measurement sample was sealed and stored for more than 30 days in order to
establish radioactive equilibrium between 226Ra and its decay products. After preservation,
gamma rays from samples were measured using a p-type HPGe detector (GEM-40190,
ORTEC, Oak Ridge, USA), which was calibrated by a commercially available mixed activity
gamma standard source (MX033U8PP, Japan Radioisotope Association, Tokyo, Japan). The
measurement time was set as 80,000 s. The 226Ra activity was determined from the activity
of 214Bi (609 keV).

2.4. Dose Assessment

The annual effective dose for 222Rn and 226Ra was estimated from the following
equation, assuming that the spring water is consumed daily as drinking water [27,28]:
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D = Ci ×W × KW (2)

where D is the annual effective dose due to ingestion (µSv), Ci is the radioactive concen-
tration (Bq L−1), W is the annual consumption (L), KW is the dose coefficient (µSv Bq−1)
of 222Rn or 226Ra (6.9 × 10−4 µSv Bq−1 for 222Rn and 1.3 × 10−1 µSv Bq−1 for 226Ra [29]).
According to the WHO [13], the annual ingested volume of drinking water is assumed
to be 730 L y−1, which is equivalent to the standard WHO drinking water consumption
rate of 2 L day−1. In this study, this value was used as the annual consumption, W, in
Equation (2), which is similar to other previous studies [6,7].

3. Results
3.1. Water Quality and Radioactive Concentration of Sampling Water

The results of measuring pH, EC, water temperatures of spring water samples, the at-
mospheric temperature, 222Rn concentrations, and 226Ra concentrations for the 15 sampling
sites are shown in Table 2. The 222Rn concentrations were in the range of 5.3–26.7 Bq L−1

with an arithmetic mean (± standard deviation (SD)) of 12.7 ± 6.1 Bq L−1. Although 226Ra
concentrations were below the minimum detectable concentrations (MDCs) at many sites
(12 of the 15 sites),values were observed at the other three sites, which ranged from 0.0093
to 0.022 Bq L−1. It should be noted that no radioactive cesium due to the FDNPS accident
was observed from the gamma-ray measurements of the samples.

Table 2. Measurement results in the 15 sampling sites.

Site
No. pH EC

(µS cm−1)
Water Temp.

(◦C)
Atm. Temp.

(◦C)

222Rn Conc. a

(Bq L−1)

226Ra Conc. b

(Bq L−1)

1 6.5 250 15.2 27.5 16.5 ± 1.0 <MDC (0.0096)
2 7.2 153 14.7 14.7 6.7 ± 0.2 <MDC (0.0080)
3 6.4 86 19.7 24.9 13.9 ± 0.9 0.0098 ± 0.0031
4 6.2 111 21.7 25.7 11.5 ± 0.7 <MDC (0.012)
5 6.7 89 7.4 22.5 5.3 ± 0.5 <MDC (0.0089)
6 6.5 100 6.9 24.4 6.3 ± 1.0 <MDC (0.0085)
7 5.7 220 12.5 28.0 16.6 ± 0.6 <MDC (0.0099)
8 6.6 119 9.9 22.1 11.0 ± 0.8 <MDC (0.0099)
9 6.6 68 9.7 20.9 26.7 ± 1.1 0.0093 ± 0.0030

10 6.1 185 11.3 20.1 8.0 ± 0.7 <MDC (0.0095)
11 5.8 140 10.3 22.1 18.8 ± 0.8 0.022 ± 0.0071
12 6.2 198 9.7 20.6 18.6 ± 1.2 <MDC (0.0097)
13 5.9 164 9.9 17.8 7.9 ± 0.3 <MDC (0.0082)
14 6.2 240 10.2 19.1 7.7 ± 1.0 <MDC (0.0096)

15 c 5.5–7.2 147–370 8.8–16.5 −4.3–33.4 12.2–18.6
(15.3 ± 1.2) <MDC (0.019) d

a Measured values and uncertainties (k = 1) are indicated (Site No. 1–14). In Site No. 15, the range during the
measurement period is indicated, and the arithmetic mean and SD are indicated in parentheses. b Measured
values and uncertainties (k = 1) or MDCs are indicated. c The data quantity for measurement items’ expected
226Ra concentration is 50. 226Ra concentration is the result from a sample (sampling date: 10 September 2016).
d This MDC, which is about twice as high as MDCs at other sites, results from its relatively low yield (=47%).

The results of the periodic measurements of pH, EC, water temperatures of spring
water samples, atmospheric temperature, and 222Rn concentration at Site No. 15 are shown
in Figure 2. The range of variation for each parameter is shown in Table 2.
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Figure 2. Periodic measurement results at Site No. 15.

3.2. Dose Assessment Due to Ingestion

Table 3 shows the annual effective ingestion dose for 222Rn and 226Ra estimated
using Equation (2), assuming that the spring water is consumed daily as drinking water
(=730 L y−1). The annual effective ingestion dose for 222Rn fluctuated in the range of
3–13 µSv with an arithmetic mean (± SD) of 6 ± 3 µSv. For 226Ra the dose fluctuated in the
range of <1–2 µSv. The annual effective ingestion dose for 222Rn and 226Ra fluctuated in
the range of <4–14 µSv. If the 226Ra concentrations below the MDC level are considered to
be the same concentrations as MDCs, the arithmetic mean of the annual effective ingestion
dose is 8 µSv.

Table 3. The annual effective ingestion dose for 222Rn and 226Ra.

Site No.
The Annual Effective Dose (µSv)

222Rn 226Ra Total

1 8 ± 0.5 <1 <10
2 3 ± 0.1 <1 <5
3 7 ± 0.5 1 ± 0.3 8 ± 1
4 6 ± 0.4 <2 <7
5 3 ± 0.2 <1 <4
6 3 ± 0.5 <1 <4
7 8 ± 0.3 <1 <10
8 6 ± 0.4 <1 <7
9 13 ± 0.5 1 ± 0.3 14 ± 1
10 4 ± 0.3 <1 <5
11 9 ± 0.4 2 ± 0.7 12 ± 1
12 9 ± 0.6 <1 <11
13 4 ± 0.2 <1 <5
14 4 ± 0.5 <1 <5
15 8 ± 0.005 <2 <10
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4. Discussion

The average of 222Rn concentrations in the 15 sampling sites and the results of those
in water obtained elsewhere in Japan and around the world are shown in Table 4. The
results of 222Rn concentrations in this study were in good agreement with the measurement
results of the 35 sites of the “Meisui-100-sen” (100 best bodies of water) reported by
Ishii [30]. In addition, the measured 222Rn concentrations did not exceed the AMCL of
USEPA (=148 Bq L−1) or the levels indicated by the WHO and EU (=100 Bq L−1), as
reported in some previous studies [5,31–34]. On the other hand, there were seven sampling
sites that exceeded the MCL of USEPA (=11 Bq L−1). Therefore, if Japan introduces
regulations on 222Rn concentrations in water, it will be necessary to carefully consider the
regulatory values.

Table 4. A comparison of 222Rn concentrations in drinking water.

Country Location Description
222Rn Conc.

(Bq L−1)
Ref.

Japan

35 sites of
“Meisui-100-sen” Spring water 0.24–98.91

Ave. = 12.98 [30]

Wakasa area, Fukui Tap water 1.2–104
Median = 11.2 [31]

Rokko area, Hyogo Well water 2.6–78.6 [16]
Ningyo-Toge area,
Okayama and Tottori

Tap/well/
spring water 0.1–230 [32]

Russia Ural Drinking water 57–92 [33]

Serbia Niska Banja Drinking water 430 ± 46 [33]

Spain Catalonia Groundwater 1.4–104.9 [7]

Germany – Drinking water <1.3–1800 [34]

China Beijing Public water <0.268–29.00 [35]
Well water 1.45–49.00 [35]

Japan Hirosaki, Aomori Spring water 5.3–26.7
Ave. ± SD = 12.7 ± 6.1 This study

In order to investigate the relationship between the basement geology (Table 1) and
222Rn concentrations, 222Rn concentrations were classified based on the basement geology
around the water sampling sites, and statistical processing was performed using EZR [36].
As a result of Shapiro–Wilk tests, normality was observed (p = 0.800) in 222Rn concentration
in spring water for each basement geology. Therefore, although a one-way analysis of
variance was performed, no significant difference was found for all basement geologies.
It is well known that granitic rocks have high contents of natural radionuclides [37,38],
and it has been reported that absorbed dose rates [39–41] and 222Rn concentrations in
water [7] are elevated at sites where the basement geology is granite. According to Nemoto
and Ujiie [18], however, the plutonic rocks consisting of granite were not included in the
basement geology around the water sampling sites in this study. Therefore, it is considered
that the difference in classified 222Rn concentrations could not be significantly confirmed.

Although 226Ra concentrations were less than MDC at 12 sites, no concentration above
the MCL of USEPA (=0.185 Bq L−1) or the guidance level of the WHO (= 1 Bq L−1) were
identified at the remaining three sites where detectable values were observed. Further
investigation was conducted on the MDC and an examination of the amounts of sampling
volume and measurement time would be required for the future detection of 226Ra concen-
trations using this method was made. Figure 3 shows the results of minimum detectable
activity (MDA) of 214Bi for long-term (maximum 90 h) gamma-ray measurement of a 24 L
water sample containing 0.0035 Bq L−1 of 226Ra using the same chemical preparation as
in this study. As shown in Figure 3, when the sampling volume was 24 L, 214Bi could be
sufficiency quantified within 24 h of measurement. However, if the sampling volume is 4 L,
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a measurable activity concentration will not be achieved, even after 90 h of measurement
(Figure 3). Therefore, it is necessary to increase the sampling volume in order to reliably
determine 226Ra at the sampling sites in this study. In this case, extending the measurement
time will have little influence on the limits of detection.
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Figure 3. Relationship between measurement time and MDA. The red dashed line in the figure shows
the radioactivity of the sample (=0.084 Bq L−1) when the sampling volume was 24 L, and the red
line shows the radioactivity of the sample (=0.014 Bq L−1) when the sampling volume was 4 L. The
measurement time in this study was 80,000 s (=22.2 h).

The 222Rn concentrations in spring water in this study were several orders of magni-
tudes higher than that of 226Ra, which has also been observed in previous studies [7,33,42].
Therefore, the source of 222Rn in water is not a result of the decay of dissolved 226Ra.
In addition, according to Tricca et al. [43], weathering of rocks is not a significant source of
222Rn since this requires a high weathering rate. Some previous studies have reported that
the occurrence of 222Rn is primarily controlled by α-recoil of 222Rn from the rock balanced
by its decay [43–45]. Since it has recently been reported that grain size, distribution of
Uranium in the rocks, and geological factors (e.g., faults and fracturing) of the aquifer
are also important for the generation of 222Rn in water [45–47], obtaining this information
would lead to a more detailed discussion of the sources of 222Rn in this study. Furthermore,
it is also important to measure the chemical composition of the rock and water, as 226Ra
can be removed by adsorption reactions such as ion exchange at the rock–water boundary
and coprecipitation reactions resulting in deposition of sulfate, etc. [2].

The results of periodic measurement at Site No. 15 (Figure 2) indicate no significant
seasonal variation in 222Rn concentration throughout the year, although some previous
studies [48,49] have reported seasonal variations in 222Rn concentration in water. The atmo-
spheric temperature at the sampling site fluctuated over time (Ave. ± SD = 12.3 ± 10.6 ◦C
with a coefficient of variation (CV) of 86%); however, no significant change in water tem-
perature was observed (Ave. ± SD = 12.6 ± 2.6 ◦C with a CV of 20%). According to
Kogawa [19], since the depth of aquifers in Hirosaki City are tens of meters to ~200 m, the
water temperature was considered to be less affected by large atmospheric temperature
fluctuations. In addition, although there were periods of high precipitation, the 222Rn
concentration in the water remained almost constant without any dilution. Moreover,
there is no seasonal variation in water quality at the spring water because EC had an
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arithmetic mean (±SD) of 314.5 ± 41.4 µS cm−1 with a CV of 13%, and pH was 6.5 ± 0.4
with a CV of 6%. EC increases with increasing water temperature, which is reported by
Hanya and Ogura [50]. Therefore, as changes in water temperature were small, the changes
in EC were also considered to be small. However, the scope of this study is limited by the
measurements made (outlined in Table 2) and as a result of the lack of detailed information
on the depths of the spring water sources as well as their geological and chemical com-
positions. Obtaining these details in the future may provide additional information. In
particular, measuring chemical composition such as ion concentrations and total dissolved
solids, which are known to influence the behavior of 226Ra [2,17], the parent nuclide of
222Rn, in water could provide a better indication of the behavior of these radionuclides in
groundwater sources.

The conservative annual effective ingestion dose for 222Rn and 226Ra obtained in this
study of 8 µSv is significantly smaller than the estimated overall annual effective dose
of 2.2 mSv from natural radiation (=2.2 mSv) to the Japanese population [41]. The WHO
has adopted a pragmatic and conservative approach with an individual dose criterion
of 0.1 mSv for the annual consumption of drinking water, regardless of the origin of
radionuclides [13]. The evaluated annual effective dose accounts for 8% of this WHO
criterion. It is, therefore, important to carefully investigate other radionuclides as well in
the future.

5. Conclusions

This article described the results of measurements of 222Rn and 226Ra concentrations
in spring water, in Hirosaki City, Aomori Prefecture, located in the northern part of Honshu
Island in the Japanese archipelago. Spring water samples were collected from August
2016 to September 2016, at 15 locations that are known drinking water supplies and where
sampling was possible. In addition, at one of these sites (Site No. 15), spring water
samples were collected once a week from June 2016 to June 2017, to observe the seasonal
variation of radon concentration. Results indicate that the measured 222Rn concentrations
(=12.7 ± 6.1 Bq L−1) and 226Ra concentrations (<0.019–0.022 Bq L−1) did not exceed the
reference values of other international organizations. In addition, the results of periodic
measurements at Site No. 15 demonstrated no seasonal variation in 222Rn concentrations
throughout the year. Finally, the conservative annual effective ingestion dose for 222Rn
and 226Ra obtained in this study (8 µSv) is smaller than the Japanese population dose
arising from natural radiation. However, this dosage accounts for 8% of the World Health
Organization’s individual dosing criterion of 0.1 mSv. Therefore, the authors suggest that
the contribution from other radionuclides be evaluated as well in the future.
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