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Abstract: Deep learning (DL) algorithms are used to diagnose diabetic retinopathy (DR). However,
most of these algorithms have been trained using global data or data from patients of a single
region. Using different model architectures (e.g., Inception-v3, ResNet101, and DenseNet121), we
assessed the necessity of modifying the algorithms for universal society screening. We used the
open-source dataset from the Kaggle Diabetic Retinopathy Detection competition to develop a model
for the detection of DR severity. We used a local dataset from Taipei City Hospital to verify the
necessity of model localization and validated the three aforementioned models with local datasets.
The experimental results revealed that Inception-v3 outperformed ResNet101 and DenseNet121 with
a foreign global dataset, whereas DenseNet121 outperformed Inception-v3 and ResNet101 with the
local dataset. The quadratic weighted kappa score (κ) was used to evaluate the model performance.
All models had 5–8% higher κ for the local dataset than for the foreign dataset. Confusion matrix
analysis revealed that, compared with the local ophthalmologists’ diagnoses, the severity predicted
by the three models was overestimated. Thus, DL algorithms using artificial intelligence based on
global data must be locally modified to ensure the applicability of a well-trained model to make
diagnoses in clinical environments.

Keywords: diabetic retinopathy; deep learning algorithms; model localised; Taiwan; predict

1. Introduction

Diabetic retinopathy is one of the leading causes of blindness worldwide. However,
there are no specific symptoms of early diabetic retinopathy, which results in both delayed
diagnosis and disease progression in diabetic patients. Thus, the popularity of deep
learning algorithms predicting vision-threatening diabetic retinopathy is arising. In recent
years, deep learning has achieved great success in medical image analysis. However, most
works directly employ algorithms based on convolutional neural networks (CNNs), which
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ignore the fact that the difference among populations is subtle and gradual [1]. Moreover,
few reports have mentioned the legitimacy of an algorithm based on a global dataset
(internationally developed among various ethnic races) being applied to a local population,
especially between different races [2].

State-of-the-art artificial intelligence (AI) techniques, specifically deep learning (DL),
have driven the development of AI-powered computer-aided detection (CADe), computer-
aided diagnosis (CADx) systems and all kinds of applications [3]. For example, computer-
aided detection for DR diagnosis has become a promising tool for the early detection and
severity grading of DR due to the great success of deep learning [4]. Most current DR
diagnosis systems do not achieve satisfactory performance or interpretability for ophthal-
mologists due to the lack of training data with consistent and fine-grained annotations.
Nonetheless, the breakthrough of DL algorithms in image classification and recognition
has helped solve the technical barriers and difficulties encountered in previous research.
However, more studies are needed to improve the interpretation of existing AI-powered
CADe and CADx systems [2,5].

The application of machine learning in CADe systems is often limited by feature
expression methods and the number of extractable images. However, owing to the de-
velopment of DL and the improved computing capabilities of high-end graphics cards,
high-level feature expression capacities can be attained. For example, DL is being used
in the detection and diagnosis of cancer [6,7]. Owing to the urgent need to prevent blind-
ness in populations—which cannot be achieved using the current technologies and med-
ical personnel—ophthalmology accounts for plenty of AI research regarding tailoring
telemedicine to large-scale medical screening programs [8]. For instance, the authors of
one study developed an AI-based system to automatically identify patients with referable
diabetic retinopathy (DR); their system exhibited higher sensitivity (96.8%) and speci-
ficity (87.0%) than other systems based on conventional machine learning algorithms [9].
Similarly, the authors of another study trained an AI-based algorithm for DR on a larger
dataset (N = 128,175), achieving a performance only comparable to that of seasoned oph-
thalmologists (sensitivity: 97.5%, specificity: 93.4%) [10]. Both studies can serve as a
basis for the development of a large-scale DR screening program. In addition to DR, DL
techniques have been applied in systems for detecting glaucoma and age-related macu-
lar degeneration [10–12]. These systems, which are developed to improve telemedicine
in ophthalmology, have been trained on tens of thousands of fundus images and have
demonstrated screening performance similar to that of retinal specialists. However, most of
the training data for these AI systems have been collected from patients of a single region,
ethnicity, or culture. This inevitably leads to the problem of whether an AI system can make
acceptable medical assessments on incoming data, which may have distinct features from
those in the data used to train it. Against this backdrop, we set to investigate the necessity
of local modification for the DL model in predicting the severity of DR. “Local modification”
is similar to the term “globalization”. To this end, we built sets of interpretation models of
the severity of DR through DL network frameworks at various depths. In contrast to the
image composition of the training and validation sets used in the model training phase, we
used local data as the test dataset to re-evaluate the model performances and to explore the
necessity of local modification of the model through accuracy, sensitivity, and specificity.

Considering the aforementioned applications in ophthalmology, AI-based screening
systems for DR that use fundus images were the first to be considered ready for commer-
cialization. According to systematic reviews, DR is among the six most common causes of
blindness worldwide and is considered the main cause of blindness in the working-age
population [13,14]. In addition, a study on healthcare costs in patients with DR demon-
strated that the costs of treating patients with progressive DR were twice that of patients in
stable conditions [13]. Therefore, the routine screening of patients with DR is crucial for
reducing healthcare costs and increasing the quality of life of patients with DR. IDx-DR
is a notable AI system that addresses this challenge. IDx-DR completed its clinical trial
with 900 patients with diabetes (sensitivity: 97.4%, specificity: 89.5%) and was approved by
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the US Food and Drug Administration in 2018. In addition, Verily and Google launched
a DR screening tool in India, particularly in remote and rural communities where few
patients with diabetes have access to routine care. These deployments and clinical trials
have indicated that commercialised AI-based screening systems will be available soon.
However, because these systems for screening DR have been developed for use in different
geographical regions, their performance on incoming fundus images should be investi-
gated. In particular, the factors that ophthalmologists or medical professionals consider
when interpreting reports from an AI for DR screening, especially those from images not
trained on the local DR dataset, should be investigated.

Regional and ethnic factors that contribute to the variability in fundus images should
be considered before an AI-based DR screening system is deployed. Although lesions
related to DR may be similar among patients of all ethnicities, ethnic differences in the back-
ground pigmentation of the fundus and optical structures can influence the performance of
an AI screening system [4]. For instance, high myopia is more prevalent among Eastern
Asian populations than Western populations [15]. Therefore, darker pigmentation in the
fundus makes the evaluation of the severity of red lesions, including microaneurysms and
intrarenal haemorrhages, difficult for an AI trained on fundus images mainly from white
American patients, leading to more false positives. Moreover, structural changes caused by
myopia in the fundus, such as myopic conus and tigroid appearance, may confound an AI
system’s reading in different ethnic fundus backgrounds. An AI system may identify those
structural changes as diabetic lesions if such features are uncommon in the training dataset.
The ability of a single AI system to be applied to various ethnic races remains an issue, and
it should be carefully investigated and inspected.

We used different training and learning model architectures (three different DL net-
work architectures) to eliminate the possible interference of network characteristics. It is
more objective to explore the effects of training and testing datasets from different groups
on the interpretation of DR. Retrospective data from community hospitals also contained
more localised characteristics. The local dataset used as the test dataset was obtained from
local community hospitals. All samples from the dataset were labelled as joint diagnoses
by at least two or more experts. The investigation flowchart is shown in Figure 1. To
deploy an AI-based DR screening system in clinical practice in Taiwan, we investigated
the performance of a well-trained DL model for DR screening based on a worldwide open
dataset and a local dataset. The local dataset was collected retrospectively from a local
hospital in Taiwan. Furthermore, suggestions for AI system deployment in medical practice
and how AI algorithms can be improved are presented.
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of the model architecture on the difference in the interpretation is excluded. Phase 2: Model evaluation.
There were two testing datasets used for model evaluation. The test dataset in the foreign dataset
was used for comparison with other papers. It was used to ensure that three models have a certain
degree of interpretation accuracy. The local dataset was used to test whether the model has a different
interpretation accuracy between the two datasets.

2. Materials and Methods
2.1. Dataset

In this study, a large public dataset from the Kaggle Diabetic Retinopathy Detec-
tion competition was used. This dataset is available on eye PACS (available online:
https://www.kaggle.com/c/diabetic-retinopathy-detection, accessed on: 20 December
2016), a free platform for retinopathy screening in the United States. Because of this large
dataset, there are various symptom samples. Therefore, in this study, we regarded this
dataset as a global dataset. The overall data collection process is illustrated in Figure 2. The
dataset consisted of 88,702 images, each of which was paired with one of the five severity
levels of DR under the Early Treatment Diabetic Retinopathy Study (ETDRS) scale, namely
no DR, mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR, and prolifera-
tive DR (PDR). These images were further sorted into a training dataset (35,126 images)
and a testing dataset (53,576 images), which were named the Kaggle Train and Kaggle Test
datasets, respectively. Since the data were collected from primary care institutions, there
were serious data imbalances in samples of different severities. The number of patients
without DR was much higher than that of patients with PDR. In the model training stage,
data augmentation is applied to solve the above problems. The class distributions between
the training and testing datasets are similar. Only the Kaggle Train dataset was used to
train the DL model for DR detection. Model performance was also evaluated based on the
Kaggle test dataset.
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Figure 2. Distribution of disease severity between the two datasets. We trained the 3 models from the
Kaggle Train (N = 35,126) dataset. The Kaggle Test (N = 53,576) and TCH (N = 4038) datasets were
used for model evaluation.

The local Taiwanese dataset was comprised of 4038 fundus images, and the prevalence
rates of no DR, moderate NPDR, severe NPDR, and PDR were 73.03%, 3.00%, 15.90%,
4.09%, and 3.99%, respectively. All images were retrospectively collected from patients with
diabetes who visited the ophthalmology department of Taipei City Hospital (TCH) between
1 January 2007 and 31 December 2017. Two retinal specialists independently interpreted
each image. The ETDRS scale was used as the grading criteria for the local dataset, as well as
the Kaggle dataset. If inconsistency in the two specialists’ annotations was observed, a third
retinal specialist made the third annotation. A total of 18 ophthalmologists participated in
the annotation process. In this study, the local dataset was named the TCH dataset and was
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only used to evaluate the applicability of the DL model, which was trained on the Kaggle
Train dataset, to a Taiwanese population. Before training and testing, all fundus images
were resized and padded to a pixel resolution of 512 × 512 pixels. Padding with zeros was
performed to retain the aspect ratios of the original fundus images.

2.2. Model Architecture

Under limited training data, transfer learning is an important tool in machine learning.
It tries to transfer the knowledge from the source domain to the target domain by relaxing
the assumption that the training data and the test data must be identically distributed. To
fully investigate the applicability of DL models trained on the Kaggle Train dataset for
DR detection, three champion convolutional neural network (CNN) architectures from the
ImageNet Large Scale Visual Recognition Challenge (ILISVRC) were used in this study:
Inception-v3, ResNet101, and DenseNet121 [13–15]. The factorization process was an
important design proposed in the Inception v3 model. It can speed up the operation by
reducing the model parameters and increase the nonlinear variation of the model. With
the research trend of deepening the model network, gradient dissipation has become a
major problem in model training. ResNet utilizes a residual structure, which can not only
effectively improve the network depth, but also greatly reduce the possibility of gradient
dissipation. In the face of the gradient dissipation problem caused by the deepening of the
model layer, DenseNet adopts a more radical structure (channel-wise concatenation). It
uses the features of different layers as a reference for each layer of the network, realizes
the reuse of features and greatly reduces the computational load of the model. Multiple
models were used to verify that this phenomenon was not limited by the characteristics and
depth of the selected model. Inception-v3 is characterized by various kernel sizes in the
network designed to learn features with distinctive sizes and shapes. However, ResNet101
and DenseNet121 feature residual connections between layers in the network. This feature
enables these two networks to have a much deeper network structure than Inception-v3
and mathematically guarantees that redundant features are not learned.

2.3. Model Training and Testing

It is not easy to obtain abundant and complete training annotation data, especially in
professional fields such as medical treatment and robot vision. Researchers use transfer
learning to accelerate model training convergence. In addition, in the pre-training stage, the
researchers also increased the variability of the existing data sets by means of data augmen-
tation, including brightness, saturation, rotation, cropping and contrast limited adaptive
histogram equalization. It also improved the data imbalance problem. Three pre-trained
models (i.e., Inception-v3, ResNet101, and DenseNet121), which were previously trained
on the ImageNet dataset, were restored as the base network for fine-tuning. Subsequently,
the output layers in these three models were truncated to produce only five values. Each
value corresponds to one of the five DR severity levels. The pipeline from the original
fundus image to the generation of the five DR severity levels is shown in Figure 3.
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During training, batches of fundus images were randomly sampled from the Kaggle
Train dataset. After the batches were formed, image augmentation was performed to
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randomly rotate the fundus images and jitter their color and brightness. This helped in
model generalization for the untrained dataset. The batches were then passed to the model
to obtain severity level predictions. In addition, 5-fold cross-validation was used for model
training and validation. Samples of different severity levels were evenly distributed five
times. In each stage of training, there were four folds for the model to modify the network
parameters, and the other was used for verification. The above operations are repeated to
reduce the interference of the data imbalance on the model training results. Finally, the
differences between predictions and annotations were calculated, and an optimization step
was performed until model convergence was achieved. Both the Kaggle Test and TCH
datasets were used as the testing dataset to evaluate the model performance.

2.4. Evaluation Metrics

The evaluation metrics for model performance in DR detection included five-class
accuracy (ACC), sensitivity (SEN), precision (PRE), and quadratic weighted kappa score
(κ). These four metrics are described in Equations (1)–(4). In the calculation of ACC,
SEN, and PRE, TPclass represents the number of accurate predictions of a specific class by
the model. For instance, TP1 represents the number of true predictions of no DR by the
model (where 1, 2, 3, 4, and 5 denote no DR, mild NPDR, moderate NPDR, severe NPDR,
and PDR, respectively). Nall represents the total number of images in the dataset, and
Nclass indicates the number of images of a specific class ranging from 1 (no DR) to 5 (PDR).
Predicated Nclass refers to the number of images in which the model is classified into a
specific class. κ was calculated using the scores of the two raters. In this case, one score
was obtained from the ophthalmologists, and the other score was obtained from the model
predictions. The κ index was used in the evaluation of the classification results to reduce
the influence of data imbalance. κ was calculated as follows. First, an N × N histogram
matrix Hij, each element of which corresponded to the number of samples assigned a
rating i by the ophthalmologists and a rating j by the model, was developed. Second, an
N × N histogram matrix of the expected ratings Mij was established. Each element in Mij
indicates the expected probability that the ophthalmologists would assign rating i and the
model assigns rating j to an image. This was calculated as the outer product of each rater’s
histogram vector of ratings. Both Hij and Mij were normalised to have identical sums.
Finally, the class weight matrix Wij was established to represent the agreement between the
ophthalmologists and the model. The elements along the diagonal are zero, whereas those
off the diagonal represent the degree of disagreement (square of the difference between i
and j). All values were normalised using a maximum squared difference of 16. Therefore,
κ was derived from a combination of three matrices (i.e., Xij, Mij, and Wij).

ACC =
TP1 + TP2 + TP3 + TP4 + TP5

Nall
(1)

SE =
TPclass
Nclass

(2)

PRE =
TPclass

Predicated Nclass
(3)

κ = 1 −
∑k

i=1 ∑k
j=1 WijHij

∑k
i=1 ∑k

j=1 Wij Mij
(4)

Confusion matrices were established to compare the ophthalmologists’ annotations
and model predictions on two testing datasets (Kaggle Test and TCH). Moreover, an
overestimation rate was calculated to compare the performances of the models on these
datasets. The overestimation rate was calculated as the percentage of images in a class
that the model misclassified as being more severe than the ophthalmologists’ ratings.
For instance, if an image is annotated by ophthalmologists as exhibiting mild NPDR but
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classified by the model as exhibiting moderate NPDR, severe NPDR, or PDR, it is regarded
as an overestimated image.

2.5. Implementation

During the training of each model (Inception-v3, ResNet101, and DenseNet121), the
following hyperparameters were set to be as similar as possible: the learning rate was
0.0005, the number of epochs was 200, the dropout rate was 0.2, and optimisation was
performed using Adam, where beta1 was set to 0.9, and beta2 was set to 0.999. Because
the model sizes of ResNet101 and DenseNet121 were larger than those of Inception-v3,
the batch sizes for ResNet101 and DenseNet121 were set to 36 samples/epoch, whereas
for Inception-v3, this value was set to 48. Regarding the loss function, the multiclass
cross-entropy loss and the loss calculated using κ were used.

During model training, validation was performed using the validation dataset. If the
new verification result was higher than the previous result, the model would be saved. The
model was continuously trained and verified until the performance of the model did not
improve. The final recorded model was verified using a local TCH dataset.

3. Results

This study demonstrated the necessity of localised modification when a well-trained
model was deployed in foreign countries. The foreign Kaggle dataset was used to train
the AI model with three types of CNN architecture, and the local TCH dataset was used to
validate the trained model.

Although this study only selects three common models through transfer learning to
explore whether the model is necessary in the local language, the findings are still very
interesting. In theory, the deeper the layers of the model, the more abundant and diverse
the extracted features, and the better the performance of the model. The performance of
the ResNet model with the largest parameters is not as good as that of Inception v3. In
the model performance of the TCH Test dataset, the DenseNet model with the smallest
parameters outperformed both.

First, we evaluated the performance of the models trained using the Kaggle Train
dataset on both the Kaggle Test and TCH datasets to investigate the effects of model
architecture on the ability of the model to detect DR in Taiwanese patients with diabetes.
For comparison, the ACC κ and overestimation rates of each model for both datasets were
calculated. To objectively discuss the influence of the trained model when applied to a
foreign region, we used three types of CNN architectures with the same training dataset to
train the AI model for DR detection. The ACC indexes of the three architectural models
using the foreign and local datasets were approximately equal.

Second, when we accounted for differences among categories (for 5 levels of DR sever-
ity), κ for the TCH dataset (Inception-v3: 85.32%, ResNet101: 83.60%, and DenseNet121:
85.96%) were higher than those in the Kaggle Test dataset (Inception-v3: 79.33%, ResNet101:
78.12%, and DenseNet121: 77.21%), regardless of the model architecture, as shown in
Table 1.

Table 1. Model performance with the three types of CNN architecture.

Model Dataset Accuracy
(%) Quadratic Kappa (%) Weighted Average

Recall/Precision (%)

Inception-v3
Kaggle Test 84.64 79.33 84.64/82.41

TCH Test 83.80 85.32 83.80/85.23

ResNet101
Kaggle Test 83.89 78.12 83.89/81.47

TCH Test 82.99 83.60 82.99/84.91

DenseNet121
Kaggle Test 84.05 77.21 84.05/81.29

TCH Test 84.67 85.96 84.67/84.80
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In the model verification stage, DenseNet121 under the local data set (TCH) verification
was better than the foreign data set (Kaggle) in the model interpretation. The data are
presented in Table 1.

Regarding both accuracy or quadratic kappa, DenseNet performed better in the local
dataset. In contrast, Inception-v3 and ResNet101 showed opposite results to DenseNet121
in the verification phase. In the foreign datasets, the two models had better interpretation
performance than the local datasets. Because the prediction of DR severity was a multicat-
egory task, we used two indexes, namely SEN and PRE, to evaluate the performance of
these models. Among the three CNNs, Inception-v3 produced a higher weighted average
precision (85.23%) and an 83.80% recall rate. This model architecture may be optimal for
clinical applications. Moreover, (1) for the three model performances in each severity classi-
fication, under the same model architecture, the SEN and PRE of the foreign and local data
sets are generally similar for each severity. In particular, mild NPDR (class 1) in the Kaggle
Test dataset differed considerably from those in the TCH dataset. (2) If the model is to be
used for early screening, the two-category indicators (i.e., referral and non-referral) can
provide medical staff with a clearer diagnosis. Only two categories are required: referral
and non-referral. We can easily use the classifier, No DR, to select all normal and abnormal
patients out. The performance of No DR is much better than that of the foreign dataset
(both SEN and PRE are approximately 95%), as shown in Table 2.

Table 2. SEN and PRE with the Kaggle test and TCH datasets.

Model Metrics Dataset No DR (%)
NPDR (%)

PDR (%)
Weighted

Average (%)Mild Moderate Severe

Inception-v3

SEN
Kaggle 95.86 18.15 66.75 40.02 58.07 84.64

TCH 94.34 6.61 59.66 40.61 89.4 83.80

PRE
Kaggle 89.58 47.96 70.15 49.24 71.01 82.41

TCH 97.10 27.59 62.99 50.00 35.82 85.23

ResNet101

SEN
Kaggle 97.46 16.67 59.39 40.12 58.28 83.89

TCH 94.64 19.83 55.76 23.64 86.34 82.99

PRE
Kaggle 88.55 47.34 71.94 44.14 58.52 81.47

TCH 96.31 28.24 68.32 38.61 32.33 84.91

DenseNet121

SEN
Kaggle 98.62 9.30 60.41 29.79 54.45 84.05

TCH 97.12 1.65 59.50 20.00 85.71 84.67

PRE
Kaggle 87.30 53.50 72.76 44.09 66.84 81.29

TCH 95.79 28.57 70.35 35.48 34.07 84.80

The overestimation rates of each class for the TCH dataset were higher than those
for the Kaggle test dataset. This suggested that the model trained with the Kaggle Train
dataset was inclined to make predictions of more severe DR than the ophthalmologists.
The overestimation rates are summarised in Table 3.
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Table 3. Overestimation rates of Inception-v3, ResNet101, and DenseNet121.

Model Dataset No (%) Mild (%) Moderate (%) Severe (%)

Inception-v3
Kaggle Test 3.14 16.37 5.90 5.11

TCH 5.66 59.50 34.89 49.69

ResNet101
Kaggle Test 2.54 14.00 8.56 14.23

TCH 5.35 45.45 36.92 55.76

DenseNet121
Kaggle Test 1.38 11.74 5.79 9.52

TCH 2.88 42.15 33.49 58.79

4. Discussion

The key to the quality of the model depends on the dataset. In theory, the richer and
more uniform the dataset, the higher its representativeness and versatility. However, it
is not easy to collect datasets, especially medical imaging datasets, because they involve
patient privacy. The foreign dataset and the Kaggle dataset used in this study contain
nearly 100,000 pieces of data. The data cover a wealth of symptoms of DR. Even so, we
noticed a data imbalance between different severity levels.

DL algorithms are useful for disease diagnosis based on medical images, particularly
in ophthalmology. Moreover, most datasets collected for training and testing DL algorithms
are obtained from single sources (e.g., a hospital or organization in a single country).
Applying DL algorithms to new data possibly possessing features that differ from single
sources may disperse the results. In this study, we investigated the applicability of well-
trained DL models for DR screening to a local Taiwanese dataset, as well as the effect of
the model architecture on such applicability. The study results provide references and
evidence for the development of DL algorithms in ophthalmology and the introduction of
such systems in clinical practice.

In our study, κ for the TCH dataset was generally 5–8% higher than for the Kaggle
test dataset. The equation for κ penalizes misclassified and extreme predictions more
heavily than for other predictions; therefore, more PDR images in the TCH dataset may
have been correctly detected by the model trained on the Kaggle Train dataset. This is
supported by the higher SEN for PDR images in the TCH dataset than in the Kaggle test
dataset. However, although the SEN for PDR images was high, the PRE was generally
lower in the TCH dataset. The feature space for PDR learned using our trained models
with the Kaggle Train dataset was larger than the actual feature space for PDR in the TCH
dataset. Consequently, the images with no DR or NPDR in the TCH dataset were prone to
misclassification as PDR in this model.

Furthermore, the higher overestimation rates for each class (no DR, mild, moderate,
and severe) in the TCH dataset for all model architecture types suggest an inherent differ-
ence between the Kaggle and TCH datasets. This difference may be attributable to regional
and ethnic factors. Specifically, because myopia prevalence is the highest in Asia [16], the
average eyeball axial length in the Taiwanese population is generally large. This causes
striped or spotted appearances, called tigroid patterns, in fundus images [17]. These pat-
terns may be mistaken for red spots, abnormal vessel deformations, or even exudates,
which are common fundus lesions in DR. Overestimation rates were high because all three
models were trained on the Kaggle Train dataset rather than on the TCH dataset. Unlike our
experiment, Ting et al. trained a DL model for DR with fundus images (n = 76,370) obtained
from 10 multiethnic cohorts with diabetes [18]. The evaluation of their model with 112,648
images demonstrated consistent results with the retina images from patients of different
races and ethnicities (and therefore with varying fundi pigmentation). Although their
model was robust in representing ethnic differences in pigmentation, whether such a model
could discriminate tigroid patterns from vessel abnormalities remains uncertain. Apart
from pigmentation, various patterns similar to abnormalities in fundus images with DR
should be further investigated to ensure that the model is not affected by ethnic differences.
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Two aspects should be considered if a model trained on a large-scale dataset is intro-
duced in clinical practice. First, certain metrics, such as the overestimation rate, should
be used to determine whether such a model requires fine-tuning. This can be addressed
using incremental learning, which measures concept drift and fine-tunes the model if
necessary [19]. Second, ophthalmologists who work with such an AI model should note
that images obtained from patients with myopia are more likely to be misclassified. Image
classification can be confirmed through manual investigation of the regions of interest
(ROIs) or class activation maps [20] that the AI model is used on to determine DR severity
in fundus images. For example, if an image is classified as NPDR or DR by the AI model
and features caused by myopia appear in ROIs, the ophthalmologist can treat the image
as misclassified and ignore the model’s prediction. In the future, user interface design for
AI-empowered CADe and CADx systems should consider a process for easily detecting
misclassified images to reduce the workload of ophthalmologists.

To select the optimal model architecture for the AI-empowered DR prediction system,
three models were included in the present study. Identification of the optimal model
architecture based on the ACC and overestimation rates is difficult. However, when model
complexity is considered, Inception-v3 may be the optimal model among the three. Because
ResNet101 and DenseNet121 models are more complex than Inception-v3, they theoretically
should outperform Inception-v3. However, no significant improvement was observed
when ResNet101 and DenseNet121 were used; the model complexity of Inception-v3 was
sufficient for DR detection in the fundus images.

5. Conclusions

The innovation of big data and AI has not only changed human lives but also promoted
advancements in medical technology. The popularity of DL algorithms for predicting vision-
threatening DR is increasing. However, only a few reports have investigated the legitimacy
of an algorithm based on a global dataset applied to a local population, especially between
different ethnic races.

In this study, we used a global DR database from Kaggle as the training and validation
database for AI-based detection of DR. To ensure adequate performance, the local TCH
dataset was used for model verification. The local DR database, TCH, was used to simulate
the results of the model deployment to a different location. The experiment showed
that the AI model performed well in two categories: referral and non-referral. However,
determining the severity of DR using AI is challenging. By analyzing differences in κ and
overestimation rates, this study demonstrated that ethnic differences should be considered
when a DL model is trained for DR screening. Regardless of the selected model structure,
the differences between the sample and the population between the datasets are not easy
to eliminate. Therefore, the researchers suggest that after the model training has come to
an end, another batch of local data samples can be prepared. Compared with the training
method of transfer learning, the existing model parameters are optimized. In this way, the
applicability of the model can be greatly improved. Especially in the medical field, it is not
easy to obtain a large amount of training and verification data marked by many experts.

To the best of our knowledge, our study showed that model-localized modification
plays a vital role in the application of DL algorithms to medical images. For example, DL
models for DR detection in clinical practice should first be locally modified to learn region-
specific features. This will prevent the model from referring to patients without significant
fundus abnormalities. The introduction of information and communication technology
should improve existing medical conditions and avoid derivative medical problems.
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