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Abstract: Flexibility training is a fundamental biological process that improves the quality of life of
the elderly by improving the ranges of motion of joints, postural balance and locomotion, and thus
reducing the risk of falling. Twodifferent trainingprogramswere assessed acutely and after 12weeks
by means of the sit‑and‑reach test. Thirty‑one healthy older adults were randomly divided into
three groups: the Experiment I group (Exp) performed strength and static stretching exercises; the
Experiment II group performed dynamic and static stretching exercises; and participants assigned
to the control group maintained a sedentary lifestyle for the entire period of the study. Flexibility
acutely increased in Exp I by the first (∆T0 = 7.63 ± 1.26%; ES = 0.36; p = 0.002) and second testing
sessions (∆T1 = 3.74± 0.91%; ES = 0.20; p = 0.002). Similarly, it increased in Exp II significantly by the
first (∆T0 = 14.21 ± 3.42%; ES = 0.20; p = 0.011) and second testing sessions (∆T1 = 9.63 ± 4.29%; ES =
0.13; p = 0.005). Flexibility significantly increased over the 12 weeks of training in Exp I (∆T0 − T1 =
9.03± 3.14%; ES = 0.41; p = 0.020) and Exp II (∆T0− T1 = 22.96± 9.87%; ES = 0.35; p = 0.005). The acute
and chronic differences between the two groups were not significant (p > 0.05). These results suggest
the effectiveness of different exercise typologies in improving the flexibility of the posteriormuscular
chains in older adults. Therefore, the selection of a program to optimize training interventions could
be based on the physical characteristics of the participants.

Keywords: flexibility; stretching; range ofmotion; older adults; sit‑and‑reach; acute effect; chronic ef‑
fect

1. Introduction
Aging is a natural and biological process in which physical fitness and physiologi‑

cal characteristics change during the lifespan [1,2]. In this respect, flexibility plays an im‑
portant role among the components of health in the elderly, counteracting disability and
distress [3].

The lack of flexibility in the elderly can be both a cause and a consequence of postural
imbalance, movement limitations and alterations in spatiotemporal parameters during gait
(i.e., walking speed, stride length, frequency of gait and range of motion). These hamper
daily activities and consequentially reduce quality of life [4,5]. Additionally, a range of
motion (ROM) reduction can increase the risk of falling among middle‑aged and elderly
individuals [6].

Although a deficit in flexibility affects several kinetic chains in the elderly [7], the pos‑
terior kinetic chains of the body are most affected [1], probably because of the changes that
occur in posture [3] and/or the time spent in a sedentary lifestyle [8]. There is a flexibility
decrease in the upper and lower joints by approximately 6 degrees in those over 55 years of
age, in both sexes, with each decade of life. In particular, decreases in hip flexion of 0.6 de‑
grees per year in males and 0.7 degrees per year in females have been documented [9].
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Tight hamstrings, low stretch tolerance, poor hip contracture, altered pelvic tilt and
muscle–tendon stiffness [10] are themajor factors responsible for the decrease in flexibility,
and consequently for physiological changes, in aging; in particular, thesemodifications are
induced by the neuromuscular system [11]—that is, endogenous alterations (i.e., changes
in the sensitivity of peripheral nociceptors) [12] and the decreased collagen synthesis in
different tissues (i.e., skin, ligaments, tendons and deep tissues) [1,13].

However, these alterations could be counteracted by performing stretching exercises
[14,15]. Battaglia et al. [16] showed that elderly womenwho performed 8weeks of training
flexibility increased their spinal ROM; specifically, the sacral/hip joint ROM improved by
34 percent. Moreover, low back pain (LBP) in the elderly represents a highly disabling
condition [17] and frequently is associated with limited flexibility of the lower limbs. It
can be reduced by improving the flexibility and ROM of the trunk [18], which in turn
decreases the risk of injury and determines an increase in quality of life (QoL) [19]. In
addition, a recent study by Nishiwaki et al. [20] showed a relationship between changes in
flexibility through a stretching training protocol and a reduction in arterial stiffness.

In a review by Behm et al. [21], the different stretching typologies (i.e., static stretching
(SS), dynamic stretching (DS), ballistic stretching (BS) and proprioceptive neuromuscular
facilitation (PNF)) that influence the specific mechanisms responsible for acute increases
in ROM have been reported. In several investigations, flexibility training resulted in an
increased ROM, specifically in the hamstring muscle group, regardless of the stretching
typology [22–25], whereas other studies underlined conflicting results when comparing
SS, DS, BS and PNF [21,26]. However, SS is the most appropriate typology of stretching
for sedentary, untrained and elderly subjects [24,27] to enhance joint ROM [21,28,29], as
the muscle lengthening is obtained by slowly moving a joint to its maximal ROM, with‑
out increasing the reflex activity of the stretched muscle [30]. The SS technique acutely
increases the muscle length by autogenous inhibition, eliciting the Golgi tendon organ’s
activation [31], whereas the chronic changes are attributed largely to the reduced intrin‑
sic stiffness of the muscle–tendon unit, followed by neural adaptations [30]. Interestingly,
some investigations have confirmed that strength training, with appropriate loading, also
improves the ROM in the elderly [32–35]. Barbosa et al. [32] suggested that 10 weeks of re‑
sistance training involving various exercises (seated chest press, seated row, seated shoul‑
der press, seated curl—unilateral, seated triceps extension—unilateral, seated leg press,
seated calf press and seated abdominal crunches) improved the sit‑and‑reach scores of el‑
derlywomenwithout any additional stretching exercises. Themechanisms responsible for
this improvement have not yet been clarified; probably, strength exercises cause a reduc‑
tion in passive tension and stiffness of the tissues surrounding a joint [35]. In fact, these
structures tend to limit the range of motion, as the cross‑links increase during aging, mak‑
ing the connective tissue less compliant [1,36].

There are several studies and reviews that analyze and compare various stretching
exercises or interventions to improve flexibility [22,24–26,29,37,38]. From a practical per‑
spective, a comparison of flexibility conditioning programs, usually performed in fitness
centers, combining static and dynamic stretching or static stretching and total body ex‑
ercise (i.e., strength training in the form of a circuit training), is lacking in the literature.
Unique combinations of different exercises should be considered the optimal solution in
order to meet the needs of participants, as many people do not tolerate the intense sensory
feedback (i.e., pain and discomfort) during the execution of static stretching exercises [39].
Therefore, we aimed to investigate the acute and chronic effects (12weeks) on the flexibility
of the posterior musculature induced by two different combined programs of conditioning
in older adults. The assessment of the acute effect was used to optimize the training over
time by dosing the single stimulus relative to the participant’s responsiveness.

Wehypothesized that, in older participants, the two combined conditioning programs
(strength + static stretching vs. dynamic + static stretching) would improve the acute and
chronic flexibility of the posterior muscular chains, which was assessed by the sit‑and‑
reach test (SR) [40]. The static stretching, common to both programs, was analogous to the
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trunk bending required in the toe touch test, but the participants started from the standing
position with the hands on the thighs to reduce the forces on the lumbar spine due to
external torque.

2. Materials and Methods
2.1. Experimental Design and Participants

A study with 3 parallel groups and repeated measures was performed. Thirty‑one
healthy older adults took part voluntarily in this study. The sample size estimation for
the dependent variable (sit‑and‑reach score) was computed a priori by means of statisti‑
cal software for power analysis (G*Power 3.1.9.4, Heinrich Heine‑Dusseldorf University,
Düsseldorf, Germany). The computation was performed in relation to the study design
and using both parametric and nonparametric procedures, setting the effect size (ES) and
using the protocol for a power analysis (test attributes, moderate ES [0.60–0.70], α = 0.05,
power [1‑β] = 0.95, sample size n = 30 participants). Participants were randomly divided
into three groups and the allocation sequence was generated using the block randomiza‑
tion algorithm. This algorithm randomizes subjects to two or more groups and achieves
balance across groups. The sequences were generated using statistical software (Pass 13‑
NCSS, LLC, Kaysville, UT, USA). Three groups were generated: the Experiment I group
(Exp I); men: 7; women: 3; age: 63.7 (1.4) years; height: 1.69 (0.02) m; body mass: 79.3 (5.5)
kg; body mass index: 27.6 (1.5) kg·m−2; the Experiment II group (Exp II); men: 4; women:
6; age: 67.9 (2.8) years; height 1.6 (0.03) m; body mass: 69.1 (2.5) kg; body mass index:
25.4 (0.8) kg·m−2; and the control group; men: 6; women: 5; age: 66.8 (1.7) years; height:
1.59 (0.03) m; body mass: 74 (4.2) kg; body mass index: 29.7 (1.1) kg·m−2. Each partic‑
ipant was informed about the procedures of the study and the relative risks. Everyone
provided written informed consent. The participants of Exp I and Exp II executed super‑
vised training programs similar to those conducted in fitness centers and reported in the
practice guidelines [41]. The participants of the control group did not train andmaintained
a sedentary lifestyle for the entire period of the study (12 weeks). All the measurements
were conducted in the Laboratory of Biomechanics of the Department of Applied Clini‑
cal Sciences and Biotechnology of the University of L’Aquila. The study was part of a
project for the promotion of health in university staff (called “Ateneo in Movimento”). We
excluded from the present study people who were affected by acute or chronic diseases,
heart disease, a neurological disorder, a psychological disorder and low back pain. The
intervention lasted 12 weeks, and flexibility measurements were carried out on all the par‑
ticipants.

2.2. Testing Procedures
To test the flexibility levels of the participants, we used the SR. The test provides a

reliable measure of the degree of flexibility of the posterior muscular chains [42], and the
measurements were carried out for all the participants in the following way: before and
after the first session of training (T0); before and after the last session of training (T1 at the
end of the 12‑week training period). The values of flexibilitymeasured before (Pre) the first
training session at T0 and before (Pre) the last training session at T1 were used to assess
the chronic effect (T0–T1), whereas the acute effects were assessed at T0 (pre–post the first
training session) and at T1 (pre–post the last training session) (Figure 1). The assessment
of the acute effect at T0 and T1 was used to determine the training dose at the beginning
for 12 weeks of training. In each testing session, the mean value of 3 trials (separated by
an interval of 20 s each) was retained for analysis. The measurements were performed at
the same time of day to avoid circadian variations [43]. During the execution of the SR
test, the participant sat on the floor with his/her legs stretched forward and the soles of
the feet against a box; knees were locked and pressed flat to the floor; arms were stretched
forward, above the box, with the palms facing downwards and the hands side by side.
The participant flexed their trunk forward, moving the cursor along the measuring line
as far as possible [44]. The maximum position was held for ~2 s, and then the participant
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returned to the starting position [44]. Ten minutes of warming up was performed by all
the participants before the SR test and the training sessions. The warm‑up was composed
of 10 min of walking and 5 min of static and dynamic stretching exercises for the upper
limbs, lower limbs and trunk.
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Figure 1. Timeline of exercises performed by the three groups during the follow‑up interventions.
Exp I: strength training combined with specific flexibility exercise; Exp II: dynamic flexibility train‑
ing combined with specific flexibility exercise; control: maintained a sedentary lifestyle during the
training period. In T0 and T1, we assessed the effect of a single session in the three groups. The
control group had only a rest period to wash out the effect of the sit‑and‑reach test.

2.3. Physical Training Interventions
Over the training intervention (12 weeks), the participants of Exp I and Exp II per‑

formed 2–3 weekly sessions, and they were supervised by sports science graduate trainers.
The exercise selections were based on the indications for older adults reported in the liter‑
ature [13] and included exercises for the major muscle and joint groups.

Two different conditioning training sessions were conducted by the participants of
Exp I and Exp II, but, in both groups, each training session lasted approximately 30 min:
those in Exp I performed strength training exercises (bodyweight exercises or use ofmuscle‑
building machines with an overload that allowed participants to perform up to 10 repeti‑
tions) and static stretching (Table 1); those in Exp II performed dynamic and static stretch‑
ing exercises. The movements during dynamic stretching were executed slowly to avoid
reflex muscle activation [30] that could cause muscle–tendon injuries.

For the static stretching programs, we selected a single exercise in which the poste‑
rior muscular chains were stretched: forward bending of the trunk from a standing po‑
sition (Figure 2); this exercise, which involves trunk flexion and extension, increases the
relaxation–stabilization of the muscles (i.e., latissimus dorsi and lumbar erector spinae)
and reduces LBP [45]. Considering the age of the participants, particular attention was
given to the stretching position to avoid pain or discomfort at the lower back. Therefore,
we asked participants to place their hands on their thighs, in order to reduce the weight on
the trunk and tominimize the action of compressive and shearing forces on the lumbar ver‑
tebrae segments (L4‑L5), which is recognized as a risk factor for lower back pain [46–48].
The forward bending of the trunk was performed to the point of mild discomfort, follow‑
ing the ACSM indications for adults [23]: 2 sets of 10 repetitions, involving holding the
position to the point of moderate discomfort in the hamstrings [25] for 15 s; 3 min of rest
were taken between sets. The training workload was constant during the 12 weeks to com‑
pare the acute effects induced at baseline and after 12 weeks.
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Table 1. Typologies of strength, dynamic and static stretching exercises in the two groups.

Exp I Exp II

Strength Training Exercises Sets× Reps☆ Dynamic Training Exercises Sets× Reps☆

(a) Pectoral machine/knee assisted
push‑up or wall push‑up

3 × 10 (i) Hip external and internal rotator 4 × 10

(b) Seated lat.
pull‑down/bodyweight prone lat.
pull‑down

3 × 10 (j) Hip adductor and abductor 4 × 10

(c) Seated biceps curl 3 × 10 (k) Hip flexor and extensor 4 × 10

(d) Seated triceps extension
unilateral/chair triceps dip

3 × 10 (l) Standing knee flexor 4 × 10

(e) Seated shoulder press 3 × 10 (m) Plantar flexor 4 × 10

(f) Bodyweight squat 3 × 10 (n) Trunk lateral flexion 4 × 10

(g) Bodyweight glute bridge 3 × 10 (o) Trunk rotator 4 × 10

(h) Seated calf press/bodyweight
standing calf raise

3 × 10 (p) Shoulder flexion and extension 4 × 10

(q) Shoulder girdle abduction and
adduction

4 × 10

(r) Shoulder external and internal
rotation

4 × 10

Static Stretching Exercise Sets× Reps
⋆/Time to SS (s) Static Stretching Exercise Sets× Reps

⋆/Time to SS (s)

(s) Bending the trunk forward with
the hands on the knees

2 × 10/15 (s) Bending the trunk forward with
the hands on the knees

2 × 10/15

Exp I = Experimental group I; Exp II = Experimental group II; trunk = a, b, n, o; upper limbs = c, d, e, p, q, r; lower
limbs = f, g, h, i, j, k, l, m, s. SS = static stretching; reps = repetitions. ☆ Rest period between the sets was around
1 min. ⋆ Rest period between the sets was around 3 min.
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2.4. Statistical Analysis
Shapiro–Wilks’s W test revealed that the data were not normally distributed; there‑

fore, the choice of a nonparametric statistical analysis allowed us to address the lack of
Gaussian shape.

The physical characteristics among the three groups were assessed by means of the
Kruskal–Wallis testwithmultiple pairwise comparisons using the Steel–Dwass–Critchlow–
Fligner procedure/two‑tailed test. The acute and chronic effects of physical training (inde‑
pendent variable) on flexibility (dependent variable) were assessed in the two testing ses‑
sions by means of the Wilcoxon signed‑ranked test/two‑tailed test in each group. The two
experimental groups were compared by using the Mann–Whitney test. The intrasession
and inter‑day reliability of the flexibility measurements were quantified using the intra‑
class correlation coefficient (ICC of single measures) of the log‑transformed values [49]. In
agreement with previous studies [50], values of ICC less than 0.50 were defined as “poor,”
those from 0.50 to 0.69 were defined as “moderate,” those from 0.70 to 0.89 were defined as
“high” and those greater than 0.90 were defined as “excellent”. The significance level was
set to p < 0.05. All the analyses were executed using XLSTAT version 15 (Statistical Data
Analysis Solution, Addinsoft, New York, USA 2022; https://www.xlstat.com).

The statistical significance was set to p ≤ 0.05, and the meaningfulness of significant
outcomes was estimated by calculating the ES of Cohen.

3. Results
The results of 29 older adults were analyzed in the two testing sessions before and

after flexibility training as two participants in the control group dropped out of the investi‑
gations due to health problems. The participants did not report side effects or lower back
pain, and none of the baseline measurements (age, body mass, stature, BMI and sit‑and‑
reach) were significantly different among the three groups (p > 0.05).

3.1. Reliability of Measurements
The intraclass correlation coefficients (ICCs, 95% confidence limit, lower confidence

limit–upper confidence limit) of the measured variable between testing sessions T0 and T1
(chronic) were 0.96 (0.82–0.99), 0.93 (0.71–0.98) and 0.97 (0.87–0.99), for Exp I, Exp II and
the control group, respectively. The ICC for T0 and T1 (acute) was 0.99 (0.96–1.00) for Exp
I, 0.98 (0.93–0.99) for Exp II and 0.97 (0.91–0.99) for the control group.

3.2. Acute Effect
The acute effects are shown in Figure 3. In Exp I, flexibility acutely increased sig‑

nificantly over T0 (∆T0 = 7.63 ± 1.26%; ES = 0.36; p = 0.002) and T1 (∆T1 = 3.74 ± 0.91%;
ES = 0.20; p = 0.002), whereas, between ∆T0 and ∆T1, it decreased (∆T0 − T1 = −46.45 ±
11.16%; p = 0.008). Similarly, it increased significantly in Exp II during T0 (∆T0 = 14.21 ±
3.42%; ES = 0.20; p = 0.011) and T1 (∆T1 = 9.63 ± 4.29%; ES = 0.13; p = 0.005), but the differ‑
ence between ∆T0 and ∆T1 (∆T0 − T1 = −65.22 ± 64.21%) was not significant (p = 0.193).
Conversely, the control group did not show significantly increased flexibility either in T0
(∆T0 = 6.60 ± 3.77%; p = 0.089) or in T1 (∆T1 = 12.20 ± 7.22%; p = 0.092). The difference
between the two trial groups was not significant for T0 (6.78 ± 4.15%; p = 0.159) or T1
(5.89 ± 4.47%; p = 0.072).

3.3. Chronic Effect
The chronic effects are summarized in Figures 4 and 5. Flexibility significantly in‑

creased in Exp I (∆T0 − T1 = 9.03 ± 3.14%; ES = 0.41; p = 0.020) and Exp II (∆T0 − T1 =
22.96± 9.87; ES = 0.35; p = 0.005) over the 12 weeks of training. The difference between the
two experimental groups at the end of the intervention (T1) was not significant (17.67 ±
5.70%; p = 0.089). The control group did not show significant changes (∆T0 − T1 = −3.23
± 5.88%; p = 0.953).

https://www.xlstat.com
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4. Discussion
The results of the present study confirmed our hypothesis that the two conditioning

programs significantly induced flexibility improvements acutely and following 12 weeks
of training in older adults. The acute and chronic changes between the two protocols
were not significant. The magnitude of the training’s effects (effect size, ES) relative to the
pre–post comparisons within each group was larger in Exp I than in Exp II, both acutely
(0.20–0.36 vs. 0.13–0.20) and chronically (0.41 vs. 0.35). On the contrary, the relative change
was the highest in Exp II, but therewas greater variability in this group, whose participants
performed dynamic and static stretching (Figures 3 and 5).

A possible explanation of the latter result could be found in the different categories of
exercises (strength vs. dynamic stretching), as the static stretching was the same in the two
groups. Strength exercises were executed with weight machines that had fixed ranges of
motion, limited degrees of freedom formovement and high reproducibility [51]. Therefore,
strength machines can be used easily by the elderly. Their standardized execution allows
for more consistency than free movements, such as dynamic stretching exercises, which
need to be controlled by the performer themselves, and experience is required to execute
them correctly and effectively (i.e., amplitude and velocity of stretching) [52].

In the literature, researchers have studied the chronic effects induced by combina‑
tions of endurance and strength exercises on flexibility. They have placed less emphasis
on flexibility exercises. Barbosa et al. [32] reported flexibility improvements (sit‑and‑reach
test, 13 ± 9%) in elderly women following 10 weeks of strength training without stretch‑
ing exercises. Additionally, Fatouros et al. [36] compared the effects induced by strength
training, cardiovascular training and strength and cardiovascular training on several vari‑
ables, including the sit‑and‑reach score, following 16 weeks of training (48 sessions). An
increase in the sit‑and‑reach score was obtained with strength training and strength and
cardiovascular training (~10–12%). However, stretching training alone was more effective
than the combined training (strength and stretching) after 10 weeks (three sessions per
week) in improving the hips’ ROM (14.5 vs. 5.5%) [33]. Higher improvements in hip ROM
have been reported following 12 weeks (24 sessions, 60 min for each session) of pilates ex‑
ercises (22%) [53]. Recently, Sobrinho et al. [54] showed that adding stretching exercises
to multicomponent training for 16 weeks is very effective at generating additional benefits
for other physical variables (i.e., strength, agility and aerobic fitness).

Overall, these results underline that different typologies of exercises are effective at
improving flexibility because the limiting factors are several and related to neural andmus‑
cular components [30]. Nevertheless, the choice of a specific training regimen should be
made considering the physical characteristics of participants and their health conditions.

In the literature, other investigations have reported the acute effects of stretching ex‑
ercises on hip ROM [26] and sit‑and‑reach score [55], but studies are lacking that have
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analyzed both acute and chronic effects. In our study, we assessed the acute effect repeat‑
edly, to check the effectiveness of the stimulus over time; this approach is fundamental
to establishing the principle of progression of the training load and to ensuring specific
adaptative responses in middle‑ and long‑term flexibility training. In the present study,
the acute effect of a single training session decreased significantly in the two experimental
groups, indicating that the single “dose” could be increased for the elderly after 12 weeks
of flexibility training.

Additionally, the participants of both experimental groups performed a single static
stretching exercise in which they bent forward the trunk in a standing position, similar to
themovement during the toe touch test. The selected stretching exercise has three features.
Firstly, this multi‑joint exercise is an effective stimulus, as it involves the whole body and
the stretching of several muscles (hamstring, lumbar, gluteus and triceps surae). Secondly,
the participants, during the forward bending of the trunk, had their hands gripping their
thighs, similarly to a “braced arm‑to‑thigh technique” [46–48]; the technique was adopted
to oppose the external torque (given by the product of the trunk weight force and moment
arm) to reduce the lumbar spine load (compression and shear forces) at the L4–L5 interver‑
tebral discs [46–48]. We did not measure these forces because it was beyond the scope of
this investigation. No adverse effects on the lower back were reported by the participants
over the 12 weeks of training. Thirdly, the “braced arm‑to‑thigh technique” facilitated
the pattern of lumbar flexion and pelvic rotation, which are the two main contributors to
the forward bending of the trunk [56], while keeping the knees extended and hamstrings
extended.

The significant acute and chronic changes in flexibility resulted in the two condition‑
ing programs, underlining that the exercises selected could induce similar neural and/or
mechanical changes. Acute changes induced by the exercises performed could be due to
the reduction in the reflex responses in the elderly [57]. The loading and holding phases of
a stretch can increase the length of the muscle–tendon unit, thus modifying its viscoelas‑
tic properties [58]. The altered viscoelastic properties seem to affect the proprioceptive
feedback and the motor‑unit activation [59]. Additionally, the chronic changes in flexibil‑
ity initially involve mechanical adaptations, followed by a reduction in neural input after
30 training sessions (an inverse sequence with respect to that observed during strength
training) [30]. Additionally, the flexibility improvements have been attributed to increased
stretch tolerance [39]; in other words, the intense sensation of discomfort when a muscle is
stretched is reduced in the post‑training period and could be associated with a reduction
in the sensory feedback or an attenuated interpretation of the afferent signals [57].

Limitations
In our study, the relative contributions of neural and muscular factors and the timing

of these adaptations could not be discernedwith regard to the different exercise typologies
because no specificmeasurementswere carried out. Apoint of concern in the present study
regards the possible effects induced by resistance training exercises on the development
of muscular strength of the upper and lower limbs, which we did not assess, as our aim
was to determine their effect on flexibility. However, it could be useful to develop both
strength and flexibility within a single session of training.

5. Conclusions
The results showed a flexibility increase in both groups; therefore, the choice of a pro‑

gram that optimizes effectiveness and allows the prevention of any adverse effects should
be based on the physiological and clinical characteristics of the elderly person [60]. The
ACSM guidelines [61] suggest avoiding resistance exercises in subjects with recent heart
disease (myocardial infarction or electrocardiographic changes, complete heart blockage,
acute congestive heart failure, unstable angina or uncontrolled hypertension). In this pop‑
ulation, stretching exercises (dynamic) could be used, which contribute to lowering both
systolic and diastolic blood pressure [62]. Resistance training is also contraindicated in el‑
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derly persons with compromised bone health due to a comorbidity. For example, subjects
with rheumatoid arthritis can safely benefit from non‑weight‑bearing exercises [63].

Future studies should consider using the results of the acute effects to dose the stim‑
ulus in longer‑term investigations (from 3 to 6–12 months) to optimize the adaptation pro‑
cess. Moreover, muscular and neural variables should be measured to identify the mecha‑
nisms that limit flexibility in the elderly.
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