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Abstract: We performed a meta-analysis of chemo-brain diagnostic, pooling sensitivities, and
specificities in order to assess the accuracy of a machine-learning (ML) algorithm in breast
cancer survivors previously treated with chemotherapy. We searched PubMed, Web of Science,
and Scopus for eligible articles before 30 September 2022. We identified three eligible studies from
which we extracted seven ML algorithms. For our data, the χ2 tests demonstrated the homogeneity
of the sensitivity’s models (χ2 = 7.6987, df = 6, p-value = 0.261) and the specificities of the ML models
(χ2 = 3.0151, df = 6, p-value = 0.807). The pooled area under the curve (AUC) for the overall ML
models in this study was 0.914 (95%CI: 0.891–0.939) and partial AUC (restricted to observed false
positive rates and normalized) was 0.844 (95%CI: 0.80–0.889). Additionally, the pooled sensitivity
and pooled specificity values were 0.81 (95% CI: 0.75–0.86) and 0.82 (95% CI: 0.76–0.86), respectively.
From all included ML models, support vector machine demonstrated the best test performance. ML
models represent a promising, reliable modality for chemo-brain prediction in breast cancer survivors
previously treated with chemotherapy, demonstrating high accuracy.

Keywords: chemo-brain; machine learning; diagnostic accuracy; breast cancer; chemotherapy

1. Introduction

Breast cancer (BC) is the leading cancer among women worldwide [1]. Currently,
approximately 80% of patients with BC are individuals aged > 50. Survival depends on
both stage and molecular subtypes [2]. The diagnosis and treatment of breast cancer may
have a detrimental impact on the physical and emotional well-being of women because
of the adverse effects of treatment, fear of death, and feelings of social devaluation [3].
The mortality of BC has decreased in recent decades because of the advanced therapies
and better management of the personalized risk profile of every patient. Benefiting from
these techniques and therapies, the paradigm shift will be toward reducing the negative
consequences of oncological treatment for improved quality of life in breast cancer patients.
Among these treatments, chemotherapy remains an important milestone in the BC therapy
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approach. Breast cancer survivors who have undergone chemotherapy might complain
about cognitive-induced cognitive impairment (CICI) during and after treatment. CICI or
“chemo-brain” affects more than 50% of BC patients and is used to describe the changes in
cognitive function following systemic chemotherapy [4]. The impacted cognitive functions
include executive function, memory, psychomotor function, attention, visual-spatial skills,
processing speed, and reaction time [5,6].

As medical technology continues to advance, the number of breast cancer survivors
is increasing and the social and economic burden of CICI is increasing. Therefore, early
detection of the occurrence of CICI is crucial for early clinical intervention and the prognosis
of patients. Chemo-brain is frequently assessed using neuropsychological testing, but there
is a lack of an adequate statistical and technical threshold to distinguish between impaired
and non-impaired cognitive function [7,8]. Numerous neuroimaging investigations have
demonstrated that CICI is a brain illness characterized by the extensive disruption of
large-scale neural networks [9–11]. However, the variability of the CRCI has not been
sufficiently studied, as the majority of studies have explored it binarily, and we believe
that neuroimaging has the potential for diagnosing chemo-brain. To accomplish this
purpose, we performed a meta-analysis of chemo-brain diagnostic in order to assess the
accuracy of a machine-learning algorithm in breast cancer survivors previously treated
with chemotherapy.

Several neuroimaging investigations [11,12] have demonstrated that CICI is charac-
terized by a reduction in the volume and density of gray matter and destruction of the
structural integrity of white matter. In addition, resting-state functional magnetic resonance
imaging (rs-fMRI) investigations indicated that breast cancer patients with CICI exhibited
substantial abnormalities of local functional activities and connections [13]. Rs-fMRI is
a safe and noninvasive method to investigate functional and structural alterations in the
human brain, during which patients are required to relax and clear their minds throughout
the MRI scan without following any instructions, making the experiment simpler and more
reproducible in clinical settings. Dumas et al. [14] showed decreased functional connec-
tivity in the default mode network (DMN) one month and one year after chemotherapy
in breast cancer patients. These findings suggest a detrimental effect of chemotherapy on
brain functional connectivity that is potentially related to subjective cognitive assessment.
However, the majority of this research is conducted independently according to brain
functional connectivity or regional activity. Given the multimodal aspects of brain function,
it will be difficult to establish the differentiating traits and apply them to the individual
categorization of CICI.

To resolve these issues, classification models using rs-fMRI and machine learning
have been used for the accurate early detection of CICI. There are various machine-
learning models, e.g., logistic regression (LR), decision tree classifier (CART), XGBoost
(XGB), deep learning (DL), support vector machine (SVM), and random forest (RF), with
known efficacy in the detection the subtle alterations of the brain in postchemotherapy BC
patients [15–20]. LR is a typical linear model based on the logistic function for classification
rather than a regression model, with higher training and prediction speed, good accuracy
for many simple data sets and it performs well when the dataset is linearly separable. LR
is less inclined to over-fitting and can interpret model coefficients as indicators of feature
importance, but it remains difficult to obtain complex relationships using LR. More compact
algorithms such as neural networks can outperform this algorithm [21]. SVMs are easily
interpretable with an efficient classification, which enhances the predictive accuracy of
health data, but they are not efficient in handling large sets of datasets. The target classes
in a large dataset usually overlap, affecting the classification and predictability. However,
SVM needs meticulous calibration and preprocessing [22].

XGB is very effective, adaptable, and accurate. It is built on the gradient boosting
architecture and has demonstrated its excellent performance in numerous machine learning
competitions [23]. In XGB, weights play a crucial role. All independent variables are
assigned weights and subsequently fed into the decision tree used to predict outcomes.
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The weight of variables for which the tree made incorrect predictions are increased, and
these variables are then given to a second decision tree. The ensemble of these independent
classifiers/predictors generates a robust and more accurate model [24].

CART is a variation of the decision tree algorithm and can handle both classification
and regression tasks. CART is a promising model that employs an if/then question-
based machine learning algorithm, and it has been widely used in recent years [25]. The
model is straightforward to visualize, feature scaling is unnecessary, requires minimal
supervision, and produces easy-to-understand models. These are three of CART’s primary
advantages. However, CART has a propensity for overfitting, high variance, and poor
induction performance [24,26].

Random forest is an ensemble technique that uses many decision trees and the Boot-
strap and Aggregation process, also known as bagging, to perform regression and classifi-
cation tasks. Rather than depending on individual decision trees to determine the ultimate
result, this method combines many decision trees [27]. Random forest employs numer-
ous decision trees as its primary learning models, combats the overfitting that frequently
occurs in CART, and has many benefits over CART. Despite this, RF has a more difficult
visualization and is unsuitable for high-dimensional and sparse data sets [24].

In recent years, the evolution of image interpretation systems that use machine learn-
ing (ML) approaches have been rapid. The next obvious step was to develop intelligent
computers that could independently learn and extract picture comprehension character-
istics. CNN (convolutional neural network), recurrent neural network, and generative
adversative networks are examples of the techniques used by deep learning. One such
model is the CNN model, which automatically learns and extracts the required charac-
teristics for medical picture comprehension [28]. CNN models have been characterized
as black boxes, and much research is being conducted to analyze output at every layer.
Due to the involvement of medical imaging, we want an effective prediction system that
is also capable of communicating a judgment. Picture captioning is another area of study.
This will allow doctors to comprehend the network’s perspective at both the output and
intermediate layers [29].

The purpose of this research was to assess which machine-learning models are the
most effective and accurate at recognizing chemo-brains and to demonstrate that there
are valid machine-learning perspectives that can distinguish BC patients with CICI from
healthy controls, thereby providing potential neuroimaging evidence for early diagnosis of
the occurrence of chemo-brain and clinical intervention in breast cancer patients. In the
future, we anticipate using machine learning as a paradigm for clinical CICI monitoring.

2. Materials and Methods
2.1. Overview

This review was conducted according to the PRISMA-DTA [30], the checklist being
presented in the Supplementary File.

2.2. Literature Search and Study Selection

A search in PubMed, Web of Science, and Scopus, was performed until 30 September
2022, using the keywords: (“machine learning” OR “deep learning”) AND “breast cancer”
AND (“chemo-brain” OR “cognitive impairment” OR “chemotherapy-related cognitive
impairment” OR “CRCI” OR “chemotherapy-induced cognitive impairment” OR “CICI”)
AND “chemotherapy” AND “MRI”. The review of the reference lists from the included
studies was also performed.

As guidelines require, two reviewers (M.B. and M.-S.S.) selected potentially relevant
studies and disagreements were resolved by a third reviewer (C.V.L.). All the results
were imported into Rayyan, where duplicate papers were automatically screened and
deleted [31].

We selected the articles based on the following criteria: (1) articles female post-
chemotherapy breast cancer survivors; (2) including groups with chemo-brain and healthy
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controls; (3) articles that used machine learning models or algorithms; (4) articles that
used magnetic resonance imaging (MRI) data; (5) articles written in English; (6) articles
that reported the performances of confusion matrix. We excluded: (1) articles that did not
reported sufficient data; (2) the publication was a conference abstract, or a review article.

A spreadsheet was used to extract the study information: name, country of the
data, patient groups, algorithms, MRI manufacturer, outcomes of ML detection (from
which to extract TP, true positive; FP, false positive; FN, false negative; TN, true negative).
Additionally, all the models from an article were extracted if they used different classifiers
or prediction classes. Otherwise, if the articles presented chemo–brain relatively similar
models, we extracted the model with the highest accuracy.

2.3. Quality Assessment

We used the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool [32]
to evaluate the quality of the study that were included in our meta-analysis. The overall
quality was considered very poor, poor, moderate, and good, depending on the score
calculated after rating the four domains: patient selection, index test, reference standard,
and flow and timing. All domains are assessed in terms of risk of bias, whereas the
first 3 domains are evaluated from the point of view of concerns regarding applicability.
We assigned the values of −1, 0, and 1 to low, unclear, and high and the total score could
range from −7 to 7.

2.4. Statistical Analysis

Two R packages were used for carrying out the statistical analysis: mada [33] and
metafor [34]. Each ML model was summarized by the pooled diagnostic odds ratio (DOR),
sensitivity and specificity together with their 95% confidence intervals. The correlation of
sensitivities and false positive rates was calculated to give a hint if the cut-off value problem
was present. As sample size was too small, the univariate approach to the meta-analysis of
diagnostic accuracy was approached. Pooling sensitivities and specificities were performed,
as well as the positive and negative likelihood ratios, and θ, the accuracy parameter of the
proportional hazards model for diagnostic meta-analysis [35]. Cochran’s Q and Higgins’ I2

were calculated as measures of heterogeneity [36].
For a more informative graphical form, we established crosshairs plots [37], which

are a combination of both receiver operating characteristic (ROC) curve and forest plot,
demonstrating the bivariate relationship, the degree of heterogeneity (the crosshairs are
wider with increased sample size). The ROCellipse plots confidence regions which evidence
the uncertainty of the pair (sensitivity, false positive rate) as ellipses on logit ROC space.

3. Results
3.1. Eligible Studies and Quality Assessment

As presented in Figure 1, three research articles were identified in the three databases.
After removal of 14 duplicates, the remaining 20 articles were included in the screening
process. Finally, three studies containing seven machine learning models were included in
our study.

Figure 2 shows the quality assessment of the three included studies using the Quality
Assessment of Diagnostic Accuracy Studies QUADAS-2 tool. The studies avoided inap-
propriate inclusions or exclusions of the patients, with no existence of flow and timing
risk of bias. Only one study [17] was considered unclear regarding the patient selection on
consecutive or randomized sample. Only one study [15] was considered unclear regarding
the risk of bias for reference standard and blinding to index test result.
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3.2. Eligible Studies and Their Characteristics

The main characteristics of the included studies are summarized in Table 1. Four mod-
els were included from Chen et al. [17], two models from Lin et al. [15], and one model
from Wang et al. [16]. The studies were conducted in China [16] and Taiwan [15,17]. In
this systematic review and meta-analysis, 114 cancer patients and 119 healthy controls
were included.

Table 1. The characteristics of the included studies.

Study ID Country Patients
Characteristics

Healthy Controls
Characteristics MRI Acquisition Classifier

Chen 2019 [17]

1

Taiwan

N = 19
Mean age ± SD =

43.8 ± 6.4
Age range 32–55

Education
13.9 ± 2.2

N = 20
Mean age ± SD =

50.1 ± 2.5
Age range 43–55

Education
13.3 ± 2.3

Magnetom Aera;
Siemens

Medical Systems,
Erlangen, Germany

LR-GFA
standardized

2 LR-GFA
unstandardized

3 LR-mReHo
standardized

4 LR-mReHo
unstandardized

Lin 2021 [15]

5

Taiwan

N = 55
Mean age ± SD =

50 ± 8.09
Age range 32–65

Education
11.58 ± 3.8

N = 65
Mean age ± SD =

50 ± 8.09
Age range 31–67

Education
13.56 ± 3.1

Verio, Siemens,
Germany

SE-ResNet-50

6
SE-

DenseNet-
121

Wang 2022 [16] 7 China

N = 40
Mean age ± SD =

47.85 ± 6.87
Education
4.6 ± 3.6

N = 34
Mean age ± SD =

46.38 ± 9.88
Education
5.74 ± 3.12

Siemens Medical
Solutions, Erlangen,

Germany
SVM

SD, standard deviation; LR-GFA, linear regression-generalized fractional anisotropy; SE-squeeze and excitation;
ResNet, residual neural network; DenseNet, dense convolutional network; SVM, support vector machine.

3.3. Descriptive Statistics

The study with the highest accuracy was the latest published in 2022 (91.9%), using
a SVM classifier on seventeen features. The sensitivity and specificity together with their
confidence intervals of the eligible models that were described in Table 1 are presented in
Figure 3. Sensitivity values for ML models ranged between 0.68 (95% CI: 0.46–0.85) and
0.92 (95% CI: 0.80–0.97), while specificity values ranged between 0.80 (95% CI: 0.58–0.92)
and 0.85 (95% CI: 0.64–0.95). Testing for the equality of sensitivities demonstrated the
homogeneity of the models (χ2 = 7.6987, df = 6, p-value = 0.261). No differences were
observed between the specificities of the ML models (χ2 = 3.0151, df = 6, p-value = 0.807).

Apart from these univariate analysis, Figure 3 shows the study on ROC space.
The plots in Figure 4 confirmed this homogeneity in ROC space. We could visually

evaluate the points for the specificity and sensitivity paired within the seven models, all of
them being situated at the left of the main diagonal of the square graph.

In addition to the confidence intervals, Cochran’s Q statistic and Higgins’ I2 were
calculated: 6.192 (df = 6, p-value = 0.402) and, respectively, 3.103%. The coefficient θ (theta)
was 0.093 (95% CI: 0.065–0.123). The smaller this diagnostic accuracy parameter, θ, the
larger the area under the ROC curve and thus the more accurate the ML diagnostic test.
The values for DOR (95% CI) and τ2 (95% CI) were 20.38 (11.92–34.69) and 0.07 (0.0–2.9),
respectively. The log DOR value of each model ranged between 2.16 (95% CI: 0.70–3.62)
and 4.85 (95% CI: 3.18–6.52). Apart from these univariate analysis, Figure 5 shows the forest
plot of the log DOR values together with the summary estimation. As pooled log DOR was
3.01 (95% CI: 2.48–3.55), the diagnostic odds ratio had more than 100 values indicating very
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good test performance. Model 2 had the worst test performance, whereas model 7 had the
best test performance.
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3.4. Overall Model

The correlation of sensitivities and false positive rates is low (rho = −0.207,
95% CI: −0.830 to 0.647). Based on the HSROC curve plot (Figure 6), there was a small
deviation of the individual models from the curve.
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The pooled area under the curve (AUC) for the overall ML models in this study was
0.914 (95% CI: 0.891–0.939) and partial AUC (restricted to observed false positive rates and
normalized) was 0.844 (95% CI: 0.80–0.889). Additionally, the pooled sensitivity and pooled
specificity values were 0.81 (95% CI: 0.75–0.86) and 0.82 (95% CI: 0.76–0.86), respectively.

4. Discussion

With so much emphasis on the development of artificial intelligence (AI), there is a
rising interest in its use in cancer detection, diagnosis, and treatment side effects. In the area
of medical imaging, decision-making-capable machine-learning algorithms are required.
Complex and subtle variations that cannot be immediately identified by doctors may now
be recognized by cutting-edge machine learning technology. Cognitive impairment is a
well-known side effect of cancer and its therapies, although it is still poorly understood due
in part to the absence of a defined definition or diagnostic criteria. CICI has been studied in
the past as a dichotomous condition in which people are either impaired or not impaired,
which is unlikely to be realistic given the complexity of the cognitive function.

In this current meta-analysis, we found that ML algorithms may be used for the
diagnosis of chemo-brain in breast cancer patients previously treated with chemotherapy,
with good diagnostic accuracy, in terms of sensitivity and specificity.

We have analyzed three types of ML classes: SVM [16], LR [17], and deep learning [15],
containing seven machine learning models: LR-GFA standardized and unstandardized,
LR-mReHo standardized and unstandardized [17], SE-ResNet-50 [15], SE-ResNet-121 [15],
and SVM-model [16].

Contrary to popular belief, logistic regression is a regression model. Logistic regression
becomes a classification technique only when a decision threshold is brought into the
picture. The setting of the threshold value is a very important aspect of logistic regression
and is dependent on the classification problem itself. LR models do not require the selection
of a learning rate; they frequently run faster and can numerically approximate the gradient.
However, LR is more complex and, unless the specifics are learned, more of a black box [21].
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When it comes to deep learning, the convolutional neural network (CNN) performs
the best in image recognition [15,16]. In a CNN, there are three types of layers: input layers,
in which we give input to our model; hidden layer, where the input is fed; and output layer,
where the output from the hidden layers is then fed into a logistic function, which converts
the output of each class into the probability score of each class. The data are then fed into
the model, and the output from each layer is called feedforward [24]. As the name suggests,
it is a neural network that makes use of convolutional operations to classify and predict.
Some of the advantages of CNN are weight sharing, memory saving, and equivariance,
the property of CNNs whereby, upon a change in the input, a similar change is reflected in
the output; this helps identify any drastic change in the output and retain the reliability of
the model [28]. There are also independents of transformation and independents of local
variations in image. There are also other types of neural networks in deep learning, but
for identifying and recognizing objects and images, CNNs are the network architecture of
choice [15,29].

SVM is a supervised machine learning algorithm that can be used for both classification
and regression challenges. However, it is mostly used in classification problems and works
well with unstructured and semi-structured data such as images. In practice, SVMs models
scale well to high-dimensional data and have generalization; the risk of over-fitting is
lower in this algorithm [24]. The kernel trick is the real strength of SVM, but choosing an
appropriate kernel function is not easy. A kernel trick is a simple method for projecting
data from a non-linearly separable training set into a higher-dimensional space where it
becomes linearly separable. Thus, choosing the right kernel function and regularization is
of great importance [22].

The most accurate research was the latest published in 2022 using an SVM classifier
on seventeen features (91.9% accuracy). A recent study [15] developed the support vector
machine (SVM) with patterns of DMN connectivity, which could discriminate between
chemotherapy-treated BC survivors and non-chemotherapy-treated BC survivors with
90–91% accuracy, while disregarding the effect of other parameters of rs-fMRI functional
connection and activity on breast cancer patients after chemotherapy. As noted earlier,
SVM is only effective when dealing with limited dataset sets, such as in the research
by Wang et al. [16] (89 BC patients and 34 HC). In a large dataset, the target classes
often overlap, impacting classification and prediction. In addition, SVMs need rigorous
calibration and preprocessing, and their application is not simple [22].

On the other hand, this study was the only one that could identify breast cancer
patients with subjective cognitive complaints related to chemotherapy from BC patients
before chemotherapy, not just from HCs like the other ML algorithms [15,17] analyzed.
In this research, they also incorporated the multi-level rs-fMRI features comprising brain
functional activity, local functional activity: low-frequency fluctuation (ALFF), fractional
ALFF (fALFF), and regional homogeneity (ReHo), and graph theory analysis, which were
selected by t-test, removal of high pairwise correlation, and least absolute shrinkage and
selection operator (LASSO) regression to construct the linear SVM model. In comparison,
in the work of Chen et al. [17], they used generalized q-sampling imaging (GQI), voxel wise
analysis, regional summation, and several machine-learning models: LR mean regional
homogeneity (LR-mReHo) and LR generalized fractional anisotropy (LR-GFA) to demon-
strate the efficacy of these techniques. They also preprocessed the MRI images to optimize
the prediction s model, by using regional summation to reduce the dimension of features.
In addition, they attempted additional feature selection or reduction techniques, such
as principal component analysis (PCA), variance threshold, and choosing k best, among
others. Even if these feature selection techniques harmed their findings, they may still be
applicable for developing alternative machine-learning models. Regarding preprocessing,
their findings indicate that standardization may improve the precision of LR on both GQI
and rs-fMRI data sets. In overfitting, when the ratio of training samples to dimensionality is
low, a significant difficulty often arises. This is the issue most MRI researchers face. During
overfitting, a model tends to learn the particular pattern of tiny samples rather than the



Int. J. Environ. Res. Public Health 2022, 19, 16832 10 of 14

desired overall pattern. Leave-one-out cross-validation (LOOCV), which might decrease
overfitting, is a suitable technique for a small data set with a lengthy training duration [38],
because it allows models to exclude data that might cause overfitting. In addition, since the
difference in size between the training sets used in each fold and the full data set is just a
single pattern, LOOCV is approximately unbiased, maintaining its great reliability.

Moreover, we can state that the selection of a model and preprocessing may have a
significant impact on the classifications produced by machine learning. Given that small
data sets often require less time to analyze, we recommend that researchers with a small
quantity of data attempt analyzing their data using a variety of models to discover the
particularly fitted one.

Heterogeneity, which is common in diagnostic meta-analyses, is the result of variations
among the different included studies [39]. These variations mainly include differences in
the study population, study design, interventions, and interpretations of results. In our
case, the heterogeneity between studies was not significant, regarding the MRI acquisition,
all MRI data were collected on Siemens Medical Solution Scanners from Erlangen Germany,
one3.0- Tesla Trio TIM Scanner [16], one Verio Siemens Scanner [15] and one Magnetom
Aera Scanner [17]. Unfortunately, none of the studies analyzed MRI scans pre- and post-
chemotherapy from the same patients; they only compared MRIs from BC patients with
HC. As a future direction, we propose analyzing images from the same patient before and
after chemotherapy to improve accuracy.

In addition, in the three included studies [15–17], there was not even one external
validation, which means testing the model with an out-of-sample dataset from one or more
other centers. All studies analyzed MRI images from a single institution. Since the purpose
of validation is to investigate the performance within patients from a different population,
it is necessary to obtain a new dataset from a distinct source. As a result, the model’s
generalizability could not be assured in the absence of external validation, causing the
results to be overestimated.

Although some prior research [40–42] showed that chemotherapeutic drugs could
impact the whole brain, the evidence that chemotherapy affects the entire brain is limited,
according to our integrated findings. Each brain area has a specialized purpose. Human
cognition is related with several integrated areas, and our brain does not confine its activities
to a single region but rather acts as a complex system, as shown by mounting data. CICI
may signify a disturbance in the brain’s network after chemotherapy.

Three of our analyzed ML algorithms (SE-RES NET 50, SE-DENSE NET 121, and
SVM) [15,16] indicate that the identified cerebral regions are very similar to the compo-
nents of the DMN, particularly the sub-regions comprising the prefrontal cortex, posterior
cingulate cortex, inferior parietal lobule, and lateral temporal cortex. These zones were dis-
covered to be critical for internal orientation cognition, cognitive control, and self-reference
cognitive processing [43], which are all associated with a range of neuropsychiatric dis-
eases [44]. The DMN is enriched with high-degree hub areas, suggesting that the DMN
regions may serve as relay stations for sharing information across the brain [45,46].

By assessing functional connectivity in resting-state fMRI, researchers detected altered
connectivity in particular DMN areas and proposed that these regions were associated
with attention and memory deficits after chemotherapy [44,47,48]. These findings suggest
that aberrant functional alterations in DMN may be one of the most efficient indicators for
identifying CICI in breast cancer.

The precise mechanisms of CICI are unclear, but it does include direct neurotoxic
damage, a reduction in neurogenesis, white matter anomalies in the central nervous system,
and neuroinflammation [49]. Chemotherapy threatens the anatomical composition of the
brain by diminishing the white matter integrity of the prefrontal cortex. Evidence suggests
that cytokine dysregulation damages prefrontal and temporal cortical synaptic networks,
hippocampal volume, and brain metabolism [50]. In our research, chemotherapy regimens
were heterogeneous. One study [15] did not take into account the chemotherapeutic agent
type and dosage at all, and another [16] included an increased number of chemother-
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apeutic therapies: cyclophosphamide, doxorubicin, epirubicin, docetaxel, fluorouracil,
and combinations. Only the method using the LR algorithm compares patients with the
same treatment regimen for improved diagnosis accuracy [17]. It is known that docetaxel
compromises the structural integrity of the cerebral cortex and peripheral neurons [51].
Both doxorubicin and cyclophosphamide induced behavioral impairments, although only
the last was associated with inflammation caused by microglia [52]. Variable levels of
cytokine concentrations and cognitive impairment severity are associated with distinct
chemotherapy regimens and doses. Additionally, cognitive disorder development must
be investigated.

Moreover, a heterogeneous element was noted regarding other therapies involved in
the BC patient treatments, such as targeted therapies, radiotherapy, or hormone therapy.
We cannot evaluate their contribution to CICI development or brain MRI alterations.
Cognitive impairment is commonly reported in breast cancer patients both during and
after cessation of treatment, and is likely triggered by multiple factors, such as endocrine
therapy, the cancer itself, stress, and the hormonal changes resulting from menopause,
amongst others [53].

The subjective and objective cognitive performance of breast cancer patients are
currently measured by using neuropsychological cognitive tests, such as Functional As-
sessment of Cancer Therapy-Cognitive Function (FACT-Cog) [54], Montreal Cognitive
Assessment [55], Clock drawing test [56], or Trail making test [57]. Only Wang et al. [16]
performed a cognitive assessment, completed within the same day of MRI scanning, and
there was no significant difference in objective cognitive scores between chemotherapy-
treated BC patient and non-chemotherapy-treated BC patient groups, which correspond to
the results of previous studies [4,58].

The main limitation to our meta-analysis was the small number of included studies
(only three, but with seven extracted models) as there were not many studies using AI
models to detect CICI in breast cancer patients. According to Jim et al. [59] the first research
on cognitive functioning in breast cancer survivors after chemotherapy treatment was
published in 1998, but the number of medical AI studies saw a marked increase after
2017 [60]. We were able to extract the data we need from all seven models and highlight
that SVM had the highest specificity, sensitivity, and accuracy among the included models.
Nevertheless, all the models are trained on a small dataset, and a larger dataset is required
to achieve better model performance. Moreover, verifying the model through external data
sets would be the research direction. Further analyzing MRI scans from the same patient’s
pre- and post-chemotherapy could also be considered in the future.

5. Conclusions

ML models represent a promising, reliable modality for chemo-brain prediction in
breast cancer survivors previously treated with chemotherapy, demonstrating high accuracy.
In this review and meta-analysis, we also put forward some existing problems of design and
reporting that algorithm developers should consider. Based on these promising preliminary
results and further testing on a larger dataset, artificial intelligence-assisted models could
become an important tool for the computer-aided prediction and diagnosis of CICI. We are
hopeful that this study could help the establishment of a clinically available model to track
chemo-brain in the future.
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