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Abstract: Technological innovation is a key component of orthopedic surgery. Artificial intelligence
(AI), which describes the ability of computers to process massive data and “learn” from it to produce
outputs that mirror human cognition and problem solving, may become an important tool for
orthopedic surgeons in the future. AI may be able to improve decision making, both clinically and
surgically, via integrating additional data-driven problem solving into practice. The aim of this
article will be to review the current applications of AI in the management of rotator cuff tears. The
article will discuss various stages of the clinical course: predictive models and prognosis, diagnosis,
intraoperative applications, and postoperative care and rehabilitation. Throughout the article, which
is a review in terms of study design, we will introduce the concept of AI in rotator cuff tears and
provide examples of how these tools can impact clinical practice and patient care. Though many
advancements in AI have been made regarding evaluating rotator cuff tears—particularly in the
realm of diagnostic imaging—further advancements are required before they become a regular facet
of daily clinical practice.
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1. Introduction

Shoulder pain has been defined as one of the most common musculoskeletal com-
plaints managed by physicians and physical therapists [1]. The glenohumeral joint is a
complex anatomic structure commonly affected by injury such as tendinopathy and rotator
cuff tears (RCTs) [2]. RCTs are one of the most common shoulder injuries, affecting more
than 40% of patients over the age of 60 and resulting in 30,000–75,000 surgical repairs
performed annually [3]. RCT symptoms, such as pain, loss of motion, and weakness,
predominantly affect active individuals and can negatively impact people’s daily activities
thus leading to an overall poor quality-of-life experience. The functional disability of rotator
cuff injuries affects not just the physical aspects of a patient’s life but also the mental and
social aspects [1]. Disruption of the force balance and normal shoulder stability and motion
after loss of tendon function initiates changes in almost all adjacent tissues [4]. Despite
improvements in our understanding of this disease process and advances in surgical treat-
ment, healing after rotator cuff repair remains a significant clinical challenge [3,5]. There
remains a need for innovative repair strategies that augment the repair by mechanically
reinforcing it, while simultaneously biologically enhancing the intrinsic healing potential
of the tendon [6].

Within the past several decades, technologies based on artificial intelligence (AI) have
helped face many new challenges in medicine [7]. AI refers to a branch of computer
systems able to execute tasks that imitate human cognitive functions, such as learning
and problem-solving, by analysing and comparing data [8,9]. The aim of AI and machine
learning (ML), defined as the scientific discipline that focuses on how computers learn from
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data, ref. [10] is to extract relevant information from massive healthcare data and to assist
clinical decision-making. By refining decision making, medical errors can be minimized,
clinical outcomes can be maximized, and the overall quality and efficiency of care delivery
can be enhanced [11].

A large amount of structured information can be analysed through ML techniques,
which can be combined with various analytical algorithms to create forecast models on
input variables [10] (Figure 1).
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Figure 1. This flowsheet defines and clarifies relevant terms and concepts used throughout the article.
“Big Data” can be applied to multiple processes that are within the realm of artificial intelligence.
Machine learning and deep learning are subsets of artificial intelligence, and each process uses “big
data” as inputs.

Moreover, deep learning (DL), a sub-category of AI, should be mentioned due to
its wide application in healthcare. This system consists of a series of inputs that traverse
multiple interconnected layers of neurons (neural networks), which recognize different char-
acteristics independently and make predictions about large amounts of information [10].

The greatest strength of many AI algorithms is that they are set to learn from data with-
out human intervention. This ability offers also exciting possibilities for musculoskeletal
radiology [12].

Recently, many studies have explored the role of AI and its subgroups in the or-
thopaedic field. AI offers a potential avenue to augment the orthopaedic surgeon while also
maximizing value in the delivery of care [13]. One specific area of investigation is how AI
can contribute to the accurate diagnosis and characterization of RCTs with imaging studies.
Amidst several imaging studies, up to now, magnetic resonance imaging (MRI) and MR
arthrography are the most accurate non-invasive tests used to define shoulder pathologies
such as RCTs. MRI contributes information on several cuff-related factors that influence
the success of surgical repair, such as tear size (anteroposterior tear length, mediolateral
tear length, and tear size area), tear depth, tendon quality, tendon fibre retraction, fatty
infiltration of the rotator cuff muscles, and the number of torn tendons [12]. Liu et al. [14]
performed a network meta-analysis of 144 diagnostic studies and determined that the
diagnostic performances of MRI and MR arthrography for diagnosing RCTs yielded pooled
sensitivities of 80–87% and specificities of 81–90%.

2. Materials and Methods

The aim of this study is to review the current applications of AI in the orthopaedic field
for rotator cuff pathologies across the spectrum of care, from diagnosis to the operating
room (OR) and subsequent recovery. Herein we will discuss how AI applies to predictive
models, diagnosis, intraoperative management, and postoperative care and rehabilitation.
To our knowledge, this is the first review paper to offer a summative overview of how
artificial intelligence has been applied to multiple aspects of rotator cuff care.

A review of the literature was undertaken using the PubMed database. Keywords
included “rotator cuff” and “artificial learning”, as well as “deep learning”. Journal articles
from the past ten years were considered. Abstracts were reviewed for relevancy, and
relevant articles (which discussed AI in the context of rotator cuff tears) were selected for
full text review. Full text review included analysis of topic of study, study design and
methods, and extraction of key results. The articles selected are reflected in Table 1.
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Table 1. Characteristics of studies on artificial intelligence in rotator cuff tear.

Author Journal Title Year of
Pubblication Where Imaging Pathology

Chen-Chiang LIN, Chih-Nan
Wang, Yang-Kun Ou, Jachih Fu

Japanese society for
magnetic resonance
in medicine

Combined image
enhancement, feature
extraction, and
classification protocol to
improve detection and
diagnosis of rotator-cuff
tear on MR imaging

2014 Taiwan MRI Rotator-cuff
tear

David M. Burns MD, Nathan
Leung, Michael Hardisty PhD,
Cari Whyne PhD, Patrick
Henry MD FRCSC PhD, and
Stewart McLachlin PhD

IPEM—institute of
physics and
engineering in
medicine

Shoulder Physiotherapy
Exercise Recognition:
Machine Learning the
Inertial Signals from a
Smartwatch

2018 Canada Smartwatch Shoulder

Elham Taghizadeh & Oskar
Truffer & Fabio Becce & Sylvain
Eminian & Stacey Gidoin &
Alexandre Terrier & Alain
Farron & Philippe Buchle

Springer—
European
Radiology

Deep learning for the rapid
automatic quantification
and characterization of
rotator cuff muscle
degeneration from
shoulder CT datasets

2020 Switzerland CT
Rotator cuff
muscle
degeneration

Eungjune Shim, Joon Yub Kim,
Jong Pil Yoon, Se-Young Ki,
Taewoo Lho,
Youngjun Kim & Seok Won
Chung

Nature: scientific
reports

Automated rotator cuff
tear classification using 3D
convolutional neural
network

2020 Korea MRI Rotator cuff
Tear

Evangelia E. Vassalou; Michail
E. Klontzas; Kostas Marias;
Apostolos H. Karantanas

Springer—skeletal
radiology

Predicting long-term
outcomes of
ultrasound-guided
percutaneous irrigation of
calcific tendinopathy with
the use of machine
learning

2021 Greece ultrasound-
guided

Calcific
tendinopathy

Giovanna Medina & Colleen G.
Buckless & Eamon Thomasson
& Luke S. Oh & Martin Torriani

Springer—skeletal
radiology

Deep learning method for
segmentation of rotator
cuff muscles on MR images

2020 USA MRI
Segmentation
of rotator cuff
muscles

Jason Yao; Leonid Chepelev;
Yashmin Nisha; Paul
Sathiadoss; Frank J. Rybicki;
Adnan M. Sheikh

Springer—skeletal
radiology

Evaluation of a deep
learning method for the
automated detection of
supraspinatus tears on
MRI

2022 Canada-USA MRI Supraspinatus
tears

Joo Young Kim, Kyunghan Ro,
Sungmin You, Bo Rum Nam,
Sunhyun Yook, Hee Seol Park,
Jae Chul Yoo, Eunkyoung Park,
Kyeongwon Cho, Baek Hwan
Cho, In Young Kim

ELSEVIER—
Computer Methods
and Programs in
Biomedicine

Development of an
automatic muscle atrophy
measuring algorithm to
calculate the ratio of
supraspinatus in
supraspinous fossa using
deep learning

2019 Korea MRI Muscle atrophy

Kyungsu Lee, Jun Young Kim,
Moon Hwan Lee, Chang-Hyuk
Choi and Jae Youn Hwang

Sensors

Imbalanced
Loss-Integrated
Deep-Learning-Based
Ultrasound Image
Analysis for Diagnosis of
Rotator-Cuff Tear

2021 Switzerland Ultrasound Rotator-cuff
tear

Kyunghan Ro, Joo Young Kim,
Heeseol Park, Baek Hwan Cho,
In Young Kim, Seung Bo Shim,
In Young Choi & Jae Chul Yoo

Nature: scientific
reports

Deep-learning framework
and computer assisted
fatty infiltration analysis
for the supraspinatus
muscle in MRI

2021 Korea MRI Supraspinatus
muscle

Seok Hahn, MD, Jisook Yi, MD,
Ho-Joon Lee, MD, Yedaun Lee,
MD, Yun-Jung Lim, MD,
Jin-Young Bang, MD,
Hyunwoong Kim, MS,
Joonsung Lee, PhD

Ajronline

Image Quality and
Diagnostic Performance of
Accelerated Shoulder MRI
With Deep Learning–Based
Reconstruction

2021 Korea MRI Shoulder

Shengtao Dong, Jie Li, Haozong
Zhao, Yuanyuan Zheng,
Yaoning Chen, Junxi Shen, Hua
Yang, and Jieyang Zhu

Hindawi
Computational
Intelligence and
Neuroscience

Risk Factor Analysis for
Predicting the Onset of
Rotator Cuff Calcific
Tendinitis Based on
Artificial Intelligence

2022 China RX
Rotator cuff
calcific
tendinitis

Youngjune Kim & Dongjun
Choi & Kyong Joon Lee &
Yusuhn Kang & Joong Mo Ahn
& Eugene Lee & Joon Woo Lee
& Heung Sik Kang

Springer—
European
Radiology

Ruling out rotator cuff tear
in shoulder radiograph
series using deep learning:
redefining the role of
conventional radiograph

2019 South Korea radiograph Rotator cuff
tear
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3. Results

In our results section, we consider the applications of AI and Deep Learning to rotator
cuff treatment in the following subsections: (A) Diagnosis, (B) Postoperative care and
rehabilitation, and (C) Challenges and future perspectives.

A. Diagnosis

A precise diagnosis is pivotal to planning and performing a successful RCT repair.
Beyond physical examination, this can be achieved through various imaging techniques.
To date, the best non-invasive imaging techniques are ultrasonography imaging (US) and
MRI [14–17]. Computed tomography (CT) and X-rays are also useful tools for the study of
shoulder pathologies. AI has been applied to multiple imaging modalities to diagnose and
characterize RCTs more accurately. This section briefly discusses the role of AI in X-ray and
CT interpretation. The role of AI in refining MRI for diagnosing RCTs is then explored in
detail, followed by a discussion of AI applications in ultrasound.

X-rays have been considered to hold a high negative predictive value (NPV) in the
diagnosis of RCTs [18]. An algorithm has been developed to confidently rule out RCTs
based on conventional shoulder X-rays in patients clinically suspected of having a RCT [18].
The deep learning algorithm was trained with only three views (true anteroposterior, caudal
30◦ tilt, and supraspinatus outlet) which are known to play a helpful role in predicting
RCT [19–22]. The ML model showed a sensitivity of 97.3%, a negative likelihood of 0.06
and a NPV of 96.6%, higher in patients with age < 60 years [18].

Artificial intelligence algorithms for diagnosing RCTs with CT scans have also been
developed. Taghizadeh et al. [23] conducted a study aimed at developing a convolutional
neural network (CNN) which would be able to automatically quantify and characterize the
level of degeneration of rotator cuff muscles from shoulder CT images. The assessment
included factors such as muscle atrophy and fatty infiltration, important parameters in
surgical decision-making and overall patient management [24]. The CNN was developed
using standardized sagittal-oblique view CT. It provided a “good” or “very good” approach
in estimating (1) muscle atrophy, (2) fatty infiltration, and (3) overall muscle degeneration.
However, the CNN was not able to calculate the secondary bone formation as well as the
human rater did. The proposed algorithm was able to determine the premorbid locations,
shapes, and boundaries of all four rotator cuff muscles with an accuracy comparable with
manual segmentations; thus, demonstrating that it could be applied in clinical practice.

In contrast to CT and X-ray, MRI is the predominant imaging study used for the
diagnosis of RCTs due to the ability to precisely assess fatty infiltration and/or muscle
atrophy. Initial studies which applied AI to MRIs for shoulder pathology examined the
performance of software which could successfully filter out the MRI signals that are “noisy,”
thus applying pattern recognition in the interpretation of each MRI [25]. The authors
affirmed that applying this technique would reduce the dimensions of the input vector,
the computing time, and the data storage required, while simultaneously improving the
diagnostic performance.

More recently, authors have studied how deep learning (DL) can detect supraspina-
tus tearing on MRI [26]. The authors defined an algorithm for automatic detection of
supraspinatus tears on MRI based on T2-weighted coronal oblique images, improving
their model by adding Patte score [27] and Ellman score [28] to define the grade of the tear.
A segmentation network designed as a transfer-learning approach (in which all models
were trained using a step-based learning rate reduction strategy and automatically stopped
at a plateau in the training loss) was proposed. This model was able to improve clinical
communication and optimize management decisions.

Additional studies have focused on applying AI to T1-weighted sequences rather
than T2-weighted ones. Authors developed and validated CNN method capable of both
selecting a specific shoulder sagittal MR image (Y-view) and automatically segmenting
rotator cuff (RC) muscles [29]. With the use of two models (Model A: Y-view selection
and Model B: muscle segmentation) the authors were able to demonstrate that a CNN
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classification method could accurately select an appropriate shoulder Y-view and accurately
segment multiple RC muscles at that level.

Just recently, another study analysed the use of deep-learning framework to study
occupation ratio and fatty infiltration of the supraspinatus muscle [30]. Scapular sagittal
Y-view MRI images (T1-weighted) were used as baseline for obtaining reliable indicators
of the supraspinatus muscle status. Manually measuring the occupation ratio and fatty
infiltration is time intensive; the algorithm proposed in the paper demonstrated that the
CNN exhibited excellent agreement with clinicians, resulting in an efficient and accurate
segmentation of the supraspinatus muscle and fossa. This success enabled physicians to
automatically calculate the occupation ratio [31].

Investigators have also explored whether AI can analyse MRIs to predict the reparabil-
ity of massive RCTs [32]. The severity of disease was defined based on Goutallier grade [33]
and occupation ratio [31]. This algorithm confirmed that while it is possible to detect the
occupation ratio by DL, the detection accuracy of the fossa region according to severity did
not show satisfying results. The authors suggested that the development of a 3D-CNN, ca-
pable of analysing the neighbouring slice, would represent a future step towards creating a
more accurate algorithm [32]. Accordingly, a 3D-CNN to classify RCTs was introduced [34];
with the use of the class activation map (CAM) method [35], this system could visualize
the location and size of RCT in 3D-MRI with a very simple processing of training data [34].

An additional field of study with AI is how to decrease MRI scan time while improving
image quality. A system has been described which overcomes the trade-off between scan
time and image quality, providing high-fidelity images with reduced noise levels [36].
To define the ability of this new system, the authors used sets of sequences including an
axial intermediate-weighted fat-suppressed FSE sequence, an oblique coronal T2-weighted
fat-suppressed FSE sequence, and an oblique sagittal T2-weighted fat-suppressed FSE
sequence. They analysed the three series of MRI and found that the use of deep learning-
based reconstruction (DLR) with accelerated sequences resulted in improved image quality
and low artifacts compared with accelerated sequences without DLR. Moreover, the authors
stated that DLR was able to substantially reduce shoulder MRI scan times by facilitating
the clinical application of accelerated sequences.

US has been identified as a valid alternative to MRI [15]. Ultrasound offers several
advantages over MRI including real-time dynamic capture, wide availability, low-cost,
and time efficiency [37]. Authors have designed a model whereby deep learning assists
with segmentation of the RCT on ultrasound. This was a (CNN)-based DL architecture
(the SMART-CA), to perform an accurate segmentation of RCT in US [38]. This model
was designed to use the pre-trained architecture to extract specific feature maps related
to RCT. The SMART-CA consists of three key components: (1) a pre-trained encoder,
(2) a trainable encoder, and (3) a decoder. The variables in the trainable encoder are
optimized to accurately predict the RCT. This study demonstrated that the proposed
SMART-CA, pre-trained through a classification task which predicts the presence of an
RCT in ultrasound images, outperforms the current model in the accurate segmentation
of RCTs in US. Aside from conventional US, 3D quantitative analysis of RCT regions (and
especially 3D volumetric segmentation done by 3D US) is crucial to precisely estimate the
tear configuration and decide surgical planning. Ultrasonic image segmentation enables
delineation of the boundaries of an RCT on an ultrasound image [39]. This protocol may
lead to changes in RCT diagnosis.

B. Postoperative Care and Rehabilitation

Conservative management with physical therapy has been established as an effective
first line of treatment for RTCs. Participation in a physical therapy program is considered
one of the greatest predictors of successful conservative management of these lesions [40];
however, adherence to the physical therapy protocols remains very low (around 50%) [41].
Progress with physical therapy is often slow-going and incremental and demands signif-
icant time and effort on behalf of patients. This can oftentimes become draining and/or
frustrating for patients who do not have the proper expectations.
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To prove the technical feasibility of a smartwatch device and supervised machine
learning (ML) approach to monitor and assess the at-home adherence of shoulder physio-
therapy exercise protocols, several studies used inertial sensors for upper extremity motion
tracking of shoulder kinematic analysis and activity recognition [42]. The tracker used
was an Apple Watch provided by a six-axis (acceleration and gyroscope) inertial sensor.
Using the extrapolated data, an algorithm was developed that could measure the frequency
and duration of each prescribed exercise. This model, a convolutional recurrent neural
network (CRNN) with approximately 300,000 parameters, was still sufficiently small for
real-time operation on a smart watch, thus suitable for daily life tracking. This study
marked an important step towards objective measurement of adherence to at-home shoul-
der physiotherapy exercise protocols. It should be considered the new frontier for both
pre-rehabilitation and post-surgical rehabilitation.

C. Challenges and Future Perspectives

Despite the promising results of AI implementation in orthopaedic surgery and radiol-
ogy to date, this technology has yet to be widely accepted and implemented in the clinical
realm. Challenges and pitfalls can accompany the development and deployment of AI
systems in a diagnostic imaging environment. As reported by Jared Dunnmon in “Separat-
ing hope from hype”, AI has yet to find a consistently defined and clinically relevant role
in radiology or orthopaedic care of the rotator cuff [43]. To that end, AI in the operative
management of rotator cuff care has yet to be employed. While this possibility will take
years of research and develop to potentially manifest, perhaps in the future, surgeons will
use AI-driven data to optimize cuff repairs intra-operatively, for example, using a heads-up
display (while scrubbed in) to allow for AI-generated guidance on where to repair the
cuff. Another theoretical application would be AI-driven feedback (during arthroscopy)
on whether a cuff is repairable, or what the probabilities of subsequent repair failure may
be. While these are exciting frontiers to consider, the intra-operative application of AI in
rotator cuff repair is likely years in the future.

No subject is accurately discussed without consideration of limitations. Limitations of
AI in rotator cuff care include the fact that these areas of research are nascent, not yet within
the clinical realm, and require further validation/external generalizability before they are
adopted in mainstream clinical care (for example, using AI in imaging). Another limitation
is that AI technologies may prove disproportionately expensive upon introduction. AI will
also be met with scepticism from some surgeons and patients, given that it would represent
significantly new technology. It would also lay the debate for whether experienced surgeons
or AI is more dependable. Limitations of our study include its retrospective review nature,
and restriction of our literature search to one database.

The widespread application of AI has opened new debates about legislative issues
and the protection of privacy. While AI holds promise to improve care, the massive
volume of personal health information that it would process could put personalized health
information at risk of privacy breaches. As with other matters related to personal health
information, a delicate balance exists between progress and personal privacy. As AI
research and applications expand, healthcare regulations and legislative actions will likely
be necessary. If machine learning and AI becomes more available clinically, efforts will
need to be made to equally provide access for maximal benefit worldwide. If AI were to
only be available in specific geographic areas, it would likely worsen the already-present
geographic health disparities. Future implementation of AI also represents a challenge.
Healthcare organizations will have to invest in training and support infrastructure, in order
for healthcare professionals to feel comfortable with applying these new tools [44].

4. Conclusions

Herein, we have discussed current applications of AI in the orthopaedic field for diag-
nosis and treatment of rotator cuff tears. While a growing body of studies have investigated
the applicability of AI to rotator cuff tear management—particularly in applying AI to
shoulder MRI interpretation—these applications are still primarily limited to the experi-
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mental realm. In the future, AI will likely play an impactful role in delivering accurate,
efficient, and high-quality care to patients with rotator cuff tears.
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