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Abstract: Human movements in complex traffic environments have been successfully simulated by
various models. It is crucial to improve crowd safety and urban resilience. However, few studies
focus on reproducing human behavior and predicting escape reaction time in the initial judgement
stage in complex traffic environments. In this paper, a pedestrian pre-evacuation decision-making
model considering pedestrian heterogeneity is proposed for complex environments. Firstly, the
model takes different obvious factors into account, including cognition, information, experience,
habits, stress, and decision-making ability. Then, according to the preference of the escapees, the
personnel decision-making in each stage is divided into two types: stay and escape. Finally, multiple
influencing factors are selected to construct the regression equation for prediction of the escape
opportunity. The results show that: (1) Choices of escape opportunity are divided into several stages,
which are affected by the pedestrian individual risk tolerance, risk categories strength, distance from
danger, and reaction of the neighborhood crowd. (2) There are many important factors indicating the
pedestrian individual risk tolerance, in which Gen, Group, Time and Mode are a positive correlation,
while Age and Zone are a negative correlation. (3) The analysis of the natural response rate of
different evacuation strategies shows that 19.81% of people evacuate immediately. The research in
this paper can better protect public safety and promote the normal activities of the population.

Keywords: pre-evacuation; decision-making; escape time prediction; human heterogeneity; crowd
modeling; public safety

1. Introduction

The international economic situation is complex, and the world is facing unprece-
dented changes in this century. As an international metropolis, Beijing is characterized
by a large city scale, diversified population, and many major projects. The sudden public
safety accidents and the superposition effect of different disasters in large cities make
urban management very complex. Cities show great vulnerability in the face of various
uncertain risks. Both the disaster chain [1] and accident chain [2] are extremely complex,
and secondary disasters [3] are often induced.

The public safety and resilience improvement of the urban transportation system is
an important part of a resilient city. As the travel of urban residents becomes more and
more abundant, the safety of densely populated places is widely concerned. Immediate
evacuation is usually the safest action that residents can take when encountering an emer-
gency event, such as an earthquake, tsunami, or fire. However, existing studies show that
although some residents may choose to evacuate to a safer place immediately, others may
have alternative evacuation options. Specific choices include staying in buildings and
actively protecting their property, or taking passive refuge in buildings [4]. The choice
of escape opportunity mainly depends on the risk intensity of the emergency and the
surrounding environment.
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In the case of public safety emergencies, improper pre-evacuation decisions may
cause escapees a delay in escape opportunity or a wrong choice of escape route [5–7],
which are among the main factors in building casualties. Building environment and crowd
behavior are closely related. Due to the limited space and differences in a facility’s service
capacity in crowded public areas, people show diversified emergency responses and escape
behaviors [8,9]. The behavior can also make a dense flow of people disordered, or even
state mutation, leading to stampede accidents.

Better understanding and predicting of human pre-evacuation behavior are essential to
improve building safety and urban resilience. The complexity of pre-evacuation behaviors
in a complex traffic environment can be regarded as a manifestation of complexity science.
The coupling between groups, the environment, and individuals shows a much higher
level, more complex, and more coordinated order as a whole, mixing with the sudden
disturbance of limited individuals. The behaviors of evacuation groups play out through
local interactions, such as mutual competition and cooperation among members [10].
At the same time, they have the characteristics of emergence, instability, nonlinearity,
and uncertainty. On the one hand, people conduct multi-scale scene experiments and
reproduce the evacuation process in the laboratory or use a real scene in combination with
questionnaires [11–13]. On the other hand, by means of traffic simulation modeling, a group
of certain individuals can interact and deduce the situation in the virtual environment
by simulating the decision-making behavior in the complex system [14,15]. The decision-
making behavior rules of people in an emergency are much more complex than ones in
experiments or simulations. Nevertheless, when several individuals are combined to form
the group, some characteristics of macro group decision-making behavior will appear
from the bottom up. These emerging phenomena objectively reflect the real emergency
response system in many aspects. People in crowded public places have the characteristics
of large group scale, large characteristic differences, complex relationships, and complex
and changeable decision-making behavior with a timeline [16].

Predicting escape time is the direct goal of the analysis and application of evacuation
judgement. There has been much commercial software to simulate crowd evacuation to
determine whether the required safe evacuation time (RSET) is less than the available safe
evacuation time (ASET) or not. RSET calculation time is divided into pre-evacuation and
escape movement stages. Escape movement time is the time required for personnel to move
purposefully from the beginning to a safe place. There have been relatively mature research
results and applications. The pre-evacuation time includes cognitive time and reaction
time. It specifically refers to the whole process of finding the alarm (or smoke, shouting,
etc.), making clue collection decisions, and finally deciding whether to escape, as well as
the selection of an initial route of escape. It also includes time for personnel to wander
around, spin around, and pick up valuables. Pre-evacuation time plays an important role in
various disaster events [17]. For example, in the “9/11” incident, the pre-evacuation time of
many people exceeded 17 min, and the pre-evacuation phase time of some evacuees even
exceeded 2/3 of the total evacuation time [18,19]. At the same time, similar observations
have been made in fire accidents and exercises in Beijing, Shanghai, Hong Kong, Chicago,
and other places [20].

Data on pre-evacuation is usually scarce, incomplete, difficult to access, or in a format
not supported by the evacuation model. Data collection and expansion are difficult to solve.
Gwynne and Boyce first tried to solve the problem of the pre-evacuation data set in the
SFPE [21] manual in 2016. They summarized the existing pre-evacuation data into a table
with a unified format and collected 76 cases. Cases are divided into nine types according to
building types, and some statistical parameters are given with the characteristic description
and pre-evacuation data of various cases. Lovreglio R. et al., expanded this set of data in
2018 and collected 2889 data points, including 112 cases [22]. Relying on the database, the
pre-evacuation time and frequency distribution can be calculated, which plays a crucial
role in the improvement of the evacuation model. However, it is very difficult to collect
real data. The scale of the expanded database is still very small, which cannot characterize
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the evacuation characteristics of different countries and regions. Its classification method
also needs to be more scientific and detailed.

In order to solve the problems of small scale and incomplete features of the database,
this paper conducts experimental research on the basis of the existing database with the
help of the Analog simulation model. Many experiments have been carried out to prove the
correctness of the model and ensure that the prediction model can cover more evacuation
characteristics. Firstly, the response mechanism of pre-evacuation behavior under the
joint action of internal and external factors is systematically analyzed. Then, a prediction
model of group decision-making behavior is proposed to estimate the decision-making
time and response rate of the crowd before evacuation. Consequently, we provide useful
technical support to improve the evacuation efficiency of the crowd and reduce the severity
of the emergency.

2. Related Works
2.1. Pre-Evacuation Time

Pre-evacuation time mainly refers to the time from event occurrence to the beginning
of personnel escape, including the individual perception and detection time of danger,
as well as the evacuation response decision-making time. In this process, the personnel
shall make evacuation decisions based on the danger found, the degree of danger judged,
deciding when to escape, and in which direction to escape.

Many studies have shown that pre-evacuation time is an important part of the expected
safe escape time (RSET) [23]. Moreover, through the analysis of past emergencies, the pre-
evacuation time is directly related to the number of casualties. According to statistics, for
different types of buildings, some researchers used full-scale evacuation experiments and
real emergency data to quantify the pre-evacuation time [24]. Other researchers have also
investigated the external factors (social or physical environmental factors) and internal
factors (individual factors of evacuees) affecting the pre-evacuation time [18]. Nevertheless,
there is still a lack of quantitative data on the pre-evacuation time [23].

Some scholars have tried different theories and conceptual models to explain the
decision-making process and predict the pre-evacuation time [25], and there are primarily
three methods to simulate the pre-evacuation time [26]. The first method adopts the
determined user allocation method to allocate the pre-evacuation time of individuals or
groups in advance, or set it randomly based on statistical analysis [27,28]. In this case,
the escapee stays in place in the cognitive response stage; thus, many mature simulation
software use this method. The second method relies on the user’s distribution of activity
results during the pre-evacuation response. In this case, the escapee continues to carry
out the current activity before escape. For each survivor, the duration of each activity is
pre-defined. The disadvantage of these two methods is that the behavior of the escapee is
only a pre input, not a real prediction by modeling [29].

The third method is based on prediction. The behavior data of this method is practical.
In the simulation, the agent performs protective activities consistent with the internal
and external influence factors. However, the pedestrian homogeneity assumption of this
method does not reflect the uncertainty of behavior, and there is still a certain gap with
the actual situation [26,30]. In recent years, several models have been proposed based on
predictability [24], but these models are generally based on behavior theory rather than
regression of observed data. Therefore, these models lack data support, resulting in very
complex model calibration, which is not solved at present.

Among the existing models and traffic simulation tools, the pre-evacuation time is
randomly set or fixed value, which cannot precisely predict the pre-evacuation time. Hence,
there is a certain blind area in the pre-evacuation link. In view of the important role and
complex characteristics of the pre-evacuation stage in the whole evacuation process, it is
vital to establish relevant models to effectively predict the pre-evacuation behavior.
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2.2. Human Behavior in Crowded Places

Scholars have been studying pedestrian simulation in emergencies and have devel-
oped various theories of group behavior [7]. During emergency evacuation, pedestrian
response is not random movement, but rather a result based on individual social characteris-
tics. The social characteristics include physical, cognitive, and psychological characteristics.
These characteristics affect human behavior and action rules under emergency condi-
tions [31,32]. The existing models of human behavior in the evacuation process are mainly
divided into three levels: individual, group, and crowd.

Individual behavior research mainly emphasizes the importance of personal knowl-
edge, culture, and experience in predicting human response. In terms of the characteristics
of behavior, individual pedestrians usually pursue the maximization of their own interests.
Their escape behavior is mainly based on individual goals [33]. Individual response de-
pends on their familiarity with the surrounding environment and their own cognition of
the situation’s severity. When pedestrians are in a familiar area, they tend to despise the
severity of the state, delay escape, and flee to a familiar destination [34]. The “place script
theory” holds that human reactions are determined by their roles and daily habits, forming
fixed rules. It judges individual behavior according to human cognition, risk concept,
experience, and daily habits. Galea et al., studied individual evacuation behavior under
different cultural characteristics; conducted a questionnaire survey on individual pedestri-
ans in England, Turkey, and China; and systematically analyzed the internal relationship
between individual cultural characteristics and evacuation response [8].

The research on group behavior mainly focuses on the structure and rules of groups
and the impact of groups on evacuation time. Bode et al., believed that the response
behavior of the group was different from that of the individual. During the evacuation,
pedestrians will look for nearby acquaintances [35], which will lead to the delay of the
initial evacuation time and the extension of the group decision-making time. At the same
time, if the cohesion of the team is strong, the team members need to reach an agreement
on the escape direction during the evacuation process. The discussion process will also
be delayed. Aguirre et al., further applied ENT to explain the crowd response in the
1993 World Trade Center explosion, and the results pointed out that social groups and
lasting social relations might increase the evacuation time [36]. Johnson and Kuligowski
pointed out that the characteristics of group size and internal relationship type would
significantly affect population interaction and state judgment [25,37]. According to the
empirical study of the Station Nightclub fire, Aguirre et al., found that even in rapidly
spreading emergencies, people in danger looked for close companions [36].

The other research on crowd independence behavior mainly focuses on crowd behavior
and decision-making. Crowd behavior is a derivative phenomenon. Previous studies
on accidents have shown that an increasing sense of crisis may strengthen collective
consciousness. The emergence of collective identity will also stimulate people’s social
behavior. People’s behaviors influence each other, and strangers help each other [38].
Others analyzed the evolution trend of group behavior and believed that the structural
characteristics of groups were the main factors affecting the intensity of behavior. In the
aspect of group decision-making, researchers clearly put forward the theoretical framework
of seeking information, interpreting the current situation, assessing risk, and formulating
strategies in disaster emergencies. Kuligowski et al., studied the crowd behavior in the early
stage of the 9/11 World Trade Center event and developed a decision-making behavior
model to quantitatively describe the pedestrian evacuation process [26]. Ronchi et al.,
proposed an evacuation decision-making model, which predicted the crowd state in the
early stage of evacuation by simulating the impact effect of common sense, social impact,
alarm, and risk perception level [39].

To sum up, current research on the behavior law of individual, group, and group
independence has been relatively perfect. However, the research on Group Evacuation
decision-making is still in the exploratory stage, especially the decision-making process in
the pre-evacuation stage.
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2.3. Crowd Management and Simulation Tools

The frequent occurrence of high-density pedestrian congestion and stampede acci-
dents worldwide has attracted many scholars to study the movement law and safety
management of large-scale pedestrian flow. A. Johansson and D. Helbing analyzed the
pilgrimage video of Mecca in Saudi Arabia in 2006 and revealed the occurrence mechanism
of the “stop and go” phenomenon and the “turbulence” phenomenon of high-density
pedestrians [6]. RIS S.C. Lee and Roger L. Hughes divided crowded stampede accidents
into two categories (stampeded death and crowded death), and discussed the mutual
extrusion pressure generated by crowded people [40]. In addition, there are high-density
population aggregation studies focusing on social management and risk assessment.

There are many commercial pedestrian simulation software and models. According to
the description of pedestrian behavior in pedestrian simulation tools and models, they can
be divided into the motion model, partial behavior model, and behavior model. Most of
them are motion models, which do not consider the impact of the pedestrian’s subjective
will on behavior. It only simulates the crowded collision process during movement, mainly
including Steps, Pathfinder, EVACNET4, EgressPro, ENTROPY, magnetic model, etc. Be-
cause the motion model ignores the characteristics of pedestrian behavior, it cannot reflect
normal situations with complex behavior; thus, it is only suitable for simulating simple
emergency evacuations.

In some behavior models, the description of pedestrian behavior is introduced by
analyzing pedestrian behavior data. They mainly include transcendence, waiting, and
response to fire smoke, but the description is simple and does not really predict behavior.
These mainly include Simulex, GridFlow, ALLSAFE, PED/PAX, etc. The behavior model
defines the behavior characteristics of any simulated pedestrian in detail. The influence
of behavior on path selection is added to the model, and the influence of human-human
interaction is considered too. However, due to the complexity of the model, only a few
pedestrians can be simulated under the same computing power, and the scope of application
is limited. In the behavior model, some probability models are used to describe the
randomness of pedestrians, such as EvacSim, BGRFAF, E-SCAPE, ASERJ, etc. The other
part uses intelligent algorithms to simulate the selection behavior of a variety of people,
such as Legion, SimPed, NOMAD, VegAS. However, these models cannot predict the
decision-making of personnel in the pre-evacuation stage.

Scholars have made some achievements in crowd organization, management, and
simulation. They carried out relevant evaluations based on simulation models and soft-
ware, and formulated the congestion management system and emergency mechanism.
However, the analysis of influencing factors of personnel behavior and the study of the
decision-making mechanism in the pre-evacuation stage still cannot meet the needs of
safety production and application. The existing simulation tools also need to supplement
and improve the prediction reliability.

3. Methodology

Pedestrian groups often show differentiated rational behavior in emergencies [13].
Differentiated rationality can be divided into three different states: complete rationality,
partial rationality, and irrational behavior. In practical decision-making, differentiated
rationality shows that pedestrians have obvious differences in cognition, information, expe-
rience, habits, pressure, and decision-making ability [30]. At the same time, it can explain
the actual behavior of decision-makers in real life, and meet the subjective and objective
constraints and goals pursued by pedestrians with differentiated characteristics [13]. For
example, the goal of pedestrians is not clear at the initial stage. In the process of route
selection, its change depends on different degrees of rationality, and the decision-making is
restricted by many conditions, such as time, space, cost, and so on. Differentiated rational
behavior can better show the micro behavior in pedestrian movement [41].
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3.1. Situation Evolution of Emergencies

In crowded places, pedestrian interactions come into a complex system. In the existing
events, pedestrian casualties are mostly from secondary disasters caused by emergen-
cies [32]. The harm of the emergency itself is limited, but the emergency will bring serious
harm to the whole system when it spreads rapidly. Only by recognizing the situation
evolution mechanism of the pedestrian movement system in crowded places and analyzing
and predicting the system can we make scientific and reasonable responses and regulations.
The situation evolution of emergencies in crowded public places is a complex dynamic
system that is affected by many factors, including the complicated movement behavior of
pedestrians [9], the attributes of emergencies [42], the emergency evacuation plan of the
management department [43], the complexity of the place environment and the rationality
of the facility setting [44], the cognition of escaping pedestrians [45], etc. The situation
evolution of an emergency is affected by its own attributes, the emergency rescue effect
of government departments, the emergency capacity of the area where it occurs, and the
quality of the affected people. It is a comprehensive dynamic system.

The types of public safe emergencies in this paper mainly focus on fire, earthquake,
violent terrorist events, and so on. We do not pay more attention to damage from the event,
but mainly study the pedestrian escape decision-making behavior under the condition of
secondary disasters caused by events. The choice of pedestrian escape time is affected by
many factors, but there are four decisive factors. They are personal risk tolerance (PRT), risk
categories and strength (RCS), distance from danger (DFD), and reaction of the surrounding
crowd (RSC).

3.2. Modelling Evacuation Opportunity Decision Process

(1) Maximum likelihood function

The evacuation process is divided into T decision-making periods. It is assumed that
the risk utility of the pedestrian subjective judgment in the t-th decision-making period is
Esub

it , which is referred to as subjective risk utility for short. The Eobj
it is the objective risk

utility of the events development. The REit is the difference between the subjective risk
utility and the safety state utility, Eit = Esub

it − Eobj
it .

In order to describe the choice of pedestrian evacuation decision nodes, it is assumed
that the pedestrian’s choice of wait-and-see and immediate evacuation in the t-th decision-
making period depends on the difference between subjective expected risk and objective
risk utility. If the difference is less than the evacuation selection threshold ECTit, pedes-
trians tend to wait and see; otherwise, pedestrians will escape immediately. It is shown
in Equation (1).

µit,t∈{1,2,···T} =

{
0, i f REit < ECTit
1, i f REit ≥ ECTit

(1)

where µit is the binary response variable of the evacuation decision. When µit = 1, it means
that pedestrians feel danger according to their own judgment and immediately escape.
When µit = 0, it means that the current danger still does not reach the pedestrian tolerance
limit, and the pedestrian is in a wait-and-see state.

The evacuation coefficient λit is defined to represent the ratio of the escape selection
threshold to the subjective expected risk utility, λit = ECTit/Esub

it . Based on the different
pedestrian characteristics, the evacuation selection threshold is related to the individual
characteristics of pedestrians (see Equation (2)).

λit = fescape(PRT, a) + εit εit ∼ MVN
(

0, σ2
)

(2)

where the first part fescape(·) is fixed. Vector PRT is the endurance determined by the
characteristics of pedestrians, which include: {Age, Gen, Edu, Time, Group, Zone}. The a is
the parameter vector to be estimated. The εit is the error term and follows the MVN

(
0, σ2).
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According to the observation and analysis, the random term λit meets the conditions
of the Probit regression model. The probability of pedestrian i choosing evacuation decision
in t− th period is shown in Equation (3).

Pi(t) = P{REit − ECTit ≥ 0} = P{µit(REit − ECTit) ≥ 0}

= P
{

µit

(
REit − λitEsub

it

)
≥ 0

}
= P

{
µit

[
REit −

(
fescape(PRT, a) + εit

)
Esub

it

]
≥ 0

}
= P{µitε ≤ µit[REit/Esub

it − f (PRT, a)]}

(3)

Let Rit = REit−ECTit, then Rit is the utility of the pedestrian evacuation time selection.
The evacuation decision probability of pedestrian i in the t-th decision-making period can
be expressed as Equation (4).

Pi(t) = Φ(Rit) = Φ[REit − ECTit] = Φ
[(

Esub
it − Eobj

it

)
− Esub

it f (PRT, a)
]

(4)

The decision-making of pedestrians in any period of time is regarded as independent
decision-making. The evacuation decision probability of pedestrian i in the t-th decision-
making period can be expressed in Equation (5).

Pi(t) = Pi(µi1 = 0)Pi(µi2 = 0|(µi1 = 0)(µi2 = 0))

· · · Pi

(
µit = 0

∣∣∣(µi1 = 0)(µi2 = 0) · · ·
(

µi(t−1) = 0
)) (5)

Then, Pi(t) can be converted as shown in Equations (6) and (7).

Pi(t) = Pi(µi1 = 0) Pi [(µi2=0)(µi1=0)]
Pi(µi1=0)

Pi [(µi3=0)(µi2=0)(µi1=0)]
Pi [(µi1=0)(µi2=0)]

· · · Pi[(µit=1)(µi(t−1)=0)···(µi2=0)(µi1=0)]
Pi[(µi(t−1)=0)···(µi2=0)(µi1=0)]

(6)

Pi(t) = Pi

[
(µit = 1)

(
µi(t−1) = 0

)
· · · (µi2 = 0)(µi1 = 0)

]
= Pi(µit = 1)Pi

(
µi(t−1) = 0

)
· · · Pi(µi2 = 0)Pi(µi1 = 0)

= Pi(µit = 1)
t−1
∏

n=1
[1− Pi(µin = 1)]

(7)

where Pi(µit = 1) is the probability that pedestrian i decides to escape immediately in the
t-th decision-making period. At this time, the difference between the pedestrian subjective
expected risk and the safety state utility has exceeded the evacuation selection threshold,
that is REit ≥ ECTit. The maximum likelihood estimation is used to estimate the parameters
of the model. The likelihood function is shown in Equation (8), where L is the total number
of people evacuated.

L =
I

∏
i=1

Pi(t) =
I

∏
i=1

[
Pi(µit = 1)

t−1

∏
n=1

[1− Pi(µin = 1)]

]
(8)

(2) Utility model for risk and safety state

The subjective expected risk utility estimation model is expressed as Equation (9).

Esub
it = f Sub = ∑

j
ait f acsub

itj = Const1 + a1PRTi,t + a2RCSi,t + a3DFDi,t + a4RNCi,t (9)

Eobj
it = f obj = ∑

j
bit f acobj

itj = Const2 + b1RCSi,t + b2DFDi,t + b3RNCi,t (10)
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REit = Esub
it − Eobj

it
= Const3 + a1PRTi,t + (a2 − b1)RCSi,t + (a3 − b2)DFDi,t
+(a4 − b3)RNCi,t
= Const + c1PRTi,t + c2RCSi,t + c3DFDi,t + c4RNCi,t = Esub

it λit

(11)

The objective actual risk utility estimation model is expressed as Equations (10) and (11).
The value range of each factor is [0,1]. The stronger the pedestrian’s risk tolerance,

the greater the value of PRTi,t.The more dangerous the event, the greater the value of
RCSi,t.The closer to the risk source, the greater the value of DFDi,t. The more serious the
panic state of the surrounding people, the greater the value of RNCi,t.

Where PRT factor is the personal attribute of evacuees, which include Age, Gen, Edu,
Time, Group, Zone, Mode. Gen indicates gender, and Edu is education. Time indicates
familiarity with the surrounding environment. Group means whether to travel together
or not. Zone represents the distance from this position. Mode indicates the mode of
transportation.

The RCS factor mainly refers to the intensity of the risk itself on pedestrian decision-
making. The DFD factor describes the impact of individual distance from risk sources on
individual decision makers. The RNC factor emphasizes the herd behavior of individual
pedestrians. During the development of the situation, individual pedestrians tend to
observe the response of the surrounding people, and then judge whether to escape or not.
According to the impact of fire and other events, RCS, DFD, and RNC factors are divided
into four levels, as shown in Table 1.

Table 1. Standardization of Risk.

Fire Disaster
Scale

RCS DFD RNC

L1 Extremely <20 m Scream and run 1.00

L2 Great 20–40 m Organize fire fighting 0.75

L3 Larger 40–60 m Call the police 0.50

L4 Commonly >60 m Wait and see 0.25

According to the principle of acceptable risk difference, take REit = ECTit. By sub-
stituting all the above factors into the equation, the expression of the pedestrian escape
selection threshold is shown in Equation (12) and Table 2.

ECTit = REit = Const + c11 Agei + c12Geni + c13Edui + c14Timei + c15Groupi
+c16Zonei + c17Modei + c2RCSi,t + c3DFDi + c4RNCi,t + εit

(12)

Table 2. Variable Definition of model.

Variable Element Definition

c11 ∼ c16, c2 ∼ c4 The parameters to be estimated are obtained according to regression

Const Constant

Agei

Age of pedestrian i. Divided into five grades
{< 18, 18–30, 31–45, 46–60, >60}, The corresponding values are

{1, 2, 3, 4, 5}

Geni
Gender of pedestrian i. {Male, Female}, The corresponding values are

{1, 0}

Edui

Education of pedestrian i.
{High school and below, College, Graduate and above}, The

corresponding values are {1, 2, 3}



Int. J. Environ. Res. Public Health 2022, 19, 16664 9 of 16

Table 2. Cont.

Variable Element Definition

Timei

Length of time that pedestrians i is familiar with the area.
{Less than 2 years, 2–5 years, 5–10 years, 10 year above}, The

corresponding values are {1, 2, 3, 4}

Groupi
Pedestrian i companionship, {1 ped, 2 ped, 3 ped, 3 ped and above},

The corresponding values are {1, 2, 3, 4}

Zonei

Distance relationship between pedestrian i residence and the area,
{< 2 km, 2–5 km, 5–10 km, 10–30 km, 30 km above}, The

corresponding values are {1, 2, 3, 4}

Modei

Pedestrian i mode of transportation,
{Car, Subway, Tricycle, Conventional bus, Bicycle, walk, taxi}, The

corresponding values are {1, 2, 3, 4, 5, 6, 7}

RCSi,t
It refers to the intensity of risk itself on pedestrian decision-making,

which is divided into four levels

DFDi,t
Distance between pedestrians and dangerous core in period t. It is

divided into four levels

RNCi,t
The response of surrounding people in the t period is divided into four

levels

εit Random term

3.3. Simulation and Experiment

(1) Basic scene settings

In order to verify the effectiveness and calculation process of the personalized exit
selection preference model, a simple building layout was selected, as shown in Figure 1.
There were 3 evacuation origins (1, 2, and 3, respectively) and 2 evacuation destinations
(4 and 5, respectively), as shown in Table 3 and Figure 1.

The timing of the fire was controlled by a fire alarm button inserted in the model.
When the fire alarm button was clicked, a fire occurred, and the personnel in the model
selected the basic assumptions of the model and the case to evacuate according to the
previous evacuation time. The evacuation process is shown in Figure 3. The spread of fire
smoke was simulated through the system dynamics model, and the diffusion rate of smoke
was set to 0.3 m/s. The yellow area in Figure 4 represents the gradual diffusion of smoke
caused by fire.
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Table 3. Distribution of Escape Demand.

Origins of Evacuation Evacuation Demand

1 14.3%
2 28.6%
3 57.1%

Total 100%

(2) Individual characteristics and initial layout settings

The connection relationship between regions was sampled as shown in Figure 2. Based
on the differences of personnel in various areas, different judgments were made on danger
and escape time, so different escape behaviors were reflected. The choice of escape time is
shown in Figure 3.
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It was assumed that the evacuation demand was distributed in 1, 2, and 3 areas, as
shown in Figure 1 and Table 3. The people were randomly distributed in their respective
spaces. The individual characteristic attributes were distributed at any time according to
the data resources obtained from the questionnaire. Assuming that the fire occurs in Zone 3
and the fire intensity is Level 4, the dynamic evolution process of the fire affected area is
shown in Figure 4.
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3.4. Results and Discussion

According to the previous evacuation time selection model and the basic assumptions
of the case, area 3 was a disaster area and personnel received hazard information earlier.
Some personnel chose to escape immediately at the initial stage. With the continuation of the
event, people in each area began to find the danger and make escape preference decisions.

Figure 4 showed the crowd dynamics at an interval of 36 s in the simulation time
period. After the fire, some people in the area close to the fire chose to escape immediately.
Most people were still in the wait-and-see state. When a fire occurred, the person closest to
the fire would react first. Some people chose to escape quickly, while some people stayed
on the sidelines.

The experiment described the pre-evacuation reaction state caused by fire in the space.
When people in different areas found danger, the reaction time was affected by the fire
state, the external environment, and personal cognition. When some people around found
the danger and did not give warning, others judged the danger according to their own
characteristics and decision-making ability. In the face of danger, some people made
decisions quickly, while others kept a wait-and-see state. According to the data, the number
of people who immediately escaped within 20 s before the evacuation accounted for only
20.1%. The vast majority of people made judgment and analysis, and maintained a wait-
and-see state.

In order to analyze the impact of different instructions on evacuation decision-making
timing, different types of proposed schemes were used as experimental background factors
in the regression process. Regression analysis was performed according to the collected
data. Each record represented an observation. The collected data were not the frequency
table data combining different value levels of respective variables; the frequency variable
count was added to the original data table.

According to the initial construction form of Equation (12), all independent variables
were input into covariates. All variables were introduced into the model. If the significance
value (Sig.) of individual factors was greater than 0.05, relevant factors would be removed
and regression analysis was continued to carry out.

(1) Coefficient calibration

Regression analysis is carried out on the model, and the final parameters in the
model are as follows. According to the investigation, the choice of evacuation time is
divided into two types (stay or leave) based on the tendency of individual decision-making.
According to the response intensity of pedestrians from low to high, the specific variables
are expressed as: stay, escape. The two regression models of evacuation timing are shown
in Equations (13) and (14), respectively:

ECT1
it = Const + c1

11 Agei + c1
12Geni + c1

13Edui + c1
14Timei + c1

15Groupi + c1
16Zonei

+c1
17Modei + c1

2RCSi,t + c1
3DFDi,t + c1

4RNCi,t + ε1
it

(13)

ECT2
it = Const + c2

11 Agei + c2
12Geni + c2

13Edui + c2
14Timei + c2

15Groupi + c2
16Zonei

+c2
17Modei + c2

2RCSi,t + c2
3DFDi,t + c2

4RNCi,t + ε2
it

(14)

In order to calibrate the relevant parameters, we conducted a questionnaire survey.
The questionnaire set up various relevant scene information and personal basic information.
A total of 4527 valid questionnaires were collected [46].

Through analysis of the questionnaire data, the parameters calibrated by the pedes-
trian emergency evacuation decision-making timing model were obtained and shown
in Tables 4 and 5.
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Table 4. Regression of Model Parameters.

Variable B S.E. Z Sig.
95% C.I.

Lower Upper

Probit a

Gen 0.011 0.011 0.957 0.034 −0.011 0.032
Age −0.015 0.007 −2.156 0.031 −0.028 −0.001
Edu
Zone −0.013 0.005 −2.446 0.014 −0.024 −0.003

Group 0.013 0.007 1.728 0.084 −0.002 0.027
Time 0.004 0.001 3.257 0.001 0.001 0.006
Mode 0.002 0.003 0.800 0.042 −0.003 0.007

Interception b
1 −3.212 0.034 −93.888 0.000 −3.246 −3.178
2 −3.185 0.035 −90.681 0.000 −3.220 −3.150

a PROBIT Model: PROBIT (p) = b + BX.

Table 5. Covariation and Relationship of Estimated Parameters.

Gen Age Zone Group Time Mode

Probit a

Gen 0.000 −0.001 0.026 0.033 0.003 0.069
Age 0.000 0.000 −0.046 0.086 −0.288 0.025
Zone 0.000 0.000 0.000 0.015 0.015 0.235

Group 0.000 0.000 0.000 0.000 −0.039 0.008
Time 0.000 0.000 0.000 0.000 0.000 0.145
Mode 0.000 0.000 0.000 0.000 0.000 0.000

a PROBIT Model: PROBIT (p) = b + BX.

(2) Discussion

As listed in Table 4, explanatory variables that had a significant impact on the model
include gender (Gen), age (Age), residential area (Zone), number of partners (Group),
average arrival times in a month (Time), and mode of transportation (Mode). Meanwhile,
educational experience (Edu) was not significant; thus, it was excluded by the model.

The coefficient of Gen was positive, and the escape threshold of men was higher than
that of women. It was shown that men are less likely to escape in emergencies. They had a
higher probability of watching until the danger reached its threshold point. The coefficient
of Age was negative, indicating that the older the age, the lower the escape selection
threshold, and the easier it was for pedestrians to escape. The younger the escapers were,
the higher the probability of taking a wait-and-see and then escaping. It was related to
people’s experience. The older escapers were, the more they tended toward conservative
strategies. The coefficient of Group was positive, indicating that the more partners, the
higher the escape selection threshold. Pedestrians were less likely to escape early, but had
higher expectations of watching. The coefficient of Time was positive, indicating that the
more times you appeared, the more conservative you tended to be. Because they were
familiar with the surrounding environment, pedestrians who arrived less often chose an
earlier escape time. The coefficient of Mode was positive, indicating that the traffic mode
was closely related to pedestrian escape.

It was shown that the data fit well with the model, and the significance after the
parallel test met the requirements as shown in Tables 6 and 7. The analysis of the natural
response rate of different evacuation strategies showed that under emergencies, 19.81% of
the total number of people evacuated spontaneously after abnormal perception, as shown
in Table 8.

Table 6. Result of Weaken.

Iteration Find the Optimal Solution

Probit 38 Yes
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Table 7. Test Result of Chi-Square.

Chi-Square df Sig.

Probit
Pearson Fit Test 9621.558 2897 1.000

Parallel Inspection 89.554 3 1.000

Table 8. Estimate of Respond Rate.

Variable
Control Group Chi-Square

Estimate
Standard
DeviationNumber of Subjects Number of Responses

Probit 2973 589 19.81% 0.007

In the simulation evacuation model, the selection of crowd characteristics and evacua-
tion time was not only an important input parameter, but also a key factor affecting the
evacuation simulation results. Due to the particularity of evacuation events, the data re-
sources of evacuation time were very scarce, and the presented data structure was inconsis-
tent with the input results of the evacuation simulation [30]. Although Lovreglio et al. [22]
established a database of pre-evacuation times, due to the diversity of the building scenes
and evacuation characteristics, there were still many existing scenes to be summarized
and supplemented. Based on regression analysis and simulation, the factors affecting
evacuation decision-making were selected, among which are age, gender, education level,
companionship, and other factors. This was consistent with existing studies [32,33,47]. The
response factors of surrounding people are also one of the key factors affecting the timing
of escape and evacuation decision-making.

4. Conclusions

In this paper, a pedestrian pre-evacuation opportunity decision-making model consid-
ering the heterogeneity of evacuees is proposed to make up for the lack of pre-evacuation
decision-making environment in public safety evacuation decision-making theory. First,
the model considers that there are obvious differences in cognition, information, experience,
habits, pressure, and decision-making ability. Then, according to the preferences of the
fugitives, the personnel decision-making is divided into two types: stay and escape. Fi-
nally, multiple influencing factors are selected to construct a regression equation to predict
escape opportunities.

The results show that: (1) Choice of escape opportunity was divided into several
periods, which was affected by the pedestrian individual risk tolerance, risk categories and
strength, distance from danger, and reaction of the neighborhood crowd. (2) There were
many key factors indicating the pedestrian individual risk tolerance, in which Gen, Group,
Time, and Mode were positive correlations, while Age and Zone were negative correlations.
(3) The analysis of the natural response rate of different evacuation strategies shows that
under emergencies, 19.81% of the total number of people evacuate spontaneously and
immediately after abnormal perception.
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