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Abstract: With increasing water resources stress under climate change, it is of great importance to
deeply understand the spatio-temporal variation of crop water requirements and their response to
climate change for achieving better water resources management and grain production. However, the
quantitative evaluation of climate change impacts on crop water requirements and the identification
of determining factors should be further explored to reveal the influencing mechanism and actual
effects thoroughly. In this study, the water requirements of winter wheat and summer maize from 1981
to 2019 in the lower reaches of the Yellow River Basin were estimated based on the Penman–Monteith
model and crop coefficient method using daily meteorological data. Combined with trends test,
sensitivity and contribution analysis, the impacts of different meteorological factors on crop water
requirement variation were explored, and the dominant factors were then identified. The results
indicated that the temperature increased significantly (a significance level of 0.05 was considered),
whereas the sunshine duration, relative humidity and wind speed decreased significantly from 1981
to 2019 in the study area. The total water requirements of winter wheat and summer maize presented
a significant decreasing trend (−1.36 mm/a) from 1981 to 2019 with a multi-year average value of
936.7 mm. The crop water requirements of winter wheat was higher than that of summer maize, with
multi-year average values of 546.6 mm and 390.1 mm, respectively. In terms of spatial distribution
patterns, the crop water requirement in the north was generally higher than that in the south. The
water requirements of winter wheat and summer maize were most sensitive to wind speed, and
were less sensitive to the minimum temperature and relative humidity. Wind speed was the leading
factor of crop water requirement variation with the highest contribution rate of 116.26% among
the considered meteorological factors. The results of this study will provide important support
for strengthening the capacity to cope with climate change and realizing sustainable utilization of
agricultural water resources in the lower reaches of the Yellow River Basin.

Keywords: crop water requirements; spatial and temporal variation; climate change; sensitivity
analysis; attribution analysis; Yellow River Basin

1. Introduction

Agricultural water consumption accounts for more than 70% of total water consump-
tion worldwide, which restricts the social economy development and is directly related to
food security [1,2]. According to the Sixth Assessment Report released by the Intergovern-
mental Panel on Climate Change (IPCC), global warming has become an undisputed fact
and the trend is expected to continue, as there has been an increasing mean temperature
since 1880 [3]. Studies have shown that climate change has a considerable impact on
global water cycles, as well as on agriculture, and the sustainable use of agricultural water
resources is facing continuing challenges, especially in regions with unbalanced water
supply and demand [4–7].
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As a key indicator of determining agricultural water utilization schedules, crop water
requirements (CWR) are vulnerable to climate change. Exploring the spatio-temporal varia-
tion and conducting climatic attribution analysis of CWR variation is of great significance
for understanding the impact mechanism of climate change and developing adaptation
strategies. At present, numerous studies have been carried out and the contents have
mainly been concentrated on the historical spatio-temporal variations, influencing factors
and future simulation in water requirements of different crops [8–11]. For example, Wu et al.
calculated the irrigation water requirements and analyzed the spatio-temporal variations
from 1980 to 2012 of the North China Plain [12]. Ruan et al. estimated CWR in the Syr
Darya Basin of Central Asia and investigated the dominant factors of CWR variations [13].
Yang et al. projected the future irrigation water requirement under two different climate
scenarios in the Lower Mississippi Alluvial Valley [14].

The response of crop water requirements to climate change in different regions has
attracted much attention in recent years [15–18]. Yang et al. examined CWR variation
trends and revealed the impacts of climate change on cotton water requirements from
1965 to 2016 on the North China Plain [19]. Xu et al. evaluated the impacts of climate
change on wheat water requirements from 1960 to 2019 in the Beijing-Tianjin-Hebei region
in China [20]. Ding et al. assessed the effects of climate change on rice water requirements
in the middle and lower reaches of the Yangtze River [21]. Crops such as wheat, maize
and rice were always chosen as the study object because of their importance in regional
food security. However, the thorough comparison of climate change impacts on different
crops in the same region is still insufficient, especially in the winter wheat-summer maize
rotation system. The quantitative evaluation of climate change impacts on CWR and the
dominant influencing factors should be further explored. In addition, many methods, such
as the correlation analyses, could describe the relationship between climate change and
CWR [22], and the combination of sensitivity and contribution analysis is meaningful to
reveal the mechanism and actual effects of climate change on CWR.

The Yellow River is the second longest river in China, and the basin is an important
economic and ecological zone. The agriculture sector is the largest user of water resources,
especially in the lower reaches of the Yellow River Basin (LYRB), which is a vital grain
production area of China [23]. Due to the shortage of water resources and large crop water
requirements, a series of ecological and environmental problems, such as soil erosion, have
been caused [24]. Meanwhile, climate change has been reported to have important impact
on water resources in the LYRB [25,26]. Therefore, it is imperative to achieve rational agricul-
tural water use under climate change for sustainable development of the LYRB. Meanwhile,
as the main grain producing area and climate change sensitive area, related studies in
the LYRB mainly focused on the estimation of crop water consumption or the impacts of
climate change on some parameters such as evapotranspiration and runoff [27,28].

In this study, the CWR variation of winter wheat and summer maize in LYRB was
analyzed and the impacts of climate change were then evaluated. The objectives of this
study were to (1) estimate the CWR of winter wheat and summer maize and analyze
the spatio-temporal variation from 1981 to 2019 in LYRB; (2) explore the sensitivity of
the CWR variations to different meteorological factors; (3) investigate the contribution
of meteorological factors to CWR variations and identify the dominant factors for better
understanding the impacts of climate change. The results will provide valuable information
for effective agricultural water utilization and sustainable water management in LYRB.

2. Materials and Methods
2.1. Study Area

Located in the eastern part of China, the LYRB ranges from the latitudes of 33◦ N
to 39◦ N and the longitudes of 112◦ E to 120◦ E, mainly covering areas of Shandong and
Henan province (Figure 1). The region is dominated by a temperate monsoon climate
and the terrain mainly includes plains, mountains and hills, with a wide distribution of
cultivated land. The winter wheat and summer maize double cropping system is the major
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cropping pattern in the LYRB. In general, winter wheat in the LYRB is sown in early October
and harvested in early or mid-June of the following year, and the main growth period of
summer maize is from the end of May to September.
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2.2. Datasets

Daily meteorological data from 1981 to 2019 and agrometeorological data were col-
lected from the China Meteorological Administration (http://data.cma.cn). The observed
meteorological data mainly includes the maximum temperature, minimum temperature,
sunshine duration, relative humidity and wind speed. The agrometeorological data mainly
includes the crop phenological phase and crop parameters, and the multi-year average
values were adopted in this study.

2.3. Methods
2.3.1. Estimation of Crop Water Requirements

According to the method recommended by the Food and Agriculture Organization
(FAO), the CWR could be calculated by multiplying the reference evapotranspiration by
the crop coefficient [29]. The formula is defined as follows:

ETc = ET0 × Kc (1)

where ETc is the CWR (mm), ET0 is the reference evapotranspiration (mm) and Kc is the
crop coefficient. ET0 is calculated using the Penman–Monteith equation as follows [29]:

ET0 =
0.408∆(Rn − G) + γ

900
T + 273

u2(es − ea)

∆ + γ(1 + 0.34u2)
(2)

http://data.cma.cn
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where Rn is the net radiation at the land surface (MJ/(m2·d)), G is the soil heat flux density
(MJ/(m2·d)), T is the mean air temperature at a height of 2 m (◦C), u2 is the wind speed at a
height of 2 m (m/s), es is the saturation vapor pressure (kPa), ea is the actual vapor pressure
(kPa), γ is the psychrometric constant (kPa/◦C) and ∆ is the slope of vapor pressure
curve (kPa/◦C).

The crop growing periods can be separated into four distinct stages: initial, crop
development, mid-season and late season. The recommended Kc for each stage was
adjusted according to the local condition, and the daily Kc was calculated. The formula is
defined as follows [29]:

Kc = Kctab + [0.04(u2 − 2)− 0.004(RHmin − 45)](
h
3
)

0.3
(3)

where Kctab is the recommended crop coefficients at different periods under certain meteo-
rological conditions (RHmin ≈ 45%, u2 ≈ 2 m/s), RHmin is the minimum relative humidity
(%) and h is crop height (m).

2.3.2. Trends Analysis

The Mann–Kendall test and Sen’s slope were adopted to analyze the variation trend
of meteorological factors and CWR, and this method has been widely used in hydrological
and meteorological time series studies [30–32]. The values of Z statistic indicate trends and
significance, and the values of Slope statistic indicate the trend rate. The formula is defined
as follows:

Z =



S − 1√
var(S)

, S > 0

0, S = 0

S − 1√
var(S)

, S > 0

(4)

S =∑n−1
i=1 ∑n

k=i+1 sgn(xk − xi) (5)

sgn(θ) =


1, θ > 0
0, θ = 0
−1, θ < 0

(6)

var[S] =
[
n(n− 1)(2n + 5)−∑ t(t− 1)(2t + 5)

]
/18 (7)

where xk and xi represent the sequential values, t represents the extent of any given tie and
n is the length of the time series.

Slope = median
( xi − xj

i− j

)
(8)

where 1 < j < i < n, and the slope is considered as the median of the entire dataset.

2.3.3. Sensitivity and Contribution Analysis

Sensitivity analysis can quantitatively assess the impact of meteorological factors on
the change of CWR [33–35]. The dimensionless relative sensitivity coefficient was used in
this study, and the formula is defined as follows:

Svi = lim
∆vi→0

(
∆ETc/ETc

∆vi/vi
) =

∂ETc

∂vi
· vi

ETc
(9)

where ∆vi is the relative change in meteorological factor, and ∆ETc is relative change in
CWR induced by ∆vi. The positive (negative) sensitivity coefficient represents the CWR
variation and is consistent with (or contrary to) the meteorological factor changes. The
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higher sensitivity coefficient indicates the greater impact of meteorological factors on the
CWR variation.

The relative change of meteorological factors multiplied by the related sensitivity
coefficient could indicate the actual contribution of one factor to the CWR change [36–38].
The formula is defined as follows:

Cvi =
∆vi
|vi|
· Svi (10)

where Cvi represents the contribution of the meteorological factor to the CWR change,
vi is the mean value of the meteorological factor and the ∆vi is the relative change of
meteorological factors, which is obtained by multiplying the slope value by the length
of study period. The actual CWR change could be approximately equal to the sum of
the relative changes caused by all meteorological factors, and the proportion of each
meteorological factor contribution represents the contribution rate.

3. Results
3.1. Variation in Meteorological Factors

The variation characteristics of meteorological factors from 1981 to 2019 in the LYRB
are shown in Table 1. Under the background of global climate change, an obvious warming
trend has also been found in the LYRB from 1981 to 2019. The annual maximum and
minimum temperatures exhibited significant (a significance level of 0.05 was considered
in this study) increasing trends of 0.03 ◦C/a and 0.05 ◦C/a, respectively, with multi-year
average values of 19.13 ◦C and 9.08 ◦C, respectively. The annual sunshine duration showed
a significant decreasing trend of −0.02 h/a with a mean value of 6.07 h. The annual relative
humidity and wind speed both decreased significantly with multi-year average values of
65.69% and 2.52 m/s, respectively.

Table 1. Variation characteristics of meteorological factors from 1981 to 2019 in the lower reaches of
the Yellow River Basin. A significance level of 0.05 was considered.

Characteristics Maximum
Temperature (◦C)

Minimum
Temperature (◦C)

Sunshine
Duration (h)

Relative
Humidity (%)

Wind Speed
(m/s)

Trends Significant
increase

Significant
increase

Significant
decrease

Significant
decrease

Significant
decrease

Slope/year 0.03 0.05 −0.02 −0.14 −0.01
Mean 19.13 9.08 6.07 65.69 2.52

3.2. Spatial and Temporal Variation of CWR
3.2.1. Temporal Variation

The total annual CWR of winter wheat and summer maize presented a significant
decreasing trend of −1.36 mm/a in general from 1981 to 2019 in the LYRB (Figure 2). The
multi-year average value of total CWR was 936.7 mm, with the highest CWR of 999.4 mm
in 1994 and the lowest CWR of 858.3 mm in 2011. In different time periods, the multi-year
average value of total CWR from 1981 to 2000 was 952.9 mm, whereas the CWR decreased
slightly in general from 2001 to 2019 with a multi-year average value of 919.6 mm. From
the perspective of different crop types, the CWR variation of winter wheat and summer
maize was similar with significant decreasing trends of −0.63 mm/a and −0.65 mm/a,
respectively. The CWR of winter wheat was higher than that of summer maize, and the
multi-year average values were 546.6 mm and 390.1 mm, respectively.
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Figure 2. Variation of crop water requirement of winter wheat and summer maize from 1981 to 2019
in the lower reaches of the Yellow River Basin.

3.2.2. Spatial Pattern

The spatial pattern of multi-year average CWR of winter wheat and summer maize
from 1981 to 2019 in the LYRB is shown in Figure 3. Generally, the total CWR gradually
increased from the southwest to the northeast of the study area, ranging from 839 mm
to 1038 mm (Figure 3a). The total CWR in Binzhou, Dongying, Jinan and Dezhou were
relatively high (>1000 mm), whereas the total CWR in Zhoukou, Xuchang, Kaifeng and
Shangqiu were relatively low (<900 mm). As shown in Figure 3b,c, the CWR of winter
wheat and summer maize were also high in the north and low in the south, and the spatial
pattern was relatively consistent with total CWR.
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3.3. Sensitivity of CWR to Meteorological Factors Change

The sensitivity of CWR to different meteorological factors was quantified to better
understand the response of CWR variations to climate change. As shown in Figure 4a, the
highest sensitivity of total CWR was to wind speed with a value of 0.33, indicating that if
the wind speed increased (decreased) by 10% (with other factors remaining unchanged),
the total CWR of winter wheat and summer maize would also increase (decrease) by 3.3%.
The sensitivity of total CWR to maximum temperature was also high, with a sensitivity
coefficient of 0.25, whereas the sensitivity coefficient to minimum temperature was only
0.07, indicating that total CWR variation was more susceptible to changes in maximum
temperature than minimum temperature. The sensitivity of total CWR to sunshine duration
was slightly lower than that of maximum temperature, with a sensitivity coefficient of
0.16. The sensitivity coefficient of total CWR to relative humidity was −0.02, indicating
that an increase in relative humidity will lead to a decrease in CWR. The impacts of
minimum temperature and relative humidity on CWR may be limited due to the low
sensitivity coefficient.
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As for winter wheat and summer maize (Figure 4b,c), the sensitivities of CWR to wind
speed were also the highest, with sensitivity coefficients of 0.36 and 0.29, respectively. The
CWR sensitivity coefficients of winter wheat and summer maize to maximum temperature
were both 0.25, whereas CWR sensitivity of summer maize to minimum temperature
was higher than that of winter wheat. In terms of sunshine duration, the CWR sensitivity
coefficients of winter wheat and summer maize were 0.13 and 0.20, respectively. Particularly,
the sensitivities of CWR of both winter wheat and summer maize to relative humidity were
generally low.
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3.4. Contributions of Meteorological Factors to CWR Variation

Combining the sensitivity coefficient and variation trends, the actual contribution
of meteorological factors to CWR variations were explored. The results showed that
wind speed was the dominant factor influencing the CWR variations of winter wheat
and summer maize in the LYRB from 1981 to 2019 (Figure 5). The contribution of wind
speed to total CWR variation of winter wheat and summer maize was −6.47%, indicating
that the reduction in wind speed led to a 6.47% decrease in total CWR. Meanwhile, the
wind speed contributed more to CWR variation of winter wheat than that of summer
maize. The contribution of temperature increase to the variation of total CWR was 2.92%,
and the maximum and minimum temperature contributed 1.39% and 1.53%, respectively.
Through the relatively high sensitivity of CWR to maximum temperature, the contribution
of minimum temperature to total CWR variation was generally higher than the maximum
temperature because of the larger relative change. The reduction in sunshine duration
resulted a decrease in CWR, and the contributions were −2.18%, −1.88% and −2.64% in
total, winter wheat and summer maize CWR variations, respectively. The decrease of
relative humidity led to an increase of CWR, and the contribution was the lowest in the
CWR variations.
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Concerning the contribution rate of meteorological factors to CWR variation of winter
wheat and summer maize in the LYRB from 1981 to 2019 (Figure 6a), wind speed had
the highest contribution rate of 116.26% to the total CWR variation, followed by sunshine
durations with a contribution rate of 39.21%. Because of the opposite variation trends, the
contribution rates of minimum temperature and maximum temperature to the total CWR
variation were −27.49% and −25.02%, respectively. Although the increasing temperature
will result in an increase in CWR, the CWR still decreased significantly. Therefore, the effect
of increasing temperature on CWR variation may be offset by impacts caused by other
meteorological factors. The contribution rate of relative humidity was only−2.96%. Similar
contribution characteristics of meteorological factors to CWR variation in winter wheat and
summer maize are presented in Figure 6b,c. It is worth noting that the contribution rates of
minimum temperature to CWR variation in winter wheat and summer maize were −17.53
and −47.18%, respectively. The contribution rate of sunshine duration to CWR variation in
summer maize reached 56.42%, which was 26.22% higher than that of winter wheat.
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4. Discussion

The CWR of winter wheat and summer maize presented a significant decreasing
trend from 1981 to 2019 in the LYRB, and this finding was relatively consistent with the
results of previous studies [12]. However, Wang et al. found that the irrigation water
requirements of winter wheat showed no prominent trend from 2000 to 2020 in the North
China Plain [15]. In fact, the variation of CWR exhibited certain spatio-temporal variability,
which was deeply affected by study periods and region. Liu et al. also showed that the
water requirement variation showed obvious spatial differences in the regions of the Yellow
River Basin [26]. Therefore, it is always important to pay attention to the spatio-temporal
variation of CWR in scientific agricultural water planning.

Wind speed was deemed the dominant factor of CWR variation in our study because
of the high sensitivity and substantial reduction from 1981 to 2019. The studies of Yin et al.
also indicated that wind speed was the leading factor of potential evapotranspiration (a key
parameter in estimating CWR) variation in northern China [33]. It is worth noting that the
determining meteorological factors of CWR variation were not only influenced by regional
climatic conditions but also by the complex mathematical relationships between CWR and
factors. The sensitivity of CWR to maximum temperature showed a relatively high of 0.25,
indicating that the CWR was also susceptible to maximum temperature change. Meanwhile,
the impacts of temperature change on CWR variation should not be ignored, considering
the absolute contribution rate of 52.51% (−27.49% of minimum temperature and −25.02%
of maximum temperature) in the LYRB. Though the impact was offset to a certain degree in
the study period by other meteorological factors, the increasing temperatures may continue
to result in CWR increase and cause agricultural water pressure in the future. Therefore,
assessing the impacts of climate change on CWR variation is meaningful for adopting
effective strategies.

The CWR variation trends and response to climate change of winter wheat was found
to be relatively similar to those of summer maize in the LYRB. However, the differences
between different crops still need to be concerned for delicacy management. The CWR of
winter wheat was generally higher than that of summer maize, indicating that winter wheat
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may play a more important role in regional agricultural water use than summer maize. In
addition, the impacts of minimum temperature and sunshine duration on summer maize
were greater than that on winter wheat. Considering the CWR characteristics of different
crops and adjusting the cropping pattern or planting region may be helpful for rational
agricultural water utilization [23].

Generally speaking, the impacts of climate change on CWR variation is complex, and
many additional factors need to be considered, such as the changes in phenological period
and planting region [39–41]. Meanwhile, meteorological factors may exist in complicated
interactions, which will increase the uncertainty of the results. In future studies, taking
various factors into consideration and adopting multiple methods on different spatio-
temporal scales will improve the research accuracy and provide important reference to
achieve sustainable agricultural water management. In addition, human activities and
the induced change, such as land use and soil properties change, have been reported to
exert great pressure on water resources [42–45]. With intensified human activities, it is
imperative to conduct a comprehensive study of the impacts of climate change and human
activities on regional crop water requirements in the future.

5. Conclusions

Based on the crop coefficient method, trend test, sensitivity and contribution analysis,
the spatio-temporal variations of CWR for winter wheat and summer maize were explored,
and the impacts of climate change on CWR variations were revealed from 1981 to 2019
in the LYRB. The results showed that the annual maximum and minimum temperature
increased significantly, whereas sunshine duration, relative humidity and wind speed
decreased significantly from 1981 to 2019. The total CWR of winter wheat and summer
maize presented a significant decreasing trend (−1.36 mm/a) with a multi-year average
value of 936.7 mm, and the CWR of winter wheat was higher than that of summer maize.
The CWR of winter wheat and summer maize showed similar spatial distribution, and
generally increased from the southwest to the northeast. The CWR of winter wheat and
summer maize were highly sensitive to wind speed, followed by maximum temperature,
sunshine duration, minimum temperature and relative humidity. Wind speed was the
dominant factor of CWR variation and presented the greatest impacts with the highest
contribution rate of 116.26%. Increasing temperatures also had a relatively great influence
on CWR variation, whereas this impact was offset by other meteorological factors. The
contribution of relative humidity to CWR variation was relatively limited. The results of
this study will provide a scientific basis for mitigating the impacts of climate change and
improving agricultural water management.
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