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Abstract: In recent decades, there have been considerable technological developments in the agricul-
ture sector to automate manual processes for many factors, including increased production demand
and in response to labor shortages/costs. We conducted a review of the literature to summarize
the key advances from installing emerging technology and studies on robotics and automation to
improve agricultural practices. The main objective of this review was to survey the scientific literature
to identify the uses of these new technologies in agricultural practices focusing on new or reduced
occupational safety risks affecting agriculture workers. We screened 3248 articles with the following
criteria: (1) relevance of the title and abstract with occupational safety and health; (2) agriculture
technologies/applications that were available in the United States; (3) written in English; and (4) pub-
lished 2015–2020. We found 624 articles on crops and harvesting and 80 articles on livestock farming
related to robotics and automated systems. Within livestock farming, most (78%) articles identified
were related to dairy farms, and 56% of the articles indicated these farms were using robotics routinely.
However, our review revealed gaps in how the technology has been evaluated to show the benefits
or potential hazards to the safety and well-being of livestock owners/operators and workers.

Keywords: agriculture livestock; robotics; sensors; computer vision; artificial intelligence; occupa-
tional safety and health

1. Introduction

Agriculture accounted for about 1.4% of the U.S. labor force in 2020, with approxi-
mately 2.6 million people employed in full- and part-time jobs [1]. The agriculture sector
ranks among the most hazardous industries worldwide, with high rates of occupational
fatalities, injuries, and illnesses [2,3]. In 2020, U.S. agriculture, forestry, fishing, and hunting
industries had a rate of 21.5 fatal injuries per 100,000 full-time equivalent workers, which
was roughly six times the average rate of 3.4 for all private industries [4]. Likewise, the 2020
nonfatal occupational injury incident rate for agriculture, forestry, fishing, and hunting
averaged 4.6 per 100 full-time workers, which was higher than the average of 2.9 for all
industries [5]. According to 2020 Bureau of Labor Statistics (BLS) data, agricultural workers
suffered 18,750 nonfatal occupational injuries and illnesses that resulted in days away from
work, but this number excludes injuries on farms with fewer than 11 workers [6]. U.S.
Agriculture, forestry, and fishing industry workers are exempt from some worker safety
and health policies, which may affect the reporting of nonfatal injuries [7–10]. Furthermore,
nonfatal events or exposures that made workers ill or injured included contact with objects
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and equipment (4710 cases), falls, slips, trips (4750 cases), and overexertion and bodily
reaction (3060 cases) [11].

Agriculture workers are exposed to a variety of work-related hazards. In traditional
agriculture, those who work on farms and ranches are engaged in labor-intensive processes
such as dairy operations (milking) [12], feeding animals, and monitoring animal behaviors
(e.g., detecting lameness, disease, and management/housing farms) [13]. Along with
labor-intensive processes from cleaning the livestock pens or stalls, workers inhale bio-
product gases created from the manure [14]. In recent decades, considerable technological
developments, including the internet of things (IoT), sensors, robotics, drones, and artificial
intelligence (AI), have been transforming the agriculture sector. These new technological
developments have led to what is commonly known as precision agriculture to assist with
managing and optimizing farm health and productivity. Data gained from precision agri-
culture are utilized to reduce and target inputs in more effective ways [15]. Each technology
has different advantages. For example, with sensory data, farmers can collect information
much easier without needing to interact with animals. The IoT helps farmers to easily
analyze data on weather, temperature, moisture, and prices and provide insights into how
to optimize yield, improve planning on location monitoring, make smarter decisions about
the level of resources needed, and determine when and where to distribute those resources
to minimize waste and increase yields [16]. In general, robotic systems are in use and under
development for autonomously monitoring livestock and collecting field data continuously
without human–animal interaction [15,16].

New technological innovations impact both workplaces and workforces, and these
developments are poised to take over some of the physical labor tasks of animal farming.
However, the adoption of these technologies for livestock varies widely across technologies,
animal species, and areas of application. These ongoing changes in the workplace, work,
and workforce have continued to shape the Future of Work [17]. While such technological
developments have offered many opportunities, they have also posed challenges. One of
the research goals of the NIOSH Future of Work Initiative is to mitigate worker safety and
health challenges and leverage opportunities associated with the objective of evaluating
the benefits and risks of robotics [18]. Another is to evaluate the impact of innovative
and emerging technologies on worker well-being. With respect to those two NIOSH
Future of Work Initiative goals, we conducted a review of the literature to summarize the
key advances from installing emerging technology and research studies on robotics and
automation to improve agricultural practices. The main objective of this review was to
survey the scientific literature to identify the uses of these new developments in agricultural
practices focusing on the occupational safety and health (OSH) of the agriculture workers.

2. Materials and Methods

We conducted a pilot search to find terms that would reflect emerging technologies
(Table 1 search string 1) and the type of agricultural products found in crop and livestock
production (Table 1 search string 2). The team then worked with a Center for Disease
Control and Prevention Librarian to finalize our search terms and determine appropriate
databases. Relevant articles from the years 2015–2020 were searched from five databases:
Scopus, IEEExplore, Environmental Science Collection, CAB Abstracts, and Agricultural
Science Collection (ProQuest, Agricola). Specifically, different combinations of search terms
(Table 1) were used with logical operators ‘AND’ and ‘OR’.

The initial search of the literature identified more than 3000 articles. Titles and ab-
stracts of these articles were screened according to the following criteria: (1) relevance
of the title and abstract to the topic of OSH; (2) agriculture technologies/applications
that were available in the United States; (3) written in English; and (4) published 2015
to 2020. Five independent reviewers performed the screening using Covidence [19], a
literature review management software that requires two reviewers to vote on articles
in each phase (Figure 1). Articles that had the same decision by two reviewers would
be moved to the next step or removed. Reviewers would remove articles in agriculture
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sub-industries for forestry or aquaculture. Articles in which one reviewer suggested inclu-
sion, whereas the other suggested discarding, were screened by a third reviewer for a final
decision. If the third reviewer could not resolve the conflict, it was decided by consensus
among the three reviewers. As crop production job tasks and technology vary greatly
from those in livestock production, articles were then separated by “crop/harvesting”
(624) and “animals/livestock” (80) during phase five data extraction. Articles focused on
crop/harvesting and general information on livestock were included in data extraction
for crop/harvesting. Based on the above criteria, 80 articles were then selected for the
extraction phase, specifically for livestock (Figure 1). Relevant data were then extracted
and subsequently categorized by author, year, purpose of the study, type of technology, job
task, and potential benefits or hazards to farmers or farm workers.

Table 1. Search strings used to identify articles.

Search String Search Terms

1

‘Robot*’ OR ‘Drone*’ OR ‘Artificial intelligence’ OR ‘Agbot*’ OR ‘Agrobot’
OR ‘Autonomous’ OR ‘Mobile technology adoption’ OR ‘Smart agriculture’

OR ‘Sensors’ OR ‘Smart farming’ OR ‘Technology adoption’ OR ‘Smart
machines’ OR ‘Automated harvesting’ OR ‘(Automated) Agricultural

machinery’ OR ‘Human-Robot collaboration’ OR ‘Robot’

2

‘Soft gripping’ OR ‘Picking’ AND (‘Agriculture’ OR ‘Agricultural’ OR
‘Poultry production’ OR ‘Egg production’ OR ‘Swine production’ OR ‘Beef
production’ OR ‘Livestock’ OR ‘Crop production’ OR ‘Farming’ OR ‘Farmer*’

OR ‘Farm-hand*’ OR ‘Farmhand*’ OR ‘Farm work*’ OR ‘Ranch*’ OR
‘Orchard’ OR ‘Fruit’ OR ‘Vegetable’ OR ‘Harvest’)

3 NOT exp animals

4 NOT exp humans
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3. Results
3.1. Type of Technology Used in Livestock

Of the 80 articles on livestock farming selected for the full review process, 64 articles
(80%) focused on dairy (cattle, calves, sheep, and goats) activities, 10 articles (12.5%)
on pork (pigs and piglets), 3 articles (3.75%) on poultry (chicken), and 3 articles (3.75%)
included multiple farm animals such as cattle and pork. Fifty articles (63%) focused on
the reason and application to apply technology for the management of animal health
(e.g., monitoring cattle health, disease detection, lameness, and animal behavior), and
the remaining 27 articles (37%) focused on technology features, productivity, or quality.
Two articles focused on occupational exposure, and one article reviewed the relationship
between humans and animals with emerging technologies. Thirty-five articles (44%)
reported on the use of emerging technologies such as sensors, computer vision, and AI;
thirty-five articles (44%) discussed the use and productivity of robotics and advanced
automated systems; and 10 articles (12%) combined sensors and robotics. More than half of
the 80 articles were related to automated robotic equipment in the dairy industry. These
systems were primarily developed to reduce manual milking and in response to labor
shortages/costs. Dairy studies compared different automatic milking systems (AMS) and
automatic feeding systems (AFS) to see which model had more advantages in efficiency
and animal welfare. The main purpose of dairy studies with AMS was to test milking time,
time in AMS, milk yield, milk flow, and milking intervals [20].

The articles describing emerging technologies such as sensors, computer vision, and
AI-focused more on animal welfare as a justification to adopt these devices rather than the
impact of these devices on health and safety for the farmer and/or worker. Farmers use
this new technology to monitor animal behaviors visually with IoT-based computer vision
techniques [21], infrared images to measure eye and cheek temperatures [22], and visual
scans of foraging activities to study aging [23]. Sound based technology includes collecting
sound data to propose an algorithm to detect bovine respiratory disease [24] and classify
sound to understand distress vocalizations in poultry, pork, and beef [25].

Seventeen (21%) of 80 articles (Table 2), directly evaluated occupational exposure or in-
directly addressed or discussed the central focus of our review, i.e., the impact of technology
on worker safety, health, or well-being when handling or feeding animals or cleaning and
maintaining indoor barn environment. Specifically, Basinas et al. and Böhlandt et al. studied
the impact of technology on occupational health exposures and found positive outcomes
of reduced exposure to dust and endotoxins [26] and cow hair allergens [27] with the auto-
mated system compared to manual. An additional 15 (19%) articles considered topics such
as labor savings and mental workload affecting farm productivity that can also affect worker
health and well-being; however, the articles did not specifically study the impact on the
safety and health of the workers. The majority described positive outcomes, while only a few
articles noted some potential safety concerns. The following paragraphs describe the studies
which pertain to human safety and health regarding new technologic advancements.

3.2. Occupational Exposure

Of the two articles that evaluated occupational exposure, Böhlandt et al. [27] measured
the concentration of cow hair allergen airborne and settled dust in the work areas and
private living spaces. They collected samples using three different methods at 12 farms
with established AMS and eight farms with conventional milking systems. Sampling took
place within the milking stables, changing rooms, living rooms, and mattresses for all farms.
The farms with AMS had samples taken from a computer room that monitors the AMS.
Results showed that the concentration of cow hair allergen decreased from the milking
stables to the private living spaces. In addition, allergen concentrations were lower in the
private living spaces of farms using AMS compared to farms using conventional milking
systems. The authors suggested that this difference could be due to the AMS having a
separate computer room from the milking stables, which created a barrier decreasing close
animal contact and reducing exposure time for allergen transfer during milking [27].
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Table 2. Studies that address or discuss the impact of technology on worker safety and health.

Equipment
Category Date Author Geographic

Locations Purpose of the Study Safety and Health
Topics

Robotics (Milking) 2018 Salfer et al. [13] Upper West,
United States

Housing, management
characteristics, and

factors affecting animal
health hygiene

Indirectly-labor

Robotics (Milking) 2018 Winnicki et al. [28] Poland

Comparing effects of
milking on conventional

farms converted to an
automatic farm

Indirectly-labor

Robotics (Milking) 2017 Rodenburg et al.
[29] Ireland

Risk factors with
production processes
associated with AMS

traffic flow

Indirectly-labor and
well-being

Robotics (Milking) 2016 Butler et al. [30] United Kingdom
Restructuring work

practices on dairy farms
with AMS

Indirectly-well-being

Robotics
(Milking) 2016 Böhlandt et al.

[27] South Germany

Farmer’s concentration
exposure to cow hair

allergen with automatic
vs. conventional
milking systems

Directly-occupational
exposure

Robotics (Milking) 2015 Hansen, B.G. [31] Norway
Farmers’ reasoning and
perception on adoption

of AMS
Indirectly-well-being

Robotics (Milking) 2015 Schewe et al. [32]

United States
Midwest, the

Netherlands, and
Denmark

Surveying farmers for
different factors on why

they adopted AMS
Indirectly-well-being

Robotics (Feeder) 2018 Tangorra et al. [33] Italy

Assessing electrical
consumption of

automatic equipment on
farm

Indirectly-labor

Robotics (Feeder) 2017 Basinas et al. [26] South West
Ireland

Measuring exposure of
dust, endotoxin, and

VOCs during feeding
and milking process

with manual and
semi-automatic feeding

systems

Directly-occupational
exposure

Robotics (Feeder) 2017 Borso et al. [34] Northeast Italy
Structure modification

to adapt automatic
feeder

Indirectly-labor

Robotics (Feeder) 2016 Hennings, C. [35] Europe

Economic impact of the
automatic feeders on

animal
welfare-nutritional

intake

Indirectly- labor

Robotics
(Automated gates) 2017 Drach et al. [36] Israel Herding cattle to the

robotic milking station Indirectly-labor
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Table 2. Cont.

Equipment
Category Date Author Geographic

Locations Purpose of the Study Safety and Health
Topics

Robotics
(Cleaner-collects

eggs)
2018 Vroegindeweij et al.

[37] Europe

Assessment of
autonomous mobile

robot for collecting floor
eggs

Indirectly-labor

Robotics
(Cleaner-manure) 2018 Chiumenti et al.

[38]
North-Eastern

Italy

Exposure of gaseous
emissions and
environmental

management between
different surfaces

Indirectly-
occupational

exposure

Robotics
(Sensors) 2017 Hostiou et al. [39] No regional

location provided

Relationship between
farmers and animals

using automated
devices (review article)

Directly-labor and
well-being

Robotics (Sensors
and platform) 2018 Deokar et al. [40] No regional

location provided

Monitoring the animal
health and environment

on the farms

Indirectly-labor and
well-being

Machine/Deep
Learning 2019 Lee et al. [21] South Korea Monitoring swine (pigs)

for quality of growth Indirectly-well-being

The second study, Basinas et al. [26], measured exposure to dust, endotoxin, and
total volatile organic compounds (VOCs) at seven different dairy farms with three types
of feeding systems. Three farms used semi-automated feeding systems, three operated
manually, and one used a loft feeding system (which requires a worker to transfer feed
into the hopper manually). Results from the study indicated the difference in endotoxin
exposure between the type of feeding material and suggested inhaled endotoxins averaged
42% lower with semi-automatic vs. manual feeding [26]; however, the loft feeding system
was not included in the comparison due to the small sample size.

3.3. Occupational Health and Wellbeing

Few studies tested the adoption process of AMS, AFS, or other automation in small
and midsize farms, but overall the studies with large herd sizes found positive outcomes
for workers, decreased labor costs, and/or increased productivity/efficiency. Schewe and
Stuart [32] found positive outcomes for family and non-family labor, animal welfare, the
environment, and financial resiliency. Butler and Holloway [30] described how implement-
ing AMS changed farmers’ social status and work-life balance. Rodenburg [29] reviewed
studies to show how specific factors from herd management and facility design contributed
to the effects of labor, the performance of automatic robots, and animal health. Their
review found two studies [41,42] reported around 20% labor savings, one study [43] with
no significant labor savings due to increasing herd size, and two studies [44,45] reported a
new labor demand from fetching cattle that did not voluntarily go to the robotic milking
system [29]. The average for fetching cows from 41 AMS farms was 8.1%/day [44] and
14.6%/day from 43 AMS farms varying in fetching frequency due to barn design [45]. Ro-
denburg and House found reasons why workers had to fetch cattle were due to the cow’s
inexperienced with the AMS process, issues with the AMS teat placement, visible lameness
or health issues with the cow, and other cases had no identifiable reason [45]. Tse et al. [46]
surveyed farms to evaluate the impact of AMS on reducing labor and increasing milk
production. Their survey results taken from 214 farms with AMS found a 20% decrease in
the number of employees to care for an assigned herd size from a mean of 2.5 employees
to 2.0 employees [46]. Tse et al. reported two different AMS models reduced the milking
time by 2.5 h/day and 3.4 h/day. They also reported a median of three cows per robot that
required the worker to go and fetch the cow [46]. Salfer et al. [13] surveyed workers and
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collected data at fifty-four dairy farms that implemented AMS. Salfer et al. [13] noticed
labor efficiency with larger farms before the AMS averaged 96 cows/full time employee
compared to now having some cases of handling three to five cattle per day that failed to
voluntarily go towards the AMS. Their survey found farmers’ reasons for transitioning to
AMS were the benefits of less labor from repetitive milking (60%), improved lifestyle allow-
ing for additional free time (55%), and human health (28%) [13]. Hansen [31] completed
19 interviews with Norwegian dairy farmers to explore motivators for adopting AMS and
consequences for farmers’ lifestyle and management. Their results described the farms
sampled were 2.5 times the size of average farms because AMS led to expanding their
production. They noted an increase in flexibility as the greatest advantage but suggested it
came at a disadvantage because farmers felt they were never off duty, such as responding
to an alert from a robot in the nighttime [31].

Tangorra and Calcante [33] measured energy consumption and technical-economic
analysis of AFS. In this study, they calculated costs for preparing and distributing a total
mixed ration (TMR) with AFS and compared it with the conventional feeding system
(tractor + TMR wagon). They found a 97% reduction in energy consumption and 79% labor
cost savings [33]. Borso et al. [34] found energy consumption for conventional feeding
systems used 94.00 kilowatts (kWh) per day compared to the AFS, which used 68.05 kWh
per day, and they found a reduction in labor requirements with an AFS at 1.02 h per day
compared to the conventional feeding system at 2.5 h per day. The study revealed a strong
reduction of energy consumption by 97% and manual labor by 79% when adopting an AFS
in comparison to a conventional feeding system. Both of these reductions contributed to
reducing the daily cost of feeding TMR by up to 33% [34]. Hennings et al. [35] analyzed
European Union (EU) milk operating costs from 2007 to 2014, and they found that a
well-implemented feeding strategy can limit treatment and veterinary costs as well as
production losses.

Chiumenti et al. [38] focused on evaluating the performance of a robotic scraper
based on gaseous emissions from two types of flooring. Installation and use of robotic
scrapers were motivated by the reduced manual labor and the more frequent removal
of manure that affects the animal and farmer’s health due to the produced gases from
fermentation. There were reductions found in the emission rates for methane (CH4), nitrous
oxide (N2O), and carbon dioxide (CO2) after cleaning on both concrete and rubber flooring.
They did find an increased emission of ammonia (NH3) with rubber flooring after cleaning
compared to dirty floors [38]. Drach et al. [36] reported that the use of an automated herding
system functioned to move cattle toward the milking system had increased milk yield and
decreased 80% in work time compared to manual fetching. Winnicki and Jugowar [28]
tested the transition of cows from the shed with a stanchion-tied maintenance system and
a pipeline milking with a cubicle maintenance system. They found out that this cubicle
maintenance system increases work productivity, improves the comfort of living for cows,
improves the quality of milk, increases milk yield, and improves working conditions [28].
Vroegindeweij et al. [37] evaluated the performance of a prototype autonomous mobile
robot for the purpose of collecting poultry house eggs found on the floor. This was
motivated to reduce the farmer’s task of manually collecting eggs on the floor. Their results
focused primarily on the operation to pick up 300 eggs and the mobile robot successfully
collected 46% without damage. This study’s authors concluded that improving navigation
and obstacle avoidance algorithms would improve egg collection efficiency and would be
necessary for commercial feasibility [37]. Lee et al. [21] monitored an IoT-based large-scale
smart farm to detect undergrown pigs in group-housed pig rooms with deep-learning-
based computer vision techniques. They found that this method should be considered
as an aid (e.g., sending alarms) rather than as a replacement for farm workers. Deokar
et al. [40] developed an IoT-based smart farm system that notifies farmers on levels of
feed filling system, water filling system, biogas exhaust system, and fire detecting systems.
Their study is ongoing but discussed that continuous automated monitoring of physical
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parameters such as water and feeding levels would allow increased work flexibility and
ease of workload for farmers [40].

Furthermore, Hostiou et al. [39] reviewed studies observing changes in farmers’ tasks
with respect to workload and animal–farmer relationships following the implementation
of different sensor and robotic technologies. One task was the change from manually
milking cattle to the farmer monitoring the AMS via a computer. Hostiou et al. [39] noted
that AMS created flexibility of time for the farmers but also created new tasks, such as
fetching cattle that had not gone to the milking station. Hostiou et al. also discussed some
of the advantages of the automated process with sensors, such as the advantage of early
disease detection, monitoring the reproduction cycle, or feeding intake. However, they also
noted the amount of information generated could increase the farmer’s mental workload
due to the increased need to understand and select relevant information as a part of the
decision-making process. Moreover, Hostiou et al. [39] found automated process changes
reduced positive physical interactions such as manual milking but did not reduce manual
negative interactions such as vaccinations, castration, and trimming, which may impact the
overall human/animal relationship experience. Likewise, des Roches et al. [47] assessed
the human-animal relationship at 118 farms using a milking parlor (manual) or AMS by
observing the cow’s avoidance reaction at the feeding rack and surveyed the farmers’
attitude towards the cow. Their results showed farms with AMS had a lower portion of
cattle avoidance when the observer approached cattle at the feeding rack compared to the
conventional farms. The study concluded that the relationships between the worker and
cattle varied by the management process and attitude of the farmer. Nothing from their
study found the AMS system would be a factor that would affect the relationship positively
or negatively between the worker and animal [47].

4. Discussion

The introduction of new technologies into the workplace can have significant impacts,
both positive and negative, on the health, safety, and well-being of workers [17]. Despite
this, the results of our review found that while some studies acknowledged the potential
impact on farmer safety and health, most studies largely ignored the impact of technology
on worker safety by focusing instead on animal health (63%) or improving equipment
features (34%). On an encouraging note, in the limited number of papers that directly
or indirectly addressed OSH, there was a notable breadth of topics. Studies not only
addressed traditional OSH concerns such as biological exposures (e.g., dust and cow hair
allergens) but also addressed issues related to work-life balance, economic impact, mental
workload from the alarm systems, and the emotional impact of changes to farmer-animal
relationships resulting from the introduction of technology.

The limited number of studies that directly or indirectly discussed topics related to
farmer/farmworker well-being used established robotic and sensor technology compared
to the emerging sensors, computer vision, and machine/deep learning technologies which
are becoming popular in agriculture. The studies within our review mentioned applying
these emerging technologies to monitor animal welfare but only discussed improvement
in precision and accuracy detection with these new technologies. There are other research
studies that focus on animal welfare discussed in Buller et al.’s review of the literature [48].
These studies within our review neither tested the effect of these technologies on animal
welfare nor provided any evidence of how these technologies impacted the safety and
health of the farmers and/or farm workers. A similar review of the literature for the dairy
sector found a similar gap, with only 16 studies out of 343 (5%) assessing the impact of
interventions for workers’ safety and health, and only one of those 16 studies examined
farmer’s and farm workers’ mental well-being [49].

There were only two articles in this literature review that discussed changes in the human
and animal relationship dynamic due to incorporating automated technology [39,47]. Both
discussed the relationship changes associated with farm management and did not evaluate
the impact the relationship may have on the safety and health of farmers and farm workers.
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Only two studies quantified OSH respiratory exposures [26,27] and were limited to
the dairy sector. Our review did not find any assessment on traditional OSH exposures
or events such as the ergonomic impact on musculoskeletal disorders, or vibration, noise,
heat and cold stress, slips, trips or falls, and cuts or lacerations for the farmer and/or farm
worker with these emerging technologies. The indirect OSH topics of reduced labor and
flexibility were focused more on the benefits or concerns related to production instead of
worker well-being. Although some studies discussed the positive and negative impacts
of adopting new technology, none directly evaluated those impacts on worker well-being,
such as worker fatigue, stress, or mental health with the new technology.

As for limitations, this review only focused on robotic equipment and emerging
technologies with artificial intelligence in livestock production operations and excluded
meat processing and crop production operations. When reviewing these dairy studies, we
did not include the differences created between the barn designs, such as free flow traffic
versus guided flow [50]. Limiting articles to only English and selecting equipment used in
the United States created the potential for bias. This may create a loss of technology that
could impact the safety and health of the workers that was not captured in this review.

5. Conclusions

New technological developments to automate and streamline agricultural activities
may improve the safety and health of agriculture workers/farmers. However, there are
notable gaps in research for comparing how the technology can benefit the workers or
mitigate safety and health concerns associated with the technology. Most of the technology
discussed in these studies seems to decrease physical labor and/or hazard exposure of
workers. At the same time, most studies only discussed the application of the technology
itself and potential productivity increases and neither tested nor discussed the worker
safety and health advantages/disadvantages of using these technologies or their potential
contribution to technological job displacement. For livestock farming, we identified that
robotic technologies are well-established compared to sensors, computer vision, and ar-
tificial intelligence, which are slowly gaining adoption in crop agriculture. Likewise, we
observed how these robotic technologies could automate repetitive tasks; however, more
research on the potential safety and health effects for farmers and farm workers is needed.
Areas of future research should consider how to assess barriers to the adoption of new tech-
nology as well as potential unintended consequences automated technology may have on
the human/animal relationship, which could impact worker safety and well-being. Future
research should also address the potential differential impact of these technologies across
the workforce and within the industry and how their adoption may aggravate or ameliorate
occupational health inequities [51]. For example, technology that reduces the need for
manual labor can at once result in increased profits for farmers while resulting in job loss
for farm workers. Similarly, the initial capital investment to adopt some technologies may
increase production and make work safer on larger farms but could simultaneously place
smaller ones at a competitive disadvantage which could negatively impact the well-being
of these farmers.
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