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Abstract: Estimating the impact of climate change risks on rice distribution is one of the most
important elements of climate risk management. This paper is based on the GEE (Google Earth Engine)
platform and multi-source remote sensing data; the authors quantitatively extracted rice production
distribution data in China from 1990 to 2019, analysed the evolution pattern of rice distribution
and clusters and explored the driving effects between climatic and environmental conditions on the
evolution of rice production distribution using the non-parametric quantile regression model. The
results show that: The spatial variation of rice distribution is significant, mainly concentrated in the
northeast, south and southwest regions of China; the distribution of rice in the northeast is expanding,
while the distribution of rice in the south is extending northward, showing a spatial evolution trend
of “north rising and south retreating”. The positive effect of precipitation on the spatial distribution
of rice has a significant threshold. This shows that when precipitation is greater than 800 mm, there is
a significant positive effect on the spatial distribution of rice production, and this effect will increase
with precipitation increases. Climate change may lead to a continuous northward shift in the extent
of rice production, especially extending to the northwest of China. This paper’s results will help
implement more spatially targeted climate change adaptation measures for rice to cope with the
changes in food production distribution caused by climate change.

Keywords: rice; GEE; crop distribution; semi-parametric quantile regression

1. Introduction

Climate change has become an indisputable fact and is already impacting many areas
of ecological and social activities worldwide [1]. Agriculture is one of the most sensitive and
vulnerable industries to climate change [2]. The cropping system, structure, distribution
and production capacity will all be affected by climate factors [3–6]. As one of China’s major
food crops, rice has a total annual consumption of around 200 million tonnes, with more
than 85% used for primary food consumption, which is vital in China’s food production
and security strategy [7]. In the last 20 years, the distribution of rice in China has withstood
extraordinary changes [8]. On the one hand, the total area of rice sown has decreased in
the south [9]. On the other hand, the regional distribution has changed, of which the area
planted in the traditional southern rice growing areas fell rapidly and the area sown in the
north, especially in the northeast, shows a significant increasing trend [10]. Climate change
adds uncertainty to the long-term changes in the distribution of rice production [11].

At present, research on the effects of climate change has gone beyond climate sci-
ence, with scholars from different domains exploring the impacts of climate change on
the distribution of crops from different perspectives [12]. The literature has mainly used
spatial autocorrelation [13], the regional centre of gravity analysis [14] and production
functions [15]. The impact of climate change on grain crop production has both advantages
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and disadvantages. Nevertheless, the disadvantages outweigh the advantages overall, and
different climate variables have different impacts on different crops and regions [16,17]. In
recent years, the increased heat caused by climate change has been conducive to expanding
the grain sown area and producing more grain [11]. Increasing rainfall and CO2 concentra-
tions are beneficial for crop production to some extent, but high temperatures may negate
this effect in some areas [18]. Similarly, climate change had a negative impact on grain
production by expanding pest and disease occurrence areas, shortening crop growth cycles,
and increasing the frequency of extreme weather events [19].

Since 1960, China’s 10-degree Celsius cumulative temperature contour has shifted
significantly northwards [20]. Since the 1990s, the temperature in the northeast of China
has increased dramatically, causing the rice-growing areas in the northeast to spread
northwards, with areas previously unsuitable for rice growing, such as the Yichun and
Heihe areas, now being able to grow rice [21]. In the analysis of the influence mechanism,
works of literature mainly use statistical models and crop growth models [22,23]. The
relationship between cumulative temperature, precipitation and other climatic factors and
the distribution of rice cultivation has been analysed [24]. Climate change is believed to
have an essential impact on rice yield, growth and distribution [25].

The current literature reveals the effects of climate on the evolution of rice distribution.
However, the relatively few quantitative analyses of the relationship between climate
change and the evolution of rice distribution are still limited to some regions, and analyses
focusing on the large-scale changes in crop distribution from a national perspective are
insufficient. Quantitative remote sensing is an important tool for studying and analysing
changes in the distribution of crops at larger scales and over longer time series [26]. The
development of the Google Earth Engine (GEE) cloud computing platform has laid the foun-
dation for large-scale remote sensing data applications [27]. The GEE platform has been
widely used for large-scale, quantitative remote sensing studies. The crop identification
tools under the GEE platform have been developed relatively quickly. The crop identifica-
tion tools under the GEE platform have been developed more rapidly. The development of
remote sensing by big data analysis platforms and quantitative remote sensing technology
has laid a great foundation for analysing crop distribution on a larger spatial scale.

Therefore, it is possible to explore the relationship between climate change and rice
distribution conversion. We used the remote sensing panel data of rice distribution in
China from 1990 to 2019, mapped the spatial distribution pattern of rice production in
China and analysed its evolution mechanism by climate change. Further, we predicted the
rice distribution in China in 2035 and 2050 based on different CMIP6 climate simulation
scenarios. Under the conditions of climate change, rice, one of the most important food
crops in China, is also one of the most important crops in the world, so clarifying the
dynamic effects of climate change on rice distribution will help to identify and predict
future changes in rice distribution.

2. Materials and Methods
2.1. Methodology
2.1.1. GEE-Based Data Extraction for Rice Distribution

This paper uses the GEE platform to extract spatial data of rice distribution under a
long time series. High-precision rice classification extraction includes two stages: selecting
and pre-processing multi-source remote sensing data. The other is the calculation of key
identification indicators based on the pre-processed data. Among them, the key identi-
fication indicators include spectral parameters, vegetation indices, topographic factors,
etc. Then, the spatial distribution data of rice production were obtained by constructing
an X-mean estimation model, combined with visual interpretation for reclassification [28].
We also consider the existence of cloudy and rainy climatic characteristics during the key
phenological periods of rice growth in China, which cause difficulties for multispectral
remote sensing monitoring. This paper uses the Top of Atmosphere Reflectance (TOA)
generation algorithm of the phase-level Landsat series satellites to synthesise TOA images
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with very few clouds, and set a cloud score threshold to reconstruct cloud-free images for
each of the key phenological periods [29]. To achieve high-precision identification and
classification of rice production layout, this paper firstly constructs a dynamic normalised
vegetation index NDVI [30]. Furthermore, we used the surface water body index (LSWI) to
describe vegetation canopy and soil surface water content [31]. We extracted rice according
to the difference between the vegetation index and other features in different regions during
key phenological periods. Other indicators include surface temperature data based on
the inversion of MODIS data products, and slope data calculated from DEM data based
on the SRTM satellite, which are rectified into a time–space–spectrum multidimensional
array for classification using the X-mean algorithm [32]. After the accuracy test, the overall
classification accuracy of the rice distribution data extracted by the above algorithm was
79.43%, and the user accuracy was 98.79%, which could be sufficient for the demand for
quantitative analysis of the changes in the rice distribution.

2.1.2. Landscape Pattern Index

The Landscape Pattern Index (LPI) is a quantitative index that reflects landscape units’
internal compositions and spatial configurations [33]. This paper uses the landscape pattern
index method to analyse rice’s spatial and temporal distribution characteristics. In selecting
the landscape index, the patch area index (CA) was selected to reflect the scale of rice
production in different counties of China, to reflect the landscape pattern characteristics of
the spatial layout of rice production and to minimise information redundancy [34]. The
specific calculation methods and meanings are as follows.

CA =
a

∑
j=1

aij (1)

where aij denotes rice growing plots in counties, the patch area index can reflect the scale
of the rice production system growing in each county.

2.1.3. Centre of the Gravity Model

The concept of the centre of gravity refers to a point in regional space where the forces
in all directions remain relatively balanced before and after the point [35]. In geography,
the centre of gravity indicates that after dynamically weighing the magnitude of the forces
acting between regions, the distribution moves in the direction of the greater force, and the
direction of movement is the direction of change in the spatial pattern of the variable. Based
on this, this paper uses the centre of the gravity model to analyse the spatial migration
relationship of rice production in China. The centre of gravity model is calculated as follows.

Xw =
∑n

i=1 wixi

∑n
i=1 wi

(2)

Yw =
∑n

i=1 wiyi

∑n
i=1 wi

(3)

where wi is the area i the total number of factors, (xi, yi) are the coordinates of the geometric
centre of the area i and

(
Xw, Yw

)
are the coordinates of the centre of gravity of the element.

2.1.4. Econometric Model

Ordinary least squares regression of means only reflects the structural relationship
between data means, and its estimates may not be robust when the sample data do not
satisfy the classical assumptions of traditional econometric models, so this paper uses
quantile regression to overcome its averaging effect to give comprehensive information
about the explanatory variables [36]. In order to eliminate the effect of the raw data in
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terms of magnitude, the explanatory variables were natural logarithms separate from the
explanatory variables mentioned above, and their models were constructed as follows.

Qyi|xi
(τ|xi) = α + β1lntempij + β2lnperpij + βijlnxij + uit (4)

where Qyi|xi
(τ|xi) denotes the values of the patch area index for rice at different quartiles.

The tempij denotes the annual accumulation temperature level greater than 10 degrees
Celsius in each county. The perpij denotes the total annual precipitation in each county.
The xij denotes control variables, including land and socio-economic factors.

In order to analyse the relationship between climatic conditions on the distribution
of rice, and to take into account the differences in climatic effects on rice production in
different counties, this paper uses quantile regression to estimate the effects of climatic
factors. Still, there may be highly non-linear correlations between the variables in each
quantile of the quantile regression model. The majority of the previous studies are based
on the linear hypothesis and employ a linear model to study the relationship between
economic variables. However, different economic subjects are commonly interrelated, and
the different economic variables representing each economic subject often have complicated
relationships. In other words, there are many nonlinear relationships among economic
variables [37], If a linear model is adopted to fit the association between economic variables
without considering the nonlinear relationship between them, it will inevitably lead to prob-
lems such as poor robustness and biased parameter estimation. As a tool to study nonlinear
relationships, the nonparametric regression model has many advantages over a traditional
linear model. The nonparametric regression model is data-driven, meaning that the rela-
tionship between economic variables is completely dependent on the variable data [38]. It
is difficult to fit such a complex model structure with a linear quantile model, so this paper
adds a semi-parametric regression component to the quantile regression model [39]. The
additive model estimates an additive approximation to the multivariate quantile regres-
sion equation by smoothing the additive term for each individual with a single variable,
thus avoiding the “dimensionality curse” of traditional non-parametric models [40]. The
additive quantile regression model has several advantages: (1) Semi-parametric linear
regression models contain both linear and non-linear components, allowing a comprehen-
sive examination of the linear and non-linear effects of various climatic conditions on rice
distribution; (2) The parametric component of the model requires a smaller sample size
than non-parametric regression models, circumventing the problem of traditional non-
parametric models relying on large samples; (3) The assumptions of the non-parametric
model are more relaxed than those of the parametric model, and the robustness of the non-
parametric and semi-parametric models is significantly better than that of the parametric
model for samples with non-normal distribution and outliers.

The basic construct of the addable semi-parametric quantile regression model is
as follows.

Qyi|xi ,zi
(τ|xi, zi) = x′i β +

J

∑
j=1

gj
(
zj
)

(5)

where τ(0 < τ < 1) is the quantile of the model; x′i β is the parametric part of the model
and ∑J

j=1 gj
(
zj
)

is the non-parametric part of the model.

2.2. Variables

In order to analyse the influence of climatic and environmental conditions on the
distribution of rice, one must consider the principles of relevance, objectivity, comparability
and consistency in the selection of variables. This paper takes the effect of climatic and
environmental conditions, such as accumulated temperature and precipitation, on the
distribution of rice into consideration.

(1) Cumulative temperature. The literature shows that when the ambient temperature
is low, a certain degree of warming can promote photosynthesis of the plant leaves,
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but when the temperature exceeds a certain threshold, photosynthesis of the leaves
will be inhibited [41]. In the process of crop growing, the accumulation of plant
carbohydrates is inseparable from photosynthesis. Maintaining a certain level of
cumulative temperature can promote photosynthesis in plants, resulting in relatively
more energy accumulation and, thus, higher yield expectations [42]. Still, when the
annual cumulative temperature in the region is too high, plants’ growth rates and
respiration levels are relatively higher, and the accumulation of their output may be
inhibited. For this reason, an annual cumulative temperature greater than 10 degrees
Celsius was chosen as the explanatory variable to characterise temperature differences
between counties.

(2) Precipitation. Change in precipitation is an important constraint on the development
of food production [43]. It has been shown that the expected level of food production
is positively related to the amount of water used in planting. This paper uses annual
precipitation as the core explanatory variable to analyse the impact of changes in
precipitation conditions on rice production.

In addition to climatic factors, rice production is also influenced and constrained by
land and socio-economic conditions. Considering the availability of data and avoiding
endogeneity and covariance between variables as far as possible, this paper selects soil
organic matter content [44], land slope level [45], the average distance between rivers and
arable land and elevation as control variables for land conditions. Additionally, we include
the average distance between arable land with the roads and railways; we also consider the
nighttime light index as a control variable for socio-economic factors.

(1) Land. Land is one of the most basic factors of crop production. The literature has
shown that changes in the soil environment have a much higher impact on crop
yield levels than changes in the climate environment [46]. The quality of arable
land is a key factor in the level of food production, and the expected level of crop
output will increase when the soil environment in which arable land is located is
improved. As an important component of the soil, soil organic matter not only
contains various nutrients for plant growth, but also regulates the physical and
chemical properties of the soil, improves the microbiological environment and soil
structure and enhances soil stability [47]. At the same time, the topographical features
of arable land may significantly impact the distribution of different crops [48]. The
most suitable slope range exists for the crops, and flat ground is conducive to achieving
a large-scale and mechanised crop distribution, reducing the overall food production
costs and improving food production efficiency, but it also has significant advantages
in maintaining water and soil drainage and irrigation. Therefore, this paper selects
soil organic matter content, land slope level, the average distance between arable land
and rivers and elevation as land condition control variables to control the effect of
land environmental conditions on the layout of rice production.

(2) Socio-economic factors. Taking complete account of the heterogeneous impact of
differences in socio-economic endowment characteristics across counties on the dis-
tribution of rice, this paper uses the average distance of land for rice from roads and
railways and the nighttime light index as control variables to offset the impact of
differences in locational endowments on the distribution of rice [49].

The relevant variables studied in this paper are explained in Table 1.
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Table 1. Description of related variables.

Variable Description

Explained
variables Patch area index for rice Scale of the rice production system

growing in each county

Core explanatory
variables

Annual cumulative
temperature

The cumulative temperatures with
greater than 10 degrees Celsius

Annual precipitation The annual cumulative precipitation

Control variables

Soil organic matter Organic matter as a percentage of dry
soil weight

River distance The average distance of arable land to
river for each county

Slope of the land The average slope of arable land for
each county

Elevation The average DEM for each county

Road distance The average distance of arable land to
road for each county

Rail distance The average distance of arable land to rail
for each county

Nighttime Lighting Index The index of Nighttime lighting

2.3. Data
2.3.1. Data on Climatic Conditions

In this paper, the annual cumulative precipitation and annual temperature totals
higher than 10 degrees Celsius are selected as the core representations of the two climate
factors of temperature and precipitation. The daily average temperature and precipitation
totals are extracted based on the daily observation data from more than 800 meteorolog-
ical observation stations distributed throughout China by the National Meteorological
Observatory of China. For the calculation of cumulative temperature, the average daily
temperature higher than 10 degrees Celsius was screened and summed on an annual basis
to obtain the annual cumulative temperature higher than 10 degrees Celsius; the annual
sum of daily precipitation within each meteorological observation station was used to
obtain the annual precipitation of that meteorological observation station. Subsequently,
the latitude and longitude coordinates of the meteorological stations were imported into
ArcGIS for matching, and the Kriging method was used for spatial interpolation to obtain
a spatial raster of the annual precipitation and annual cumulative temperature. Finally,
the geographic vector boundary data for each county was introduced in ArcGIS, and the
raster data of annual temperature and precipitation were spatially averaged for each county
through ArcGIS.

To analyse the future climate changes, this paper selects three future scenarios for
2035 and 2050 from the Shared Socioeconomic Pathways (SSPs) of CMIP6 data SSP1-2.6,
SSP2-4.5 and SSP5-8.5, and selects three models for China with reference to the existing
experimental results (Table A1).

2.3.2. Soil Condition Data

In order to control the effect of land on the distribution of rice, soil organic matter
content, land slope level, the average distance between arable land and rivers and elevation
were selected as control variables. The soil organic matter content data were obtained
from the spatial data of soil type distribution in China from the Institute of Geographical
Sciences and Resources, Chinese Academy of Sciences. Based on the available literature
and combined with the data of the second national soil census in China, the organic matter
content of different soil types was calculated separately according to their distribution, and
the calculation criteria were as follows (Table A2).

The data on the land slope, elevation and rivers are obtained from the Resource and
Environment Science and Data Centre of the Chinese Academy of Sciences. In this paper,
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all the data are taken at the basic scale of counties, and the spatial mean values of each
county and district are extracted separately as the basic unit.

2.3.3. Socio-Economic Data

In this paper, the average distance between arable land with roads and railways and
the night-time light index of each county are used as control variables. The above socio-
economic variables are obtained from the Resource and Environment Science and Data
Centre of the Chinese Academy of Sciences. In contrast, the vector data of administrative
divisions of Chinese sub-counties are obtained from the National Basic Geographic Informa-
tion Database of the State Bureau of Surveying and Mapping. In the process of data analysis,
data with significant discrepancies were eliminated, and county units with abnormal values
or missing data in the year are replaced with data from neighbouring years.

3. Results
3.1. Spatial Pattern and Evolution of Rice Production in China

The X-mean algorithm was used to estimate the spatial distribution of rice in China
from 1990 to 2019 by the GEE platform (Figure 1). The regional distribution of rice in China
is mainly located in the south, but this spatial expansion continues to the north, showing
a trend of “north rising and south retreating”. The centre of gravity of rice in 1990, 2000,
2015 and 2019 was calculated and plotted (Figure 2). The results show that between 1990
and 2019, the centre of gravity of rice production in China moved steadily in the northeast
direction, from Luxi County, Xiangxi Tujia and Miao Autonomous Prefecture, Hunan
Province, reaching to Suizhou County, Suizhou City, Hubei Province, in 2019, involving
four counties and cities in two provinces, moving a straight-line distance of 518.2 km. It
shows that the scale of rice production in northern China grew significantly faster than in
southern China between 1990 and 2019.
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To further analyse the spatial distribution changes of rice in China, this paper calcu-
lates the values of each landscape pattern index of the county to quantify the distribution
characteristics of rice production in each county in China. From the patch area index
(Figure 3), the traditionally dominant areas of rice production in China are mainly concen-
trated in the Sichuan Basin, the Yunnan–Guizhou region, the middle and lower reaches of
the Yangtze River Plain, etc. Over time, the distribution of rice in the northeast has been
expanding, gradually spreading from the northeast of the Northeast Plain to cover the
entire northeastern areas, while the distribution of rice in southern regions has also been ex-
panding northward. Still, rice in Guangdong, Fujian and other southeastern coastal regions
has been reduced. It could be caused by these areas being economically developed, the
land distribution being fragmented and hilly, the opportunity cost of rice production being
relatively high and a common tendency for farmers to de-farm and de-grain their land.
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To further reveal the dynamic process of the spatial pattern of rice in China, the
study area was divided into low (−1.5 to −0.5 standard deviations), medium (−2.5 to
−1.5 standard deviations)and fast (<−2.5 standard deviations) decreasing zones, stable
(±0.5 standard deviations) zones, and low (0.5 to 1.5 standard deviations), medium (1.5
to 2.5 standard deviations) and fast (>2.5 standard deviations) increasing zones according
to the magnitude of change in the rice patch area index from 1990 to 2019 (Figure 3 left).
At the county scale, the decreasing zones of rice production scale in China’s counties from
1990 to 2019 are much smaller than the increasing zones. Specifically, the increasing zones
are concentrated in the Northeast Plain and the southern part of the North China Plain;
the decreasing zones are concentrated in the Sichuan, Guangdong, Fujian and Yunnan
provinces. Statistically, the rice sown area in these four provinces decreased by 39.15%,
43.60%, 59.02% and 17.21%, respectively, between 1990 and 2019.

3.2. Climate Drivers of the Evolution of Rice Distribution in China
3.2.1. Panel Quantile Model Applicability Test Results

Before parameter estimation, the variables were tested for smoothness, and the ADF–
Fisher test was used to weigh the advantages and disadvantages of the smoothness testing
methods. The test results (Table 2) showed that the patch area index, an annual cumulative
temperature higher than 10 degrees Celsius and annual precipitation from 1990 to 2019
were all first-order differential smooth series, which satisfied the conditions for applying
the panel quantile model controlling for time effects.

Table 2. ADF test for key variables.

Variables ADF P

Patch Area index −12.067 0.01
Higher than 10 degrees Celsius annual cumulative temperature −13.771 0.01

Annual precipitation −12.76 0.01
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3.2.2. Linear Influence of Climatic Factors on the Rice Distribution

This paper takes over 2000 counties in China from 1990 to 2019 as the research scale
unit, estimates the climate effect of rice distribution in each county and selects three
quartiles of 0.25, 0.5 and 0.75, respectively. The impact of climate on the rise distribution in
different counties was investigated according to the different sub-quartiles.

Table 3 shows various factors influencing rice distribution in China at different quantile
points. In terms of climatic factors, climate conditions have a significant influence on the
scale of rice production in China, as shown by the following: (1) The annual accumulation
temperature has a significant negative influence on the scale of rice production, i.e., as the
quantile point rises, the less negative influence the accumulation temperature level has
on the scale of rice production; (2) Precipitation has a significant positive influence on the
patch area index of rice at both the 0.5 quantile point and the 0.75 quantile point, and as the
effect of this relationship decreases as the quantile rises, i.e., in counties with small-scale
rice production, the distribution of rice is more sensitive to changes in precipitation.

Table 3. Panel quantile regression results of rice distribution.

Explanatory
Variables

(1) (2) (3) (4)

25th 50th 75th 25th 50th 75th 25th 50th 75th 25th 50th 75th

Constant term 6.926 *** 7.515 *** 7.895 *** 6.629 *** 7.895
***

8.513
*** 6.764 *** 7.418

*** 7.828 *** 6.909 *** 8.055 *** 8.679 ***
(0.073) (0.057) (0.054) (0.256) (0.200) (0.205) (0.078) (0.052) (0.054) (0.318) (0.263) (0.242)

Annual
cumulative
temperature

−0.347
*** −0.074 −0.028 −0.184

*** −0.039 0.029
***

−0.452
***

−0.168
***

−0.108
***

−0.287
***

−0.112
** −0.061

(0.071) (0.052) (0.054) (0.069) (0.052) (0.053) (0.070) (0.047) (0.050) (0.071) (0.049) (0.052)
Annual

precipitation 0.872 *** 0.515 *** 0.435 *** 0.551 *** 0.348 0.242
*** 0.791 *** 0.429

*** 0.337 *** 0.586 *** 0.356 *** 0.275 ***

(0.084) (0.061) (0.065) (0.082) (0.061) (0.064) (0.083) (0.057) (0.062) (0.086) (0.057) (0.062)
Soil organic

matter
−1.850

***
−1.443

***
−1.171

***
−1.897

***
−1.435

***
−1.184

***
(0.083) (0.074) (0.075) (0.071) (0.066) (0.063)

River distance 0.079 *** 0.068
***

0.067
*** 0.045 *** 0.037 *** 0.038 ***

(0.004) (0.003) (0.003) (0.005) (0.003) (0.003)
Slope of the

land 0.212 *** 0.122
***

0.079
*** 0.181 *** 0.100 *** 0.057 ***

(0.019) (0.015) (0.015) (0.025) (0.021) (0.020)
Elevation 0.116 *** 0.118

***
0.112

*** 0.047 *** 0.047 *** 0.045 ***
(0.007) (0.006) (0.006) (0.010) (0.009) (0.009)

Road distance 0.078 *** 0.077
*** 0.074 *** 0.072 *** 0.072 *** 0.069 ***

(0.006) (0.004) (0.004) (0.006) (0.005) (0.004)
Rail distance 0.114 *** 0.095

*** 0.089 *** 0.092 *** 0.076 *** 0.071 ***
(0.007) (0.005) (0.005) (0.007) (0.005) (0.005)

Nighttime
Lighting Index

−0.036
** 0.006 0.032 ** −0.098

***
−0.073

***
−0.050

***
(0.019) (0.013) (0.014) (0.020) (0.017) (0.016)

Note: Superscripts *** and ** indicate statistical significance at 1%, 5% and 10% respectively; the standard error in
parentheses; the 25th, 50th and 75th indicate represents the 0.25, 0.5 and 0.75 quartiles of the explanatory variables,
respectively; model (1) estimates the effect of climate on rice distribution, model (2) estimates the effect of climate
under controlled the land conditions, model (3) estimates the effect of climate under controlled socio-economic
conditions, model (4) estimates the effect of climate under both controlled land and socio-economic conditions.

In terms of land conditions, there is a significant negative relationship between the
scale of rice production and soil organic matter content. The influence of land factors on
the scale of rice production decreases as the quantile rises. As the quantile point rises, the
scale of rice production expands, and the negative effect of soil organic matter content on
the scale of rice production decreases.

In terms of socio-economic factors, the average distance between arable land with
roads and railways has a significant positive effect on rice production, and its effect tends
to weaken as the quantile rises; the level of economic development, as characterised by
the nighttime light index, has a significant adverse effect on the scale of rice production,
with the more economically developed counties having a relatively smaller scale of rice
production. As the scale of rice production rises, the economy’s negative effect on the scale
of rice production gradually decreases. The negative impact of the economy on the scale of
rice production gradually decreases as the scale of rice production rises.
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3.2.3. Non-Linear Driving Effects of Climatic Factors on Rice Production

To further investigate the relationship between the influence of climatic factors on
the rice distribution, after controlling for other variables as linear influence relationships,
this paper estimated the effect of three different quartiles for 0.25, 0.5 and 0.75 on the
level of accumulated temperature and precipitation. There was a significant non-linear
relationship between climatic factors such as accumulated temperature and precipitation
on the distribution characteristics of rice (Table 4).

Table 4. Results of semi-parametric quantile regression for rice production.

Explanatory
Variables

(1) (2) (3)

25th 50th 75th 25th 50th 75th 25th 50th 75th

Constant term 10.613 *** 11.607 *** 12.463 *** 5.477 *** 7.635 *** 9.543 *** 6.018 *** 11.414 *** 15.025 ***
(0.414) (0.286) (0.249) (0.854) (0.550) (0.466) (1.376) (0.974) (0.724)

Annual
cumulative
temperature

0.488 *** 0.021 −0.266
***

(0.147) (0.107) (0.079)
Annual

precipitation 0.681 *** 0.501 *** 0.335 ***

(0.124) (0.075) (0.061)
Soil organic

matter
−1.346

***
−1.014

*** −0.744 *** −1.615 *** −1.246 *** −0.956 *** −1.309 *** −0.820 *** −0.486
***

(0.144) (0.102) (0.084) (0.161) (0.101) (0.086) (0.142) (0.101) (0.077)
River

distance 0.046 *** 0.036 *** 0.033 *** 0.048 *** 0.038 *** 0.036 *** 0.044 *** 0.039 *** 0.036 ***
(0.006) (0.004) (0.003) (0.007) (0.004) (0.003) (0.006) (0.004) (0.003)

Slope of the land −0.051 −0.083
*** −0.109 *** −0.012 −0.032 −0.045 ** −0.019 −0.098 *** −0.154

***
(0.034) (0.024) (0.020) (0.039) (0.024) (0.020) (0.034) (0.024) (0.019)

Elevation 0.117 *** 0.090 *** 0.076 *** 0.142 *** 0.103 *** 0.076 *** 0.093 *** 0.078 *** 0.069 ***
(0.016) (0.011) (0.008) (0.017) (0.011) (0.009) (0.016) (0.011) (0.008)

Road
distance 0.053 *** 0.061 *** 0.051 *** 0.056 *** 0.065 *** 0.052 *** 0.055 *** 0.061 *** 0.051 ***

(0.008) (0.006) (0.004) (0.009) (0.006) (0.005) (0.008) (0.006) (0.004)
Rail distance 0.047 *** 0.049 *** 0.042 *** 0.060 *** 0.054 *** 0.045 *** 0.050 *** 0.047 *** 0.041 ***

(0.009) (0.006) (0.005) (0.010) (0.006) (0.005) (0.008) (0.007) (0.005)
Nighttime
Lighting

Index
−0.056 ** −0.064

*** −0.073 *** −0.111 *** −0.097 *** −0.087 *** −0.059 ** −0.061 *** −0.076
***

(0.029) (0.023) (0.022) (0.033) (0.023) (0.023) (0.030) (0.023) (0.021)
s (annual

cumulative
temperature)

8.254 *** 8.510 *** 8.550 *** 8.524 *** 8.623 *** 8.583 ***

s (annual
precipitation) 7.697 *** 8.066 *** 7.879 *** 8.143 *** 7.764 *** 7.768 ***

R2 0.263 0.248 0.221 0.217 0.223 0.179 0.192 0.221 0.179
Deviance
explained 22.70% 28.60% 48.30% 25.10% 19.60% 46.40% 25.90% 19.90% 46.50%

Note: Superscripts *** and ** indicate statistical significance at 1%, 5% and 10% respectively; the standard error
in parentheses; the 25th, 50th and 75th indicate represents the 0.25, 0.5 and 0.75 quartiles of the explanatory
variables respectively; model (1) estimates the non-linear effect of both annual cumulative temperature and annual
precipitation, models (2) and (3) estimate the non-linear effect of annual cumulative temperature and annual
precipitation, respectively.

The effect of temperature on the spatial distribution of rice was significant (Figure 4),
and it is approximately in the models at different quartiles. The analysis revealed (Table 4)
that the positive effect of cumulative temperature on rice distribution was characterised
by a significant ‘double peak’, i.e., there were two effective temperature ranges that could
promote rice production expansion, with the effective cumulative temperature ranges for
the 0.25 quantile at 2782.935–2918.037 ◦C and 5403.880–6229.566 ◦C, the effective tempera-
ture ranges for the 0.5 quantile are 2531.201–3444.651 ◦C and 5403.88–5941.196 ◦C and the
effective cumulative temperature ranges for the 0.75 quantile are 3202.229–3611.886 ◦C and
5403.880–5802.05◦C. The above fields correspond to the main distribution ranges of single-
season rice in the northern region and double-season rice in the southern part of China.
The positive effect on the area under rice cultivation is most significant in the ranges of 2800
to 3600 ◦C and 5400 to 6200 ◦C. Combined with the actual distribution of rice cultivation
in China, when the accumulated temperature is below about 2800 degrees Celsius, the
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temperature will become the main stress factor for rice production and cultivation, which
will limit the growth of rice and the growth of cultivation scale.

Figure 4. Results of non-linear quantile estimates of temperature on the rice patch area in (a) 0.25,
(b) 0.5 and (c) 0.75 quantile.

The effect of precipitation on the spatial distribution of rice was significant (Figure 5),
and it is approximately in the models at different quartiles. Additionally, the effect of
precipitation on the rice distribution shows a significant non-linear dynamic relationship
within the range of values. When the value of precipitation is in a high range, it has
a significant positive effect on the rice distribution. Further analysis revealed (Table 5)
that the positive effect of precipitation on the spatial distribution of rice has significant
interval characteristics, i.e., the annual precipitation has a significant positive effect on
the distribution of rice only when it is above a certain threshold, specifically, the effective
precipitation range for the 0.25 quantile is 870.559–1670.085 mm, the effective precipitation
range for the 0.5 quantile is 849.009–1670.085 mm and the effective precipitation range
for the 0.75 quantile is 849.009–1712.451 mm. The results show that the content of annual
precipitation around 800–1700 mm significantly positively affects the area under rice
cultivation. The estimation results indicate that precipitation, as an important variable
affecting soil water content and rice growth, can only achieve a facilitating effect on the
expansion of rice production layout in a relatively high interval range. When precipitation is
in a relatively low interval range, precipitation may inhibit rice cultivation. Water resource
constraints are an important variable affecting the spatial layout of rice.

Figure 5. Results of non-linear quantile estimates of precipitation on the rice patch area in (a) 0.25,
(b) 0.5 and (c) 0.75 quantile.
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Table 5. Effective range of climatic factors contributing to the distribution of rice.

Climate
Factors

25th 50th 75th

Effective Range Impact
Effects Effective Range Impact

Effects Effective Range Impact
Effects

Temperature
accumulation

2782.935–2918.037 0.321–0.341 2531.201–3444.651 0.195–0.309 3202.229–3611.886 0.170–0.818
5403.880–6229.566 0.202–0.398 5403.88–5941.196 0.054–0.063 5403.880–5802.056 0.066–0.100

Precipitation 870.559–1670.085 0.128–0.620 849.009–1670.085 0.125–0.432 849.009–1712.451 0.082–0.362

3.3. Prediction of the Evolution of the Rice Distribution in China

Further, this paper estimates the changes in rice distribution between 2035 and 2050
through three future scenarios in CMIP6, SSP1-2.6, SSP2-4.5 and SSP5-8.5, assuming no
changes in land conditions and socio-economic factors (Figure 6). The predictions show
that climate change brings higher accumulated temperature and abundant precipitation
to the North China Plain, the Northeast Plain and along the Hexi Corridor in China, with
the 800 mm precipitation line showing a northward shift. Under these conditions, the
spatial distribution range of rice will shift further north. Specifically, the distribution
range of double-season rice in the south will expand northwards, and the scale of rice
cultivation in dry rice staggered areas such as Henan and Anhui may rise further. The
suitable distribution range of single-season rice in the north will extend westwards, and
the scale of rice production in Longnan, Baiyin, Zhangye and Qingyang in Gansu province
will expand further.

Figure 6. Spatial pattern of rice in China under (a) SSP126 in 2035, (b) SSP245 in 2035, (c) SSP 585 in
2035, (d) SSP126 in 2050, (e) SSP245 in 2050 and (f) SSP585 in 2050 scenarios.
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4. Conclusions and Policy Implications

This paper uses the GEE platform to extract the rice distribution in China through
multi-temporal multi-source remote sensing data and analyse the evolution characteristics
of rice distribution in China between 1990 and 2019 using the landscape pattern index and
the centre of gravity model. The study found that the spatial distribution of rice in China is
significantly concentrated in the northeast, Sichuan Basin, Dongting Lake and Poyang Lake
basin areas. The rice distribution focuses on the northeastern and southern parts of China.
In contrast, rice cultivation continues to shrink in Sichuan, Guangdong, Fujian and Yunnan.

Based on a semi-parametric quantile regression model, we found a significant non-
linear relationship between two major climatic factors, cumulative temperature and pre-
cipitation, on the evolution of rice distribution. The positive effect of precipitation on the
spatial distribution of rice has a significant “bimodal” characteristic, i.e., there are two
effective ranges of temperature that can promote the expansion of rice production. The
positive effect of precipitation on the spatial layout of rice production has a significant
threshold, and the effect will increase with the increasing amount of precipitation.

China’s current rice production is mainly concentrated in the middle and lower reaches
of the Yangtze River, the Sichuan Basin, the Three Rivers Plain, etc. The above areas are
located in the range of 800–1700 mm precipitation with abundant rainfall. But with changes
in climatic conditions, the 800–1700 mm precipitation line in China will show a significant
tendency to move northwards. At that time, the scale of rice cultivation in the southern
North China Plain and along the Hexi Corridor may further be increased. Due to climate
change, climatic conditions in traditional rice farming areas may continue to change, and
rice production in conventional rice farming areas may be continuously affected. In contrast,
the climatic environment in non-traditional rice farming areas may become suitable for rice
production.

Therefore, policies to respond to climate change-driven changes in food production
patterns should be actively developed, and different food security strategies should be
developed opportunistically in different regions based on their climatic conditions and
level of socio-economic development. From a global perspective, there is currently a trend
of shifting rice distribution from south to north in China through the expansion of rice in
the north, and the shrinking along the southeast coast. On the other hand, the expansion of
rice production in the north, especially in the northeast, is caused by the changes in climate
conditions. Therefore, in light of the difficult food security supply situation, inter-regional
food production should be developed for local conditions while ensuring a certain rate of
food self-sufficiency and security of the primary food supply. A moderate scale operation
should be promoted in some areas where rice distribution is more concentrated.
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Table A1. CMIP6 model data resource.

Model Name Affiliations Country Resolution (Latitude
× Longitude)

BCC-CSM2-MR Beijing Climate Centre (BCC) China 1.10◦–1.10◦

FGOALS-f3-L
Institute of Atmospheric

Physics, Chinese Academy of
Sciences (IAP, CAS)

China 1.25◦–1.00◦

TaiESM1
Centre for Environmental

Change Research, Academia
Sinica, Taiwan

China 1.25◦–0.94◦

Table A2. Soil organic matter content coefficient.

Type of Soil Outline Soil Organic Matter Content Factor (%)

Leach soil 6.430
Semi-logged soils 3.086
Calcareous soils 3.738

Arid soils 1.547
Desert soil 0.870
Virgin soil 1.596

Half water into earth 2.360
Water into earth 10.582

Saline soils 0.880
Man for the earth 2.096

Alpine soil 4.553
Ferrous bauxite 4.242
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