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Abstract: A detailed investigation of geogenic radon potential (GRP) was carried out near Graiguena-
managh town (County Kilkenny, Ireland) by performing a spatial regression analysis on radon-related
variables to evaluate the exposure of people to natural radiation (i.e., radon, thoron and gamma radia-
tion). The study area includes an offshoot of the Caledonian Leinster Granite, which is locally intruded
into Ordovician metasediments. To model radon release potential at different points, an ordinary least
squared (OLS) regression model was developed in which soil gas radon (SGR) concentrations were
considered as the response value. Proxy variables such as radionuclide concentrations obtained from
airborne radiometric surveys, soil gas permeability, distance from major faults and a digital terrain
model were used as the input predictors. ArcGIS and QGIS software together with XLSTAT statistical
software were used to visualise, analyse and validate the data and models. The proposed GRP models
were validated through diagnostic tests. Empirical Bayesian kriging (EBK) was used to produce the
map of the spatial distribution of predicted GRP values and to estimate the prediction uncertainty.
The methodology described here can be extended for larger areas and the models could be utilised to
estimate the GRPs of other areas where radon-related proxy values are available.

Keywords: geogenic radon potential; geostatistical analysis; radon-related variables; soil gas radon;
airborne radiometric

1. Introduction

Radon is a radioactive gaseous element that can be found in the air, soil, rocks and
water sources. The gas is produced via the decay chain of primordial radionuclides
238U, 232Th and 235U. The most abundant isotopes are 222Rn (from the decay chain of
238U) and 220Rn (from the decay chain of 232Th, known as thoron), which have half-lives
of 3.82 days and 55.6 s, respectively. U and Th are concentrated in accessory minerals
such as orthite, allanite, monazite, zircon, apatite and titanite. Such minerals occur in
a variety of rock types (e.g., granite, metamorphic rocks and placer deposits) [1,2]. The
main source of radon (222Rn) in buildings is the gas flux from soils and rocks that host
uranium/radium and minerals [3]. Additional sources of radon and, particularly, thoron
(thorium-bearing minerals such as the rare earth element phosphate mineral, monazite)
may occur in building materials, and both gases may also be dissolved in water [4–6].
In the soil gas, 220Rn concentrations can be even higher than those of 222Rn [7]. Due to
the shorter half-life, thoron can only migrate a short distance before it decays; therefore,
building materials rather than the soil beneath the house are usually the principal source
of thoron in indoor air [8]. Inhalation of radon’s solid decay products (i.e., 218Po, 214Po,
214Pb, 214Bi) can lead to the accumulation of these alpha emitters in bronchial tissues of
the lung and, subsequently, increase the risk of lung cancer [9]. Thoron may decay almost
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completely in indoor air; however, similar to radon, a radiation dose might arise due to
significant concentrations of its decay products which may still remain in situ [8]. Due to
the adverse health effects of radon which are now well-known [10,11], many European
countries have considered action plans to identify areas where there might be a higher
radon risk [12].

Radon mapping is mainly performed in two methods: (a) based on spatial distribution
of indoor radon measurements and (b) estimation of radon potential based on geogenic
information such as radiometric surveys (terrestrial or airborne), geochemical data (e.g.,
U and Ra content), soil gas radon measurements, soil permeability, faults, etc. [9,13]. For
radon maps prepared based on the spatial distribution of indoor radon concentrations at
a large scale, a relatively dense measurement grid is necessary. In this case, the cost of
measurements might be considerable and the produced map may only have meaning within
the inhabited areas and in standard dwelling conditions (i.e., ground floor rooms, presence
of a basement) [9,14]. As a result of the second approach, a geogenic radon potential map
can be developed that can predict the amount of radon transported from nearby geological
formations to the atmosphere, thus assisting regulators and local authorities in conducting
effective land planning and designing a proper strategy to minimise radon exposure in
the built environment [15]. This can be later used to simulate indoor radon levels for a
standard dwelling based on a soil–indoor transfer factor [16].

In Ireland, the Environmental Protection Agency (EPA) produced a 10 km grid
cell-sized radon map based on the results of indoor radon surveys in approximately
11,000 homes [17]. The accuracy and spatial resolution of the map were later improved
using a logistic regression modelling technique which incorporated both indoor radon
data and four separate geogenic characteristics [15]. Further refinement of the logistic
regression radon map was conducted, resulting in a new map released by the EPA in May
2022. Furthermore, Elio et al. [18] utilised the Tellus airborne geophysical data and subsoil
permeability to produce a geogenic radon potential map of Ireland, which does not rely on
indoor radon data. In this paper, the goal is to develop a geostatistical model to predict the
geogenic radon potential for a high-risk area in southeastern Ireland that is underlain by
granite and metasediments. To accomplish this, airborne radioelement concentrations (i.e.,
eU and eTh), air-absorbed dose rate, distance from the major fault, soil permeability and a
digital terrain model were considered as proxy variables (i.e., predictors). Soil gas radon
concentration was also taken into account as the response value. Then, an ordinary least
squared (OLS) regression model was developed and the significance of each proxy variable
in supporting the proposed model together with the validity of the model was evaluated.
Considering that Tellus airborne radiometric data are available for most of the island of
Ireland, the method introduced here is robust and can be utilised to develop geogenic
radon potential maps with a high spatial resolution for the other parts of the island. The
presented GRP map can be also used as a useful tool for land-use planning and mitigation
strategies adopted by the local administration authorities.

Study Area Description

The study area (Figure 1) includes a surface of about 4 km2 and is located near Graigue-
namanagh, a town in County Kilkenny, Ireland, which has historic and tourist importance.
The soils in the study area are mainly made of granular alluvial deposits (i.e., coarse-
textured gravels and sands) of Barrow valley. The depth of the soil varies from deep soil in
uphill areas to shallower depths near the shores of the Barrow river [19]. The geological
setting of the study area (Figure 2) consists of Caledonian Leinster Granite which, based
on the results of previous studies, is often associated with high radon concentration [20].
Moreover, the Radiological Protection Institute of Ireland (now incorporated into the EPA)
identified some towns in County Kilkenny, including Graiguenamanagh, as areas that may
possess high radon levels [21]. Therefore, this area was selected as the case study to firstly
identify areas where indoor radon concentration is likely to be higher to aim at health risk
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reduction for the inhabitants and secondly, to develop a model for accurate predictions of
soil gas radon based on explanatory data available at a local scale.
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2. Materials and Methods
2.1. Airborne Radiometric Data

Ideally, a GRP estimation is derived from radon soil gas concentrations [22]. An alterna-
tive method to detect radon on the ground is to use airborne gamma spectrometry [18,23]. In
Ireland, there are insufficient SGR data to generate useful radon potential maps. However,
airborne radiometric data provided by the Tellus project are available in a high resolution for
most of Ireland (http://www.tellus.ie, accessed on 30 May 2021). The airborne radiometric
survey was carried out using a low-flying aircraft (flying at 60 m in rural areas and 240 m in
urban areas). The data were recorded by a 256-channel gamma spectrometer (Exploranium
GR820) covering 0.3–3 MeV [24]. They were integrated over flying distances of about 50 m.
Potassium (40K), equivalent uranium (eU, estimated from 214Bi) and equivalent thorium (eTh,
estimated from 208Tl) were measured in these surveys.

As shown in Figure 1, there are gaps between the airborne survey lines. To predict
the radiometric data values for the points located within the gap space, the cubic spline
interpolation method was utilised in QGIS software. This method is best for gently varying
surfaces [25]. Using this method, raster maps of smooth surfaces of radiometric data
(Figures 3–5) were produced and the contour lines were generated using the Contour
Extraction tool. Finally, the eU, eTh and ADRair values corresponding to each SGR test
point location were extracted using the Raster Sampler tool in QGIS. Note: the raw and
processed data are made available in Appendix A.
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2.2. Soil Gas Radon and Soil Gas Permeability Test

Soil gas radon activity concentrations were measured at 40 measuring sites (see
Figure 1 for the location of data points, also note that the raw and processed data are made
available in Appendix A) by using a Radon detector RM-2 in March 2020. Additionally,
the permeability of soil was determined at each measuring point using RADON-JOK
equipment. The theory of calculating permeability using the RADON-JOK instrument is
derived from Darcy’s equation:·

Q = F·(km)·Dp, rearrangedask = (Q·m)/(F·Dp) (1)

where Q is the instantaneous flow rate, k is permeability, µ is the dynamic viscosity of the
fluid, F is the friction factor and ∆p is the pressure drop.

To estimate permeability at selected sites, first, the time required for pumping 2 L of
air from the soil (employing negative pressure mechanically created by RADON-JOK) was
recorded and depending on the time spent, the soil gas permeability was calculated. In
the second step, the soil gas sample was collected from a depth of 80 cm through a hollow
steel rod using a plastic 150 mL volume syringe and transferred to an evacuated ionisation
chamber. After a time delay of 15 min, the chamber was introduced to the detector and the
concentration of radon was measured based on the number of alpha counts that give rise to
the ionisation current in the ionisation chamber [26]. Both SGR (kBq m−3) and permeability
values (m2) were georeferenced and introduced into ArcGIS version 10.5 software. Spatial
variability of the measured parameters was processed to generate a contour map of SGR
using the ordinary kriging method, which is a geostatistical interpolator that uses randomly
distributed measured data to predict values at the unsampled locations [13]. The produced
contour map of the measured soil gas radon (SGR) is shown in Figure 6.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 6 of 17 
 

 

2.2. Soil Gas Radon and Soil Gas Permeability Test 
Soil gas radon activity concentrations were measured at 40 measuring sites (see Fig-

ure 1 for the location of data points, also note that the raw and processed data are made 
available in Appendix A) by using a Radon detector RM-2 in March 2020. Additionally, 
the permeability of soil was determined at each measuring point using RADON-JOK 
equipment. The theory of calculating permeability using the RADON-JOK instrument is 
derived from Darcy’s equation: 

     Q = F. km . Dp, rearranged as k = Q. m / F. Dp ? (1)

where Q is the instantaneous flow rate, k is permeability, μ is the dynamic viscosity of the 
fluid, F is the friction factor and Δp is the pressure drop. 

To estimate permeability at selected sites, first, the time required for pumping 2 L of 
air from the soil (employing negative pressure mechanically created by RADON-JOK) 
was recorded and depending on the time spent, the soil gas permeability was calculated. 
In the second step, the soil gas sample was collected from a depth of 80 cm through a 
hollow steel rod using a plastic 150 mL volume syringe and transferred to an evacuated 
ionisation chamber. After a time delay of 15 min, the chamber was introduced to the de-
tector and the concentration of radon was measured based on the number of alpha counts 
that give rise to the ionisation current in the ionisation chamber [26]. Both SGR (kBq m−3) 
and permeability values (m2) were georeferenced and introduced into ArcGIS version 10.5 
software. Spatial variability of the measured parameters was processed to generate a con-
tour map of SGR using the ordinary kriging method, which is a geostatistical interpolator 
that uses randomly distributed measured data to predict values at the unsampled loca-
tions [13]. The produced contour map of the measured soil gas radon (SGR) is shown in 
Figure 6. 

 
Figure 6. Contour map of measured soil gas radon (SGR) activities. Figure 6. Contour map of measured soil gas radon (SGR) activities.



Int. J. Environ. Res. Public Health 2022, 19, 15910 7 of 17

2.3. Distance from Fault Lines

The presence of geologic faults increases radon levels on the ground by providing
favourable pathways from the source uranium-rich bedrock units to the surface. Generally,
a distance less than 150 m from a major fault may have a higher influence on the anoma-
lous increase in radon potential [27]. On the other hand, the alteration of magmatic and
crystalline rocks along the non-active faults may increase the ratio of clay minerals, which
decreases the permeability and the radon potential [28]. Therefore, the presence of tectonics
may not essentially increase the radon potential. As can be seen in Figure 2, there is a fault
structure with NW–SE orientation in the study area. To evaluate the effect of distance from
a fault on soil gas radon variations, the distance of each SGR test point from the fault line
was calculated for each point. To achieve this, the vectorised tectonic structure map (scale
1:100,000) (https://www.gsi.ie/, accessed on 30 May 2021) served as an input for QGIS
software. Then, distance calculations were performed using the QGIS’s Nearest Neighbour
Join (NNjoin) Plugin.

2.4. Geostatistical Model Setting and Diagnostic Tests

The map of the geogenic radon potential was elaborated using a spatial regression
model, which allows for providing accurate predictions of non-stationary data on a local
level. The raw soil gas radon data, as an indicator of geogenic radon potential, was
considered as the response value of the model and some effective parameters (airborne
radioelement concentrations of eU and eTh, air-absorbed dose rate, distance from the major
fault, soil permeability and a digital terrain model) as the inputs to the model.

To evaluate relationships between predictors and the response variable, ordinary least
squared (OLS) regression was used. OLS is the commonly utilised regression technique for
the geostatistical modelling of radon potential [9]. It is also a starting point for all spatial
regression analyses. Equation (2) presents the linear function of the repressors which can
predict the response variable based on explanatory variables.

y = b0 + b1X1 + b2X2 + ... + bnXn + e (2)

where y is the dependent variable predicted, Xi are the explanatory variables and bi are
the coefficients computed by the regression tool, representing the strength and type of
relationship between x and y, and ε are the residuals, i.e., the unexplained portion of
the dependent variables. In this study, equivalent uranium (eU), equivalent thorium
(eTh), gas permeability (LogP), digital terrain model (DTM), distance from fault line (FD)
and air-absorbed dose rate (ADRair) were considered as predictor variables for the GRP
model while considering soil gas radon (SGR) concentrations as the response variable.
The predictor variables in this study are selected based on the explanatory variables
investigated in similar research [9,13]. To evaluate the OLS model’s validity, the variance
analysis and the statistical diagnostic tests of multicollinearity (by measuring Variance
Inflation Factor (VIF) [29]), heteroscedasticity (Breusch–Pagan and White tests [30,31]) and
spatial autocorrelation (Durbin–Watson test [32]) were performed.

Additionally, the adjusted R2 value, which is a coefficient indicating how much vari-
ation in a dependent variable’s values is explained by a set of explanatory variables, has
been examined. A properly specified OLS model (i.e., errors are normal, homoscedastic and
independent of the repressors and the linear specification of the model is correct) should
meet the following requirements [9]: (a) an adjusted R2 of 0.50 or higher; (b) significance of
the β coefficients (p-values that are less than 0.05); (c) a VIF of less than 7.5; (d) a Jarque–Bera
statistics for normality test (p-value greater than 0.10); and (e) a spatial autocorrelation test
(p-value greater than 0.10). These statistical parameters were calculated and analysed for
the proposed OLS model by running the XLSTAT add-on within Microsoft Excel [33]. Note:
the results of analytical and diagnostic tests are made available in Appendix A.

https://www.gsi.ie/
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3. Results
3.1. Preliminary Statistics

The descriptive statistics of measured soil gas radon (SGR) concentrations and ex-
tracted equivalent uranium (eU) and equivalent thorium (eTh) activities together with
air-absorbed dose rates (ADRair) are reported in Table 1. The Shapiro–Wilk test [34] was
also applied at a statistically significant level of 0.05 to test the normality of the distribution
of radiometric data. As can be understood from Table 1, the extracted eTh values show a
normal distribution; however, the eU, SGR and ADRair elements did not have a normal
distribution. Hence, the study area can probably be considered a natural uranium geo-
chemical abnormal area. Furthermore, both air-absorbed dose rates and soil gas radon
concentrations are directly correlated with equivalent uranium activity, which can justify
the non-normality of these datasets’ distributions. For more detailed results, please see
Appendix A.

Table 1. Descriptive statistics of extracted airborne radiometric data and soil gas radon concentrations.

Statistic eU
(ppm)

eTh
(ppm)

ADRair
(nGy h−1)

SGR
(kBq m−3)

Number of data 40
Minimum 2.42 7.53 124.81 5.60
Maximum 17.37 13.54 214.45 236.00

1st Quartile 4.44 8.60 150.62 57.90
Median 4.94 9.61 154.65 74.30

3rd Quartile 5.47 10.38 159.83 109.25
Mean 5.39 9.63 154.70 87.96

Standard deviation 2.25 1.26 14.14 49.34
Skewness (Pearson) 3.78 0.64 1.50 0.88
Kurtosis (Pearson) 17.44 0.54 6.29 0.64
Geometric mean 5.10 9.55 154.09 71.95

Geometric standard deviation 1.36 1.14 1.09 2.10

Shapiro–Wilk test (W)
0.62 0.96 0.85 0.94

Reject normality
(p < 0.0001)

Normal distribution
(p = 0.22)

Reject normality
(p < 0.0001)

Reject normality
(p = 0.04)

SGR values ranged between 6 kBq m−3 and 236 kBq m−3 with a mean value of
88 kBq m−3 which is a significantly high value even for an area with a granitic bedrock.
The equivalent activity of uranium and thorium ranged from 2.42 to 17.37 ppm and from
7.53 to 13.54 ppm, respectively. The calculated mean value of eU (5.39 ppm) is slightly
higher than the average value of uranium in U- and Th-enriched granitic rocks (5ppm for
U and 15 ppm for Th [35]). However, the mean calculated eTh (9.63 ppm) was considerably
lower than the average Th content in the granite rocks. The mean air-absorbed dose rate
measured for the study area is almost 2.5 times the population-weighted average absorbed
dose rate of 60 nGyh−1 in outdoor air from terrestrial gamma radiation [36]. Comparing
the contour maps of eU and air-absorbed dose rates (Figures 3 and 5, respectively), it can
be understood that high dose rates occurred in the areas where eU concentrations are high.
This means that uranium anomalies present in the area (northern and central south sectors)
may be responsible for higher dose rate values.

3.2. Analysis of the OLS Model

In this study, ordinary least squares regression was used to investigate the mathemati-
cal relationship between predictors and the response variable. Equation (3) represents the
resulting OLS regression equation.

SGR (kBq·m−3) = 78.81 − 0.15 (DTM) − 2.87 E − 02 (DF) + 12.53 (eU) + 0.53 (ADRair) + 11.31 (eTh) + 18.39 (Log P) (3)
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where SGR = soil gas radon concentration (kBq m−3), ADRair = air-absorbed dose rate
(nGyh−1), Log P = permeability of the soil (m2), eTh = equivalent content of thorium
(ppm), DTM = digital terrain model (m a.s.l.), DF = distance from the major fault (m) and
eU = equivalent content of uranium (ppm).

To avoid using variables that may cause instability in the model, multicollinearity
was tested through the Variance Inflation Factor (VIF) statistic before setting the regression
model. As shown in Table 2, the VIF value did not exceed the recommended value of 7.5 for
any of the explanatory variables. The result of the regression model analysis (Table 2) states
that the variables eU, eTh and Log P bring a significant amount of information to explain
the variability in the dependent variable (SGR). However, the variables DTM, DF and
ADRair are not consistently significant. Figure 7 shows the chart of standardised regression
coefficients of the model. The chart allows us to directly compare the relative influence
of the explanatory variables on the dependent variable and their significance. The higher
the absolute value of a coefficient, the more important the relative influence of a variable
is. It can be concluded that among the significant variables, Log P and eU are the most
influential ones. This can be explained by the fact that these two parameters mainly control
the source of radon (as uranium is the parent of radon) and also the mobility of the gas
toward the surface, therefore having influence was anticipated for them. For more detailed
results, please see Appendix A.

Table 2. Main statistics of the coefficients of the explanatory variables for the OLS model.

Source Coefficient SE t Pr > |t| VIF

Intercept 78.81 131.03 0.60 0.55 -
DTM −0.15 0.13 −1.18 0.25 1.44

DF −0.03 0.03 −1.09 0.28 1.55
eU 12.53 4.77 2.63 0.01 * 4.60

ADRair 0.53 0.79 0.67 0.51 5.01
eTh 11.31 5.46 2.07 0.05 * 1.88

Log P 18.39 6.32 2.91 0.01 * 1.02
* Statistically significant.
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3.3. Validity of the Model

Table 3 summarises the results of diagnostic tests performed for the proposed OLS
regression model. Given the p-value (<0.0001) of the F statistic computed by Fisher’s test,
and given the significance level of 5%, the information brought by the explanatory variables
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is significantly better than what a basic mean would bring. Given the adjusted R2, it can
be concluded that the proposed model explains approximately 60% of the variation in the
dependent variable (SGR). The chart in Figure 8 visualises the correlation between the
measured SGR and predicted values, the regression line (the fitted model R2 = 0.66), and
two 95% confidence intervals (i.e., given the assumptions of the linear regression model,
residuals should be normally distributed, meaning that 95% of the residuals should be in
the interval (−1.96, 1.96)). All values outside this interval are potential outliers. As can
be seen in Figure 8, no potential outlier value was identified among the measured SGR
values. Moreover, the Jarque–Bera statistics value is not significant, which indicates that
the residuals follow a normal distribution.

Table 3. Descriptive statistics of extracted airborne radiometric.

Parameter Value p-Value

Observations 40
R2 0.66

Adjusted R2 0.60
AICs 282.63

Fisher’s F test 10.72 (DoF = 6) <0.0001
Durbin–Watson test (DW) 2.31 0.50
Breusch–Pagan test (LM) 5.95 0.43

White test (LM) 26.97 0.47
Jarque–Bera test 3.06 0.22
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The Durbin–Watson test is a measure of autocorrelation (also called serial correlation)
in residuals from regression analysis; the null hypothesis is no spatial correlation. As the
computed p-value for this test is greater than the significance level alpha = 0.05, one cannot
reject the null hypothesis. Furthermore, the Breusch–Pagan and White tests are used to
test heteroscedasticity. As the calculated p-values of these two tests are greater than the
significance level alpha = 0.05, it can be concluded that residuals are homoscedastic. The
above-mentioned diagnostic test results demonstrate that the basic assumptions underlying
the OLS regression analysis have not been violated. For more detailed results, please see
Appendix A.

3.4. Geogenic Radon Potential Mapping

In the previous sections, the relationship between radon-related variables and the soil
gas radon concentration was obtained. The geogenic radon potential (i.e., the quantity of
radon directly related to the local geology) is defined as the soil gas radon values predicted
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based on the regression equation which calculates SGR solely based on predictor variables.
To produce the map of the spatial distribution of GRP for the study area, the empirical
Bayesian kriging (EBK), an automatic geostatistical interpolator, was used in ArcGIS version
10.5 software. This tool creates prediction surfaces based on restricted maximum likelihood
estimation. Additionally, it allows for analysis of the uncertainty in the semivariogram
model by a process of data sub-setting and simulation to estimate a range of semivariogram
models [37].

In this study, the EBK was employed for three purposes: (a) for cross-validation of
the results, (b) to create a GRP prediction surface and (c) to estimate the error of predicted
values. Table 4 shows the results of cross-validation of the predicted values (i.e., the
geogenic radon potential) and measured SGR activities. According to this table, the mean
prediction error (ME = 1.98) and the mean standardised error (MSE = 0.035) are close to
zero, indicating that the interpolation method is unbiased (centred on the true values) and
the model is accurate; the average standard error (SE = 50.68) is higher than the root mean
squared prediction error (RMSE = 48.38), suggesting that the interpolation method slightly
overestimates the variability in the predictions [13].

The GRP surface predicted based on the soil gas radon concentrations is shown in
Figure 9, along with its corresponding predicted standard error surface, which illustrates
the amount of uncertainty associated with the predicted SGR value. As shown in Figure 9,
high GRP values (>85 kBq m−3) can be found in the eastern and northwestern sectors of
the study area. Just for the southwestern part, the GRP is in the low range (50 kBq m−3)
and the remaining parts are characterised by medium GRP levels (50 to 85 kBq m−3). The
uncertainty in GRP prediction shown in Figure 10 is generally in the low to medium range
(less than 35 kBq m−3); however, for areas along the borders of the study area, rather high
values (up to 52 kBq m−3) can be predicted. A possible source of error in those areas would
be an insufficient number of SGR test points that occurred due to sampling limitations (i.e.,
presence of saturated soil and improper site access).
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Table 4. Discus: Results of executing Cross-validation using Empirical Bayesian Kriging.

Parameter Value

Count 40
Mean Error 1.98

Root Mean Square Error 48.38
Average Standard Error 50.69

Mean Standardised Error 0.035
Root Mean Square Standardised Error 0.96

3.5. Comparison of Predicted Radon Potentials with Neznal’s Radon Index

To better understand and further investigate the geogenic radon potential of the study
area, the radon potential predicted based on spatial regression in the previous section was
compared with a radon index (RI) calculated based on the Neznal method [26]. The radon
index [26] was formulated as follows:

RP = (CSGR − 1)/(− log k − 10) (4)

where the unit of CSGR (soil gas radon concentration) is (KBq m−3). K (m2) is the perme-
ability of the soil. The calculated RP (radon potential) enables the determination of RI as
low, medium or high (if RP < 10, then RI is low; if 10 ≤ RP < 35, then RI is medium; if
35 ≤ RP, then RI is high). A summary of the results of radon potential categorisation based
on the Neznal method is presented in Table 5.

According to the histogram of the Neznal categorisation index (Table 5 and Figure 11),
only 7.5% of calculated RIs show a low radon index category, 32.5% at the medium range
and 60.0% at the high level. This confirms that the area under investigation is a high-radon-
risk area.
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Table 5. Summary of the results of radon potential categorisation based on the Neznal method.

Summary Statistics

Variable Observations Minimum Maximum Mean Std. Deviation

RP 40 2.21 166.63 54.19 39.56

Descriptive Statistics for the Intervals (RP)

RI
RP

Frequency Relative
frequency

Density (Data) Density
(Distribution)Lower bound Upper bound

Low 2 10 3 0.075 0.009 0.038

Medium 10 35 13 0.325 0.013 0.182

High
35 70 11 0.275 0.008 0.341

70 140 12 0.300 0.004 0.330

140 170 1 0.025 0.001 0.013
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tial in Figure 9, areas with high geogenic radon risk are located within the northwest and 
southeastern confines of the study area. Although among the scientific society, Neznal’s 
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Figure 12 shows the distribution of calculated radon index values produced using the
nearest neighbour interpolation method. Similar to the map of predicted radon potential
in Figure 9, areas with high geogenic radon risk are located within the northwest and
southeastern confines of the study area. Although among the scientific society, Neznal’s
method has been proven to be an acceptable approach to formulate the radon potential,
it is based on soil gas radon concentrations and permeability alone. Here, we apply a
well-recognised and robust spatial regression model where a set of effective parameters
are introduced as inputs to map radon potential [13]. We see the two approaches as
complementary in nature, with the advantage that the spatial regression model includes a
greater number of variables to define areas of geogenic radon potential.
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4. Discussion

A set of radiometric data and geogenic parameters together with soil gas radon and
permeability measurements were used to model the geogenic radon potential of a granitic
area. The proposed model was successful in explaining 60 percent of the variations in the
soil gas radon. It is suggested that considering other radon-affecting factors in the OLS
model would help to increase the goodness of the prediction. Other radon-affecting factors
mainly include soil type, grain size, water content and porosity [38]. In this research, due
to the lack of information about additional parameters (at least on a local scale), we were
not able to fully consider their effects.

Rainfall and precipitation are among the important events that can change near-surface
environmental gamma rates by affecting radon progenies 214Pb and 214Bi [39]. Furthermore,
water accumulation in the surface soil may act as a shield and prevents radon emission. The
accumulation of radon in a stable boundary layer can also have a considerable influence
on gamma levels [40]. Moreover, hydrological movement at sites with high radon fluxes
may represent a source of false alarms regarding radioactivity levels [41]. As mentioned
in Section 2.1, the equivalent uranium concentrations measured in the frame of the Tellus
project are estimated from the 214Bi photoelectric peak. Knowing the fact that rainfall events,
precipitation or other meteorological parameters can highly affect the detection results
of airborne gamma-ray spectrometry, and also considering that Ireland is a country in
which rainfall and precipitation are frequent and soils can be saturated during wet seasons,
it would be necessary to perform radon background correction for airborne gamma-ray
spectrometry results to improve the accuracy of measurement and avoid false estimates of
radon anomalies [42].

5. Conclusions

Tellus airborne radiometric data provide valuable information about natural radioac-
tivity (gamma radiation) of near-surface rocks and soils using a gamma-ray spectrometer.
The data have many applications in environmental monitoring and geological mapping. As
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an example, the estimated natural radionuclide concentration of uranium, thorium and also
the air-absorbed dose rate can be used as an indicator of the presence of a radon (including
thoron) source. In this research, to prepare a geogenic radon potential map, radiometric
data were used in combination with geogenic factors which account for radon mobility
and transport from the source to the ground level. Airborne radioelement concentrations
(i.e., eU and eTh), air-absorbed dose rate, distance from the major fault, soil permeability
and a digital terrain model were assumed as the main predictors and soil gas radon was
considered as the response value of an ordinary least squares regression model. Through
diagnostic tests, the validity of the developed model was evaluated. At the later stage,
empirical Bayesian kriging, an interpolator tool, was used to produce the geogenic radon
potential maps and estimate the uncertainty of predictions. The method introduced here
can be considered a promising tool to produce GRP maps for other regions, especially
in Ireland. Moreover, it is possible to improve the model by considering the effect of
additional parameters (e.g., water content of the soil) for which there are valuable literature
data in Irish databases. For this research, it was not possible to integrate this information
as the selected study area was relatively small, making it incompatible with the resolution
of the data. Finally, according to the standardised regression coefficients of the explanatory
variables (Figure 7), permeability was found to be the second most effective parameter
in predicting soil gas radon activity; hence, it strongly affects GRP levels. As observed
here, the soil permeability can be very spatially variable even for intervals of tens of meters.
Therefore, it is suggested to use data on in situ permeability measurements rather than
indirect estimations for radon mapping purposes.
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Mirsina Mousavi Aghdam. (2022). Supplementary data—Detailed Geogenic Radon
Potential Mapping Using Geospatial Analysis of Multiple Geo-variables. A Case Study
from a High-Risk Area in SE Ireland. [Data set]. Zenodo. https://doi.org/10.5281/zenodo.
7215082, accessed on 30 July 2022.
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http://doi.org/10.1016/j.apradiso.2005.03.008
http://www.ncbi.nlm.nih.gov/pubmed/15921915
http://doi.org/10.1029/92RG00055
http://doi.org/10.1016/j.conbuildmat.2020.118377
http://doi.org/10.1016/j.jenvrad.2013.08.006
http://doi.org/10.3390/ijerph18052709
http://www.ncbi.nlm.nih.gov/pubmed/33800209
http://doi.org/10.1371/journal.pone.0253463
http://doi.org/10.1016/j.jenvrad.2016.05.010
http://www.ncbi.nlm.nih.gov/pubmed/27241368
http://doi.org/10.1016/j.envint.2020.106285
http://doi.org/10.3390/su141710505
http://doi.org/10.1093/rpd/ncu244
http://doi.org/10.1016/j.scitotenv.2019.01.146
http://www.ncbi.nlm.nih.gov/pubmed/30677690
http://doi.org/10.1088/0952-4746/33/1/51
http://doi.org/10.1016/j.scitotenv.2017.05.071
http://doi.org/10.1093/rpd/ncr052
http://www.ncbi.nlm.nih.gov/pubmed/21460368
http://doi.org/10.35815/radon.v1.4358
http://doi.org/10.1016/0048-9697(85)90233-5
http://www.ncbi.nlm.nih.gov/pubmed/4081730
http://doi.org/10.1016/j.jenvrad.2016.06.007
http://www.ncbi.nlm.nih.gov/pubmed/27343029
http://doi.org/10.1016/j.jenvrad.2016.04.006
http://www.ncbi.nlm.nih.gov/pubmed/27105766
http://doi.org/10.2307/j.ctt1g69w6r.7
http://doi.org/10.1016/0898-1221(88)90255-6
http://doi.org/10.1016/j.jenvrad.2015.10.023
http://www.ncbi.nlm.nih.gov/pubmed/26630035


Int. J. Environ. Res. Public Health 2022, 19, 15910 17 of 17

29. Kleinbaum, D.; Kupper, L.L.; Muller, K.; Nizam, A. Dummy variables in regression. In Applied Regression Analysis and Other
Multivariable Methods; Cole Publishing Co.: Pacific Grove, CA, USA, 1998.

30. Breusch, T.S.; Pagan, A.R. A Simple Test for Heteroscedasticity and Random Coefficient Variation. Econometrica 1979, 47, 1287–1294.
[CrossRef]

31. White, H. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econometrica
1980, 48, 817–838. [CrossRef]

32. Durbin, J.; Watson, G.S. Testing for Serial Correlation in Least Squares Regression. III. Biometrika 1971, 58, 409–428. [CrossRef]
33. Addinsoft. XLSTAT Statistical and Data Analysis Solutions; Addinsoft: Long Island, NY, USA, 2019.
34. Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [CrossRef]
35. Tzortzis, M.; Tsertos, C. Determination of thorium, uranium and potassium elemental concentrations in surface soils in Cyprus.

J. Environ. Radioact. 2004, 77, 325–338. [CrossRef]
36. UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). Sources and Effects of Ionizing Radation

Annex B, Exposures from Natural Radiation Sources; United Nations Scientific Committee on the Effects of Atomic Radiation: Vienna,
Austria, 2000.

37. Krivoruchko, K. Empirical Bayesian Kriging Implemented in ArcGIS Geostatistical Analyst; Elsevier: Amsterdam, The Netherlands, 2012.
38. Manohar, S.; Meijer, H.; Herber, M. Radon flux maps for the Netherlands and Europe using terrestrial gamma radiation derived

from soil radionuclides. Atmos. Environ. 2013, 81, 399–412. [CrossRef]
39. Melintescu, A.; Chambers, S.; Crawford, J.; Williams, A.; Zorila, B.; Galeriu, D. Radon-222 related influence on ambient gamma

dose. J. Environ. Radioact. 2018, 189, 67–78. [CrossRef]
40. Mercier, J.-F.; Tracy, B.; D’Amours, R.; Chagnon, F.; Hoffman, I.; Korpach, E.; Johnson, S.; Ungar, R. Increased environmental

gamma-ray dose rate during precipitation: A strong correlation with contributing air mass. J. Environ. Radioact. 2009, 100, 527–533.
[CrossRef]

41. Voltaggio, M. Radon progeny in hydrometeors at the earth’s surface. Radiat. Prot. Dosim. 2011, 150, 334–341. [CrossRef]
42. Zeng, C.; Lai, W.; Feng, X.; Fan, C.; Wu, J.; Gu, R. Overview of Radon Background Correction Technology for Airborne Gamma

Spectrometry. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 281. [CrossRef]

http://doi.org/10.2307/1911963
http://doi.org/10.2307/1912934
http://doi.org/10.2307/2334313
http://doi.org/10.1093/biomet/52.3-4.591
http://doi.org/10.1016/j.jenvrad.2004.03.014
http://doi.org/10.1016/j.atmosenv.2013.09.005
http://doi.org/10.1016/j.jenvrad.2018.03.012
http://doi.org/10.1016/j.jenvrad.2009.03.002
http://doi.org/10.1093/rpd/ncr402
http://doi.org/10.1088/1755-1315/281/1/012002

	Introduction 
	Materials and Methods 
	Airborne Radiometric Data 
	Soil Gas Radon and Soil Gas Permeability Test 
	Distance from Fault Lines 
	Geostatistical Model Setting and Diagnostic Tests 

	Results 
	Preliminary Statistics 
	Analysis of the OLS Model 
	Validity of the Model 
	Geogenic Radon Potential Mapping 
	Comparison of Predicted Radon Potentials with Neznal’s Radon Index 

	Discussion 
	Conclusions 
	Appendix A
	References

