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Abstract: In this study, the catalytic effects of desulfurized fly ash (DFA) on the gaseous products
of sawdust (SD) pyrolysis were investigated in a tubular furnace. The results indicated that DFA
catalyzed the process of SD decomposition to improve the hydrogen content and the calorific value
of pyrolysis gas. As to its effect on pyrolysis products, DFA increased the non-oxide content of CH4,
C3H4, and H2 in pyrolysis gas by 1.4-, 1.8-, and 2.3-fold, respectively. Meanwhile, the catalytic effect
of DFA reduced the CO and CO2 yields during DFA/SD pyrolysis. Based on the model compound
method, CaSO3 and Ca(OH)2 in DFA was proved to have quite different catalytic effects on pyrolysis
gas components. Ca(OH)2 accelerated the formation of CH4 and H2 through the cracking of methoxyl
during lignin and cellulose degradation, while CaSO3 favored the generation of CO and CO2 due
to the carbonyl and carboxyl of lignin in SD. CaSO3 also catalyzed SD pyrolysis to promote the
C3H4 yield in pyrolysis gas. Overall, the catalytic pyrolysis of SD with DFA yielded negative-carbon
emission, which upgraded the quality of the pyrolysis gas.

Keywords: pyrolysis; catalytic; sawdust; desulfurized fly ash; pyrolysis gas upgrading

1. Introduction

In recent decades, the availability of biomass as a carbon-neutral energy source has
drawn more concerns than ever due to the challenges of greenhouse gas emissions and
environmental pollution [1,2]. Pyrolysis is one of the promising technologies in biomass
conversion research [3]. Low-temperature pyrolysis is a type of thermochemical process
occurring under 600 ◦C that converts biomass into pyrolysis gas, pyrolytic water, bio-oil,
and semi-coke [4]. In general, pyrolysis gas and bio-oil derived from the process often
possess a high oxygen content and low calorific value [5,6]. As a result, the main purpose
of the catalysts in the pyrolysis process focused on increasing the yield and improving
the quality of the target products [7]. Many studies documented the catalyst of alkaline
soil considerably improving the production and quality of pyrolysis gas during biomass
pyrolysis [8,9]. Bingbing Qiu et al. [10] revealed that AAEMs (alkali and alkaline soil metals)
significantly promoted the decomposition of biomass and boosted the volatile fraction yield.
Moreover, AAEMs accelerated the pyrolysis gas generation and decreased the semi-coke
yield during biomass gasification, according to a study by Lei Deng et al. [11]. AAEMs as
catalysts also regulated the biomass pyrolysis process to increase the hydrogen yield [12].
Hao Song et al. [13] further summarized the key factors affecting hydrogen production
from biomass pyrolysis. It indicated that calcium-based catalysts had a significant impact
on increasing the hydrogen yield and inhibiting the formation of CO2. However, catalysts
can rarely be effectively recovered during the catalytic pyrolysis of biomass [14,15]. As a
result, AAEMs-loaded catalysts were limited in the application of the efficient conversion
of biomass.

Desulfurized fly ash (DFA) is a byproduct derived from the tail gas purification of
coal burning, which is composed of about 85% CaSO3 and Ca(OH)2 [16]. China generated
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130 million tons of DFA in 2019. Most of the DFA was converted into low-value desulfurized
gypsum [17,18]. Therefore, a large amount of DFA is currently deposited in the open air,
which has seriously harmed the environment [19]. DFA as a type of industrial solid waste,
with small particles and a large surface area [20]. However, CaSO3 can decompose at
temperatures above 650 ◦C [21], which hampers the use of DFA as a catalyst in the technical
method of biomass gasification [22].

In this study, DFA was utilized for the catalytic pyrolysis of SD below 600 ◦C. Pyrolysis
experiments were used to investigate the impact of DFA additives on the distribution of
pyrolytic products. The effect of DFA catalysis on the yield and quality of pyrolysis gas
derived from SD pyrolysis was further analyzed by model compounds.

2. Materials and Methods
2.1. Materials and Characterization

In this study, desulfurized fly ash (DFA) was obtained from Anshan Steel II power
generation, and wood chips (SD) were collected from fast-growing poplar in Liaoning
Province, China. The samples of SD and DFA were dried at 105 ◦C for 8 h and then crushed
to less than 0.178 mm. The cellulose content of SD (23.68% ± 0.05) was determined by the
Van Soest method [23]. Microcrystalline cellulose (MCC) with a particle size of 20–100 µm
and a polymerization of 3000–10,000 glucose units was chosen as a model compound for the
pyrolysis experiments. Anhydrous calcium sulfite (AR grade) was also selected as a model
compound. Ultimate analyses were determined using a Macro Cube (Elementar; Berlin,
Germany). The proximate and ultimate analyses of SD and MCC are shown in Table 1.

Table 1. Proximate and ultimate analysis results of SD.

Proximate Analysis (wt.%) Ultimate Analysis (wt%, daf)

Moisture (ad 1) 4.22 C 48.44
Ash (d 1) 0.75 H 6.14

Volatile Matter (daf 1) 75.85 N 0.69
Fixed Carbon (daf) 19.18 S 0.09

– – O 2 44.64
1 ad = air dried basis; d = dry basis; daf = dry and ash free basis. 2 Calculated by difference.

Approximately 4 g of the DFA sample was fed into an X-ray fluorescence spectrometer
for qualitative and semi-quantitative analysis. The angular reproducibility of the Shimadzu
XRF-1800 equipment was 0.0001◦, and the analytical diameter was ≥500 µm. The accuracy
of the elemental content determination was 0.0001 wt.%. The XRF results for DFA are listed
in Table 2. It is shown that the DFA has a high Ca and S content, with 58.54% and 21.24% of
its total weight occurring in the form of CaO and SO3, respectively. In addition, the DFA
sample also contains small quantities of Fe, Mg, Si, Al, Na, and K.

Table 2. XRF results of DFA (wt.%).

Sample Content (%) Sample Content (%)

CaO 58.54 Cl 1.65
SO3 21.24 F 1.20
SiO2 7.77 TiO2 0.36

Al2O3 3.80 K2O 0.31
MgO 2.66 Na2O 0.18
Fe2O3 2.16 – –

2.2. Pyrolysis Experiment

The catalytic pyrolysis experiments for SD and DFA were performed in a tube furnace,
as illustrated in Figure 1. The experimental method was introduced in our previous
work [24]. SD and DFA were mixed according to the mass ratio as the test samples, and
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about 7 g of the mixed specimens were weighed and placed in a quartz tube reactor. Next,
the specimens were heated from room temperature to 600 ◦C at 5 ◦C/min and then held for
15 min. The reaction tube and liquid phase condensation collector were weighed again after
the reactor was cooled. The difference between the weight of the quartz tube reactor and
the condensation collector before and after the experiment was then calculated to obtain the
yield of pyrolysis semi-coke and pyrolysis liquid phase products, respectively. Pyrolysis
gas was collected using a gas bag, and its volume (V) was finally determined using the
drainage method. The relative content (Si) of each component (Vi) in the pyrolysis gas was
determined by gas chromatography (GC). The calculated method of each component is
shown in Equation (1), where i is component of pyrolysis gas.

Vi = Si · V (1)
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Figure 1. Schematic diagram of the pyrolysis apparatus. 1. heating control; 2. temperature regulation;
3. bolt electric heaters; 4. thermocouple; 5. samples; 6. tubular reactor; 7. asbestos wool; 8. plain bend;
9. gas bag; 10. condenser; 11. ice bath.

2.3. Thermogravimetric Analysis

A TG-DTA/DSC (Setaram, France) thermogravimetric analyzer was used to investi-
gate the pyrolysis characteristics of SD and DFA. About 30 mg of the samples were taken
into the thermogravimetric analyzer. Then, the sample was placed in a thermogravimet-
ric balance. High purity nitrogen was introduced as a protective gas at a purging rate
of 20 mL/min. The sample was heated from room temperature of 30 ◦C to 900 ◦C at a
temperature increase rate of 10 ◦C/min. The experimental results are shown in Figure 2.

2.4. Gas Chromatography Experiment

The pyrolysis gas components were detected using a GC 126 (INESA Instrument
Co., Shanghai, China) gas chromatography mass spectrometer, equipped with a flame
ionization detector and a thermal conductivity detector. The pyrolysis gas derived from
the pyrolysis experiment was passed to GC 126 at a rate of 30–50 mL/min to determine the
main components (H2, CH4, CO, CO2, and C2−C4 hydrocarbons).
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3. Results
3.1. TG Analysis of SD and DFA

The thermal weight loss (TG) and thermal weight loss rate (DTG) curves of SD and
DFA are illustrated in Figure 2. The thermal decomposition of SD consists of three stages,
in accordance with temperature variation. The SD sample loses free water in the first stage,
from room temperature to 140 ◦C. The second stage is within the scope of 140 ◦C–410 ◦C,
and comprises two periods. The DTG of the initial period (140 ◦C–210 ◦C) varies slightly.
When the temperature exceeds 220 ◦C, the DTG of SD grows rapidly. The maximum
DTG is 0.900%/min in this stage. When the temperature exceeds 410 ◦C, the SD sample
initiates carbonization in the third stage. The rate of sample mass loss slows down and the
temperature influence declines due to weight loss. After the temperature exceeds 550 ◦C,
the thermal decomposition of SD is basically complete. As shown in Figure 2, the DTG
curve of DFA consists of four stages. The release of extraneous water in DFA and the
removal of crystalline water from the dehydration reaction of CaSO3–0.5H2O occurs in
the first stage (<200 ◦C). This results in a weight loss of 2.5% of the DFA sample. In the
second stage, the TG is about 7.5% due to the decomposition reaction of Ca(OH)2 in DFA.
The maximum DTG of the second stage is 0.0704%/min and eventuates at 400 ◦C. Because
of CaCO3 decomposition to release CO2, the thermal decomposition of DFA presents the
maximal DTG (0.163%/min, 660 ◦C), and the TG is 14.59% in the third stage (530 ◦C–
740 ◦C). In the fourth stage (>740 ◦C), the weight loss is mainly attributed to the SO2
emission generated from the decomposition of CaSO3.

3.2. Product Distribution from DFA/SD Pyrolysis

Figure 3 presents the product distribution of catalytic pyrolysis at different DFA/SD
ratios. With the DFA content increase in the blend, the bio-oil yield decreases significantly at
first, and then increase slowly. The minimum yield of bio-oil is obtained at the 50/100 ratio,
with 23.43 wt.% (daf). The bio-oil yield derived from SD pyrolysis is 34.57 wt.% (daf),
which is higher than that of DFA/SD pyrolysis.

Compared with the varied yields of bio-oil, the water yield increases first, and then
decreases during catalytic pyrolysis. The maximum water yield (21.55 wt.%, daf) occurred
at the DFA/SD ratio of 50/100. Moreover, the semi-coke yield range of catalytic pyrolysis
is from 30.5 wt.% (daf) to 33.88 wt.% (daf), which if very close to that of SD pyrolysis.
The maximum value of the pyrolysis gas yield during DFA/SD catalytic pyrolysis was
25.29 wt.% (daf) at the blending ratio of 50/100. When DFA/SD is more than 50/100, the
DFA catalysis inhibits the formation of pyrolysis gas and leads to a decrease in the pyrolysis
gas yield.
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As shown in Figure 4, the pyrolysis gas content derived from the catalytic pyrolysis of
DFA/SD and SD pyrolysis mainly includes CO, CH4, CO2, C3H4 (i.e., allene), C2H6, H2,
and C3H8. DFA as a catalyst varies the yields of pyrolysis gas during SD/DFA pyrolysis.
The pyrolysis gas yield generated from catalytic pyrolysis increases first and then decreases
with the increasing DFA content in the sample. The minimum pyrolysis gas yield is 166.67
(mL/g, daf), which occurred at the DFA/SD ratio of 40/100. In both the SD pyrolysis and
the catalytic pyrolysis of DFA/SD, the CO yield is higher than any component yields in
the pyrolysis gas. The CO yield from DFA/SD pyrolysis is lower than that of SD pyrolysis.
Compared with the CO yield of SD pyrolysis (32.36 mL/g, daf), DFA as a catalyst notably
inhibited the CO formation during DFA/SD pyrolysis, as shown in Figure 4. Moreover,
the CO yield increased with the increase in DFA content in the samples during DFA/SD
pyrolysis. The CO yield at the DFA/SD ratio of 40/100 is 24.67 mL/g (daf) and declines to
23.76% that obtained by SD pyrolysis. The CO2 yield at the 40/100 ratio is just 61.48 mL/g
(daf) and as much as 86.77% that obtained by SD pyrolysis. The CH4 yield of DFA/SD
pyrolysis obtained the maximum, which was 38.99% more than that obtained by SD
pyrolysis. In addition, the catalytic pyrolysis of DFA/SD achieves the C3H4 yield (9.52
mL/g, daf) and H2 yield (1.39 mL/g, daf) at the 40/100 ratio, which is 82.03% and 230.95%
more than that obtained by SD pyrolysis, respectively.

Figure 5 shows the variation in pyrolysis gas yields and calorific values for different
DAF/SD ratios in the catalytic pyrolysis. Based on the calculated elemental content of C,
H, and O derived from the GC analysis of pyrolysis gas in Figure 5a, the result suggests
that the O content decreased with the increase in DFA content in the DFA/SD blend, while
the H content (0.40 mol/L) and C content (0.19 mol/L) achieved their maximum values
at the mixing ratio of 40/100, respectively. Moreover, the H content at the 40/100 ratio is
73.91% more than that in the SD pyrolysis gas. With the escalation of the DFA/SD ratio,
the H/C of pyrolysis gas continues to increase, and the O/C ratio declines accordingly. As
shown in Figure 5b, the greatest calorific value of DAF/SD pyrolysis gas is 11.08 MJ/m3,
obtained at the ratio of 40/100, which is 64.88% more than that obtained by SD pyrolysis.
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3.3. Effects of Material Components on Pyrolysis Gas Products

Figure 6a presents the product distribution of CaSO3/SD, DFA/SD, and DFA/MCC
pyrolysis. Because the cellulose content of SD is 23.68 wt.%, the DFA/MCC ratios in
accordance with the DFA/SD ratios are 10/23.68, 20/23.68, 30/23.68, 40/23.68, 50/23.68,
60/23.68, 80/23.68, and 23.68/100. Based on the XRF results of DFA, the content of
CaSO3 is 31.86 wt.%. Therefore, the corresponding ratios of CaSO3/SD blending are
3.19/100, 6.37/100, 9.56/100, 12.74/100, 15.93/100, 19.12/100, 25.49/100, and 31.86/100,
respectively. As shown in Figure 6a, DFA as a catalyst promoted the semi-coke yields of
DFA/SD pyrolysis in the range of 20/100–100/100 ratio. Moreover, the semi-coke yield of
DFA/MCC pyrolysis continually improved with the increase in DFA content in the range
of 10/100–60/100. On the contrary, the semi-coke yield decreased with the increase in
CaSO3 content in the CaSO3/SD blends.
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As shown in Figure 6b, the bio-oil yields of DFA/MCC pyrolysis are higher than those
of DFA/SD and CaSO3/SD pyrolysis. The bio-oil yields of CaSO3/SD pyrolysis are higher
than those of DFA/SD pyrolysis in the range of the 20/100–100/100 ratios. As seen in
Figure 6c, the pyrolysis gas yields of DFA/SD and CaSO3 are prominently higher than
those of DFA/MCC. On the other hand, the pyrolysis gas yields of DFA/SD are consis-
tently greater than that those of CaSO3/SD pyrolysis in the ratio range of 10/100–50/100.
Figure 6d reveals that the main compounds in DAF and SD cause the different effects on
the water formation during catalytic pyrolysis. The DFA catalyzes the SD decomposition
and promotes the yield of pyrolysis water in the process of DFA/SD pyrolysis. As the DFA
content in the sample rises from 10/100 to 40/100, the pyrolytic water yield increases from
14 wt.% (daf) to 22 wt.% (daf), accordingly. In contrast, DFA significantly inhibited the
generation of pyrolytic water derived from the MCC decomposition during DFA/MCC
pyrolysis. The water yield of DFA/MCC pyrolysis decreased with the increase in DFA
content in the samples, particularly in the 10/100–40/100 ratio range. The water yield from
DAF/SD pyrolysis was consistently greater than that of the DAF/MCC ratio in the range
of 30/100 to100/100, while, the water yield of DAF/SD pyrolysis was more than that of
CaSO3/SD pyrolysis within the ratio scope of 30/100–60/100.

Figure 7 presents the component variation of pyrolysis gas derived from the pyrolysis
of CaSO3/SD, DFA/SD, and DFA/MCC at different blending ratios. The results imply
that CaSO3 in DAF and cellulose in SD have obvious effects on the gaseous component
distribution of DAF/SD pyrolysis by means of the model compound method. As seen
in Figure 7a and b, the orders of CO and CO2 yields can be described as CaSO3/SD >
DFA/SD > DFA/MCC. Moreover, the CO and CO2 yields of CaSO3/SD pyrolysis are more
than double and treble those of DFA/SD pyrolysis, respectively. This indicates that CaSO3
in DFA catalyzes DFA/SD pyrolysis and significantly improves the formation of CO and
CO2. The great difference in the CO2 yield between CaSO3/SD and DFA/SD pyrolysis also
verifies that CO2 generated from SD decomposition is absorbed by the Ca(OH)2 contained
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in DFA during DFA/SD pyrolysis [25]. In comparing the CO and CO2 yields from DFA/SD
and DAF/MCC pyrolysis, it is further noted that CO and CO2 mainly generate from the
carbonyl and carboxyl of lignin in SD [26]. As shown in Figure 7c, CaSO3 in DFA play
a major role in promoting the C3H4 formation from SD pyrolysis. In addition, the C3H4
yields of DFA/MCC are more than those of DFA/SD in the range of the experimental ratios.
This suggests that C3H4 is mainly produced by the catalytic effect of CaSO3 in DFA during
DFA/SD pyrolysis.
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Figure 7. Gaseous components derived from GC results of pyrolysis gas: (a) CO yield; (b) CO2 yield; 
(c) C3H4 yield; (d) CH4 yield; (e) H2 yield. 

As showed in Figure 7d, the CH4 yields of DFA/SD pyrolysis are much higher than 
those of CaSO3/SD and DFA/MCC pyrolysis. The results demonstrate that Ca(OH)2 in 
DFA accelerates the CH4 formation derived from the cracking of methoxyl from lignin 
during DFA/SD pyrolysis. CaSO3/SD pyrolysis scarcely produces any H2, which is shown 
in Figure 7e, because the H2 yield of SD pyrolysis is 0.42 mL/g, which is much lower than 
that of DFA/SD pyrolysis, and Ca(OH)2 in DFA catalyzes the generation of hydrogen dur-
ing DFA/SD pyrolysis. 

4. Discussion 
The product yields of DFA/SD pyrolysis denote that as a catalyst, DFA inhibits the 
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DFA catalysis also restrained the generation of CO2 during catalytic pyrolysis. Further-
more, DFA exhibited a significant catalysis in accelerating the formation of C3H4, C2H6, 
and H2 in pyrolysis gas. In brief, the results showed that DFA catalyzed the processing of 
pyrolysis gas formation during DFA/SD catalytic pyrolysis. The DFA catalysis signifi-
cantly decreased the CO and CO2 content in pyrolysis gas and improved the yields of CH4, 
C3H4, and H2 in the meantime. 
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As showed in Figure 7d, the CH4 yields of DFA/SD pyrolysis are much higher than
those of CaSO3/SD and DFA/MCC pyrolysis. The results demonstrate that Ca(OH)2 in
DFA accelerates the CH4 formation derived from the cracking of methoxyl from lignin
during DFA/SD pyrolysis. CaSO3/SD pyrolysis scarcely produces any H2, which is shown
in Figure 7e, because the H2 yield of SD pyrolysis is 0.42 mL/g, which is much lower
than that of DFA/SD pyrolysis, and Ca(OH)2 in DFA catalyzes the generation of hydrogen
during DFA/SD pyrolysis.

4. Discussion

The product yields of DFA/SD pyrolysis denote that as a catalyst, DFA inhibits the
generation of bio-oil and increases the water yield during DFA/SD pyrolysis, as shown in
Figure 4. Nevertheless, the semi-coke yield of catalytic pyrolysis was less affected by the
DFA ratio in the sample. The pyrolysis gas yield generated from DFA/SD pyrolysis was less
influenced by the DFA catalysis when the DFA content was less than 40/100. Nevertheless,
DFA additives promoted the generation of CH4 during catalytic pyrolysis. The DFA
catalysis also restrained the generation of CO2 during catalytic pyrolysis. Furthermore,
DFA exhibited a significant catalysis in accelerating the formation of C3H4, C2H6, and
H2 in pyrolysis gas. In brief, the results showed that DFA catalyzed the processing of
pyrolysis gas formation during DFA/SD catalytic pyrolysis. The DFA catalysis significantly
decreased the CO and CO2 content in pyrolysis gas and improved the yields of CH4, C3H4,
and H2 in the meantime.



Int. J. Environ. Res. Public Health 2022, 19, 15755 9 of 11

The element contents and calorific values of pyrolysis gas indicated that DFA catalyzes
the processing of DFA/SD pyrolysis, as shown in Figure 5. Furthermore, it was worth notic-
ing that the calorific value positively correlated with the hydrogen content derived from
the pyrolysis gas of catalytic pyrolysis. Contrastingly, the oxygen content was inversely
proportional to the hydrogen content. This revealed that the dehydrogenation of DFA
improves the calorific value and quality of the pyrolysis gas during DFA/SD pyrolysis.

The results shown in Figure 6 indicate that CaSO3 has a significant catalytic effect of
promoting the thermal decomposition of SD, and the Ca(OH)2 in DFA might contribute to
the formation of coke during SD pyrolysis. Based on the variation in the semi-coke yield
from DFA/SD pyrolysis, the cellulose in SD was easily converted into semi-coke by the
catalytic effect of DFA. The thermal decomposition of cellulose in SD was the main source
producing bio-oil during DFA/SD pyrolysis. Moreover, the bio-oil yield of DFA/MCC
continued to grow with the increase in the DFA ratio in the blend. The result further
indicated that DFA exerted effects on cellulose in promoting the yield of bio-oil. CaSO3
showed better catalytic effects than DAF in catalyzing the thermal decomposition of SD
due to the production of bio-oil. Compared with the water yield of SD pyrolysis (14
wt.%, daf), CaSO3 accelerated water formation during SD pyrolysis. Xinyu Lu et al. [27]
reported that Ca(OH)2 contributed markedly to the formation of pyrolysis water during
lignocellulose pyrolysis. Therefore, this result further suggested that Ca(OH)2, as the
second-most prevalent component in DFA, also promoted the SD decomposition to improve
pyrolytic water yield during DFA/SD pyrolysis. Furthermore, cellulose in SD would be the
main source of major pyrolytic water production during DFA/SD pyrolysis.

The catalytic effect of DFA was superior to that of CaSO3, and it produced more
pyrolysis gas during DFA/SD pyrolysis. Furthermore, other components in DFA, such as
Ca(OH)2, also promoted the formation of pyrolysis gas derived from DFA/SD pyrolysis.
Since SD mainly consisted of cellulose, hemicellulose, and lignin, this suggested that py-
rolysis gas was primarily generated by the decomposition of lignin during the DFA/SD
pyrolysis. Moreover, CaSO3 in DFA contributed to pyrolysis gas formation from SD pyrol-
ysis. Furthermore, the H2 yields of DFA/MCC pyrolysis are 2.5 times higher than those
of DFA/SD. This showed that the major yield of H2 is produced by cellulose degradation
during DFA/SD pyrolysis [28].

5. Conclusions

The catalytic pyrolysis of SD with DFA at different blend ratios was performed in
a tubular furnace. Compared with the pyrolysis gas of SD pyrolysis, DFA as a catalyst
increased the hydrogen component and the low calorific value of the pyrolysis gas from
DFA/SD pyrolysis by 2.8- and 1.6-fold, respectively. DFA regulated the thermal decompo-
sition of SD to increase the non-oxide content in pyrolysis gas (CH4, C3H4 and H2). Further
investigation showed that Ca(OH)2 in DFA enhanced the cracking of methoxyl from lignin
and cellulose degradation to promote CH4 and H2 yields. The results suggested that the
DFA catalyst upgraded the quality of pyrolysis gas. On the other hand, CaSO3 favored
the generation of C3H4 during the pyrolysis of DFA and SD. Meanwhile, the amount of
carbon emissions can be reduced by the decrease in CO and CO2 in pyrolysis by DFA.
Therefore, SD pyrolysis with DFA, at a ratio of 40/100, was the more optimal condition for
negative-carbon emissions and the upgrading of pyrolysis gas.
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