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Abstract: Agriculture has the dual effect of contributing to both carbon emissions and sequestration,
and thus plays a critical role in mitigating global climate change and achieving carbon neutrality.
Agricultural eco-efficiency (AEE) is an important measurement through which we can assess the
efforts toward reduced emissions and increased sequestration. The purpose of this study was
to understand the relationship between China’s target of carbon neutrality and AEE through an
evaluative model, so as to improve AEE and ultimately achieve sustainable agricultural development.
The Super-SBM model scientifically measures the AEE based on provincial panel data collected
between 2000 and 2020. We selected kernel density function and spatial distribution to explore the
spatial and temporal evolutionary trends, and used a Tobit model to identify the drivers of AEE.
The research shows that (1) China’s agricultural system functions as a net carbon sink, with all
provinces’ agricultural carbon sequestration levels recorded as higher than their carbon emissions
from 2000 to 2020. (2) Despite sequestration levels, the level of AEE in China is not high enough,
and the average efficiency level from 2000 to 2020 is 0.7726, showing an overall trend where AEE
decreased at first and then increased. (3) The AEE of each province is clearly polarized; there are
obvious core–periphery characteristics and spatial distribution of clustered contiguous areas. Central
provinces generally have lower efficiency, eastern and northeastern provinces have higher efficiency,
and northeastern provinces always remain in the high-efficiency group. (4) Influencing factors
show that urbanization, upgrading of industrial structure, financial support for agriculture, and
mechanization have a significant positive impact on AEE. These findings have important implications
for the promotion of the low-carbon green development of Chinese agriculture.

Keywords: agricultural eco-efficiency; agricultural carbon emissions; agricultural carbon sequestration;
slack-based modeling; undesirable outputs; carbon neutrality target

1. Introduction

Climate change is a global concern as it causes extreme weather and destroys natural
resources such as glaciers, which negatively impacts economic and social development.
Increasing CO2 emissions are considered to be an important factor contributing to global
warming [1–3]. According to the data from ITA, China will emit more than 11.9 billion tons
of CO2 in 2021, accounting for 33% of total global emissions [4]. As an active participant
and supporter of global climate governance, China actively implements green development
strategies and is committed to energy conservation, emission reduction, and environmental
protection [5–7]. With these goals in mind, the Chinese government announced that it
would strive to reach peak carbon emissions by 2030 and achieve carbon neutrality by 2060,
which is a significant contribution toward achieving the global carbon neutrality target [2].
China’s agricultural carbon emissions account for 17% of the country’s carbon emissions;
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comparatively, with the global average measured at 11% [8]. This makes China the world’s
largest emitter of carbon from agriculture, and further demonstrates why the goal of carbon
neutrality cannot be achieved without the full engagement of the agricultural sector [9].

The agricultural sector not only emits greenhouse gases, but also functions as a
carbon sequestration sink [10–12]. Greenhouse gas emissions in agricultural production
mostly emanate from practices such as tillage, irrigation, use of agricultural materials,
and the cultivation of rice [13,14], and 13% of global CO2, 44% of CH2, and 82% of N2O
emissions come from agricultural systems [3]. On the other hand, specific agricultural
practices and spaces can absorb large amounts of CO2 through photosynthesis, such as
forestry, crop growth, and pastured land, which all have a significant carbon sequestration
capacity [15,16]. China has a large population and the area of arable land per capita is small.
The quality of this land is not high, and agricultural growth has long relied on the excessive
use of chemicals [17–19], which has severely overstretched the available arable land and
produced large amounts of carbon emissions. These issues demonstrate how serious the
challenges are for the agricultural eco-system [20,21]. However, the proper use of cropland
can effectively reduce carbon emissions and increase carbon sequestration [22], and studies
have shown that Chinese agriculture is a huge carbon sequestration system with significant
potential to promote carbon neutrality [23].

The Chinese government places great importance on promoting the agricultural
reduction in emissions and increasing sequestration. The Opinions on the Complete and
Accurate Implementation of the New Development Concept and the Good Work of Carbon
Peaks and Carbon Neutrality in October 2021 proposed accelerating the development
of green agriculture, promoting the sequestration of carbon, and enhancing ecological
agricultural carbon sequestration. Likewise, China’s No.1 Central Document 2022 proposed
to research and apply agricultural technologies to reduce carbon, increase carbon sinks, and
explore research into the value of carbon sink products. Therefore, in the context of carbon
neutrality, exploring the balance between economic growth and low-carbon agricultural
development through green and sustainable development is an effective means in China.
An effective action towards sustainable development requires a scientific measurement
of current AEE and an analysis of spatial and temporal differences and driving factors, in
order to explore appropriate paths for improving AEE.

AEE under the carbon neutral target is an effective tool to reflect the effectiveness of
green and low-carbon agricultural development, and this refers to the practice of generating
as much agricultural output with as little environmental pollution as possible in order to
achieve concurrent economic and environmental benefits [24–26]. At present, many scholars
have conducted research on how to measure AEE, and at the core of this research is the
selection of indicators and the construction of models [27,28]. When selecting indicators,
undesirable outputs should be included in the research framework. Scholars usually
consider agricultural pollution emissions to be undesirable outputs, including pollutants
such as greenhouse gas emissions, chemical oxygen demand, and so on [29–31], and
agricultural carbon emissions are adopted by most scholars [32]. Desired outputs are
mainly measured using agricultural added value or crop yields. Model construction mainly
includes the SFA model, the DEA model, and their derivative models, such as the SBM
model, the Super-SBM model, and the directional distance function (DDF) model [33–36].
Since SFA models can only use one output and have difficulty taking undesirable outputs
into account [37], non-radial, non-angular SBM models are widely used in agroecological
efficiency measurements, because they have the ability to handle undesirable outputs [38,39].
Existing research further explores the influencing factors of AEE [38,40].

Currently, existing studies have achieved useful results, but there are some limita-
tions. Firstly, most studies have taken into account the undesired output factor of carbon
emissions in agricultural production, but agriculture also has the attribute of carbon seques-
tration, and there is a lack of systematic studies that integrate agricultural carbon emissions
and sequestration into the same analytical framework. Secondly, most existing studies
are confined to the measurement of AEE and lack in-depth analysis of the contributing
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spatial and temporal characteristics and influencing factors of eco-efficiency, making it
difficult to accurately explore effective countermeasures to improve AEE. To address these
issues, the Super-SBM model is used in this research, which includes carbon emissions and
sequestration, to conduct an empirical study of AEE throughout China. On the basis of
scientific measurements of AEE, we further examine the spatial and temporal characteristics
and influencing factors of AEE in China, and attempt to expand the current literature in
the following ways: (1) Effectively measure agricultural carbon emissions (material inputs,
rice fields, and soils) and carbon sequestration (crops) per province from 2000 to 2020
and explore the dynamic evolutionary characteristics. (2) Construct a Super-SBM model
including carbon emissions and carbon sequestration to measure AEE in China, recording
AEE by province and by region (eastern, northeastern, central, and western China), and
exploring spatial and temporal evolutionary trends using kernel density functions and
spatial distributions. (3) Analyze the influencing factors of AEE in China with the help of a
panel Tobit regression model, and screen effective paths to improve AEE.

The rest of the study is arranged as follows. Section 2 covers the data and methods
used in this paper. Section 3 analyzes agricultural carbon emissions and sequestration,
the spatiotemporal characteristics of AEE, and the influencing factors of AEE. Section 4
discusses the conclusions and policy implications.

2. Materials and Methods
2.1. Accounting for Agricultural Carbon Emissions and Sequestration

Based on current research [3,41,42], this paper examines agricultural carbon emissions
from three perspectives, namely agricultural materials, rice fields, and soil (Table 1). Specif-
ically, (1) the use of agricultural chemicals, including fertilizers, pesticides, agricultural
films, agricultural diesel fuel, and irrigation activities that consume electricity, will produce
carbon emissions (Appendix A for coefficients); (2) rice field CH4 emissions include data
from rice growth periods because, due to different hydrothermal conditions in different
parts of China, CH4 emissions during the growth cycle may vary. Taking into account
the soil, climate, and hydrological conditions of rice cultivation, the emission coefficients
of CH4 for early-season rice, mid-season rice, and late-season rice in different provinces
were determined and used to calculate the CH4 emissions from rice fields (Appendix B for
details of the coefficients); (3) during crop cultivation, soil layer destruction causes N2O
emissions. We took measurements of N2O emissions specifically from rice, spring wheat,
winter wheat, soybeans, corn, and vegetables (Appendix C for details of the coefficients).

Table 1. Agricultural carbon emissions and sequestration.

Carbon Effect Category Cause Factor Data Required Reference

Carbon Emissions

Agricultural materials

The production, application, and
decomposition of fertilizers lead to

carbon emissions.
Fertilizer Consumption of fertilizer

[41]

The production, application, and
decomposition of pesticides lead to

carbon emissions.
Pesticide Consumption of pesticide

The production, application, and
decomposition of mulches lead to

carbon emissions.
Agricultural film The amount of agricultural

film used

The consumption of diesel by
machinery leads to
carbon emissions.

Diesel Diesel oil used
in agriculture

The fossil fuels consumed for
generating electricity in irrigation

result in carbon
emissions indirectly.

Irrigation Effective irrigation area

Rice fields
Methanogens in rice fields utilize

organic matter from the roots of rice
plants to form methane.

Rice field Planting area of early rice,
medium rice, late rice [43,44]

Soil Soil surface releases carbon when
planting crops. Soil

Yields of rice, winter wheat,
spring

wheat, soybeans,
maize, vegetables

[42]



Int. J. Environ. Res. Public Health 2022, 19, 15478 4 of 18

Table 1. Cont.

Carbon Effect Category Cause Factor Data Required Reference

Carbon Sequestration Crop sequestration Crops absorb carbon dioxide
through photosynthesis. Crop

Yield of various crops,
such as rice, wheat, maize,

pulses, vegetables
[42]

Agricultural carbon sequestration mainly measures the carbon uptake by crops, that
is, the carbon dioxide absorbed by crops through photosynthesis during their lifecycle,
which is one of the important sources of carbon sequestration [45]. Based on relevant
studies, the total agricultural carbon sequestration in this study is calculated using the
following formula:

Cs =
n

∑
j=1

Csi =
n

∑
j=1

{[
Cj ×Yj ×

(
1−Wj

)]
/Hj

}
(1)

where Cs is the total carbon sequestration and Csj is the carbon sequestration of j. For
the same crop, Cj is the carbon content rate, Yj is the economic yield, Wj is the moisture
factor, and Hj is the economic factor. Details of the parameters are shown in Appendix D.
According to prior research of [46], the effect of 1 t CH4 and N2O is equivalent
to 25 t CO2 (6.8182 t C) and 298 t CO2 (81.2727 t C), which are all converted to C
emissions later.

2.2. Methodology Specification
2.2.1. Measuring AEE: Super-SBM Model

During agricultural production, alongside any expected economic benefits, there are
factor inputs that accompany undesirable outputs, but it is vital to limit these outputs [38].
As traditional DEA models suffer from input factor “crowding” or “slack”, they tend to
produce biased results and are unable to deal with undesirable output indicators [47]. The
SBM model is capable of considering unexpected outputs and can effectively compensate
for the shortcomings of traditional DEA models. However, the SBM model has an issue
consistent with the traditional DEA model, in that it is also unable to distinguish between
decision units (DMUs) that are both efficient at 1. On this basis, the Super-SBM model is
used in this paper to measure AEE, which is thus able to deal with undesirable output, and
further compare and differentiate efficient DMUs that are on the frontier [48]. The model is
constructed as follows:

ρ = min

1
m

m
∑

i=1

x
xik

1
s1+s2

(
s1
∑

r=1

yg

yg
rk
+

s2
∑

t=1

yb

yb
tk
)

(2)

s.t.


x ≥

n
∑

j=1,j 6=k
λjxij, yg ≤

n
∑

j=1,j 6=k
λjy

g
rj, yb ≥

n
∑

j=1,j 6=k
λjyb

tj

x ≥ xk, yg ≤ yg
k , yb ≥ yb

k, λj ≥ 0
i = 1, 2, · · · , m; j = 1, 2, · · · , n
r = 1, 2, · · · , s1, t = 1, 2, · · · , s2

(3)

where ρ is the value of AEE, n is the number of DMUs, m is the number of inputs, r1 is the
number of desirable outputs, and r2 is the number of undesirable outputs. Vectors x, yg, and yb

represent inputs, desirable outputs, and undesirable outputs. When ρ ≥ 1, the AEE of the
target decision unit is relatively effective; when ρ < 1, the AEE of the target decision unit
has not reached efficiency, and there is redundancy or a shortage of inputs or outputs.

2.2.2. Inspect the Dynamic Evolution Characteristics: Kernel Density Estimation

As a kind of non-parametric probability density estimation, kernel density estimation
is a common method for the study of disequilibrium distribution, which can describe the
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distribution pattern of random variables through continuous density curves using kernels
as weights [49]. The changes in the distribution pattern of the kernel density curve, changes
in kurtosis, and changes in the location of the curve can be analyzed to reveal the dynamic
evolution characteristics of AEE. In this paper, we choose the Gaussian kernel, which is
commonly used in existing studies, and the calculation formula is as follows:

f̂h(x) =
1
n

n

∑
i=1

Kh(x− xi) =
1

nh

n

∑
i=1

K
(

x− xi
h

)
(4)

where x1, x2, · · · , xi is an independent distribution of n sample points, K(x) is a random
kernel function, and the magnitude of the bandwidth h value affects the smoothness of the
kernel density curve distribution.

2.2.3. Verifying the Influencing Factors: Tobit Model

The AEE measured in this paper using the Super-SBM model is non-negative truncated
data, representing a restricted dependent variable. Therefore, using OLS estimation would
lead to biased results [50]. To solve this issue, the Tobit model proposed by the American
economist Tobin in 1958 is a suitable choice [51], so we used the Tobit model to construct
an econometric model of the factors influencing AEE, which is calculated as follows:

yit =

{
βTxit + εit βTxit + εit > 0
0 otherwise

(5)

where yit is the AEE of the i province in the t year; xit is the explanatory variable, which
refers to the factors influencing AEE; βT is the regression coefficient of the explanatory
variable; and εit is a random error term subject to N

(
0, σ2).

2.3. Data
2.3.1. Data Description

The study area of this paper covers 30 provinces in China, excluding Hong Kong,
Macao, Taiwan, and Tibet, given the availability of data. The study provinces are divided
into four regions according to the Chinese statistical partitioning criteria (Figure 1). This
paper uses the data of 30 provinces from 2000 to 2020, and the required data include
an account of agricultural carbon emissions and sequestration, inputs and outputs of
AEE, and its influencing factors. Data were obtained from the China Statistical Yearbook,
China Agricultural Yearbook, China Rural Statistical Yearbook, China Population and
Employment Statistical Yearbook, China Agricultural Products Import and Export Monthly
Statistical Report, and provincial and municipal statistical yearbooks, and any missing data
were filled in by the interpolation method.

2.3.2. Evaluation Indicators

Agriculture covers a wide range of practices, including crop farming, forestry, an-
imal husbandry, fish farming, and sideline industries. Because each subsector varies
greatly between geographic regions, agriculture in this paper is limited to the category of
the plantation industry in an effort to elevate the relevance and specificity of the study.
The measure of AEE under the carbon neutrality target includes inputs, desirable out-
puts, and undesirable output. Five input indicators, two desirable output indicators, and
one undesirable output indicator are constructed by referring to the studies of related
scholars [3,30,52,53]. The input indicators include labor, land, machinery, fertilizer, and
irrigation, where agricultural employment = regional primary industry employment x
(value added in agriculture/value added in the primary industry). Desirable outputs
are expressed in terms of gross agricultural output and agricultural carbon sequestration,
and the output value is converted into comparable data. The undesirable output choices
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agricultural carbon emissions, which are measured by agricultural materials, rice fields,
and soil carbon emissions. The indicators and descriptive statistics are shown in Table 2.
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Table 2. Input and output variables for the measure of AEE.

Type Variable Explanation Units

Input indicators

Labor The number of agricultural practitioners 104 person
Land Total sown areas of crops 103 ha

Machinery Total power of agricultural machinery 104 kW
Fertilizer Application quantity of chemical fertilizer 104 t
Irrigation Effective irrigation area 103 ha

Output indicators Desirable output Actual output value of agriculture 108 CNY
Agricultural carbon sequestration 104 t

Undesirable output Agricultural carbon emissions 104 t

2.3.3. Influencing Factors on AEE

Another focus of this study was to explore the influencing factors of AEE under
the carbon neutrality target. The goal of the study is to provide information that will
promote low-carbon sustainable development in agriculture, and to enable agriculture
to play a more prominent role in promoting the carbon neutrality target. Based on the
usefulness and validity of the data, we constructed the influencing factors driving AEE
from the perspectives of economic foundations, production conditions, agricultural support
policies, and technological innovation [53–57]. (1) Economic conditions were measured
using the urbanization rate (URBAN) and the industrial structure upgrading index (ISU).
(2) Production conditions were measured using the agricultural cultivation structure (ACS),
the degree of agricultural disaster (DISA), and the multiple crop index (MCI). (3) Agricultural
support policies were measured via the annual financial support for agriculture (FSFA).
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(4) The mechanization level (MECH) measured from the perspective of technological
innovation. Details of each measurement are shown in Table 3.

Table 3. Influencing factors of AEE growth.

Variables Description Mean Std. Dev. Min Max

URBAN Urbanization rate of resident population 0.514 0.155 0.196 0.896

ISU 1 × Primary industrial added value/GDP + 2 × Secondary industrial added
value/GDP+ tertiary industrial added value/GDP 2.336 0.134 2.069 2.834

ACS Ratio of sown area of grain crops to total sown area of crops 0.658 0.132 0.354 0.971
DISA Ratio of disaster area to sown area 0.231 0.162 0.000 0.936
MCI Ratio of total sown area of crops to total area of cultivated land 1.424 0.507 0.488 2.848
FSFA Ratio of agricultural financial expenditure to total financial expenditure 0.097 0.036 0.010 0.204

MECH Ratio of total power of agricultural machinery to output of planting industry 4.074 2.126 1.083 11.781

3. Results and Analysis
3.1. Analysis of Agricultural Carbon Emissions and Sequestration in China

Using the above calculation list of agricultural carbon emissions and sequestration,
the emissions and sequestration per hectare of farmland were estimated for 30 provinces in
China; the results are shown in Figure 2.

The agricultural carbon sequestration across all provinces in China from 2000 to 2020 is
higher than the carbon emissions, indicating that agricultural systems across all provinces
belong to the net carbon sink [58], with an average net carbon sequestration of 3.754 t/hm2.
This finding is consistent with the results of existing studies [3]. Specifically, the national
average agricultural carbon sequestration is 5.585 t/hm2, among which 11 provinces, includ-
ing Guangxi (11.778 t/hm2), Henan (8.878 t/hm2), Shandong (8.820 t/hm2),
Jiangsu (7.645 t/hm2), and Anhui (7.543 t/hm2), have an average agricultural carbon
sequestration higher than the national level. These provinces are all large agricultural
provinces, with crop cultivation areas ranking among the top in China, such as sugar cane
in Guangxi, wheat in Henan, vegetables in Shandong, and rice in Jiangsu. The agricultural
carbon sequestration of Gansu, Qinghai, Ningxia, and Shaanxi are at the bottom of the list,
all below 0.3 t/hm2.

As a comparison to carbon sequestration, the national average carbon emission
intensity is 1.831 t/hm2, of which 0.923 t/hm2 is attributed to agricultural materials,
0.750 t/hm2 emanates from paddy fields, and 0.158 t/hm2 emanates from soils. This
demonstrates that agricultural materials are the main contributor to carbon emissions,
especially fertilizer, diesel, and agricultural films. The intensity of agricultural carbon emis-
sions in most provinces is distributed between 1 and 4 t/hm2. Eight provinces, including
Jiangxi (4.233 t/hm2), Shanghai (4.074 t/hm2), and Fujian (3.740 t/hm2), contribute the
greatest amount to carbon emissions, with measurements all greater than 3 t/hm2. Con-
trastingly, 10 provinces, including Qinghai (0.365 t/hm2), Inner Mongolia (0.457 t/hm2),
and Gansu (0.527 t/hm2), ranked lowest with less than 1 t/hm2 of recorded carbon emis-
sions. The sources of carbon emissions vary greatly by province, with carbon emissions
from rice paddies exceeding 60% in Jiangxi and Hunan, and agricultural carbon emissions
accounting for over 90% in Qinghai and Xinjiang, while soil carbon emissions are low in
all provinces, with the highest, Shanxi, accounting for only 21.7%. The provinces with
high agricultural carbon emissions are mainly located in the central region where there are
differences in agricultural operations and resource use, and the transition to low-carbon
agriculture may require a differentiated approach.
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Figure 2. Agricultural carbon emissions and sequestration in China from 2000 to 2020 (t/hm2).

3.2. Evaluation and Analysis of AEE in China

The Super-SBM model for undesirable outputs was applied, based on MATLAB2020b
software, to evaluate the AEE per province from 2000 to 2020 under the carbon neutrality
target. The results are shown in Table 4 and Figure 3.
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Table 4. AEE in 30 Chinese provinces in major years.

Province 2000 2005 2010 2015 2020 Average

Beijing 1.1656 1.1626 1.1724 1.1548 1.0293 1.1442
Tianjin 0.7608 0.6433 0.6531 0.6994 1.0719 0.7599
Hebei 0.6812 0.5796 0.6479 0.6358 0.8451 0.6443
Shanxi 0.5009 0.4578 0.4866 0.4603 0.5811 0.4871

Inner Mongolia 0.7637 0.6224 0.639 0.6651 0.7752 0.6568
Liaoning 1.0190 1.0168 1.0173 1.0523 1.0737 1.0322

Jilin 1.0677 1.1062 1.0615 1.1165 1.1452 1.1060
Heilongjiang 1.0736 1.0263 1.1363 1.1431 1.1595 1.0953

Shanghai 1.1317 1.1071 1.2110 1.0842 1.0132 1.0978
Jiangsu 0.8037 0.7034 0.8012 1.0127 0.8645 0.8142

Zhejiang 1.0120 0.6416 0.6377 0.6438 1.1125 0.7507
Anhui 0.5537 0.4638 0.5429 0.5358 0.5903 0.5091
Fujian 0.6144 0.6275 0.6813 0.6909 1.0417 0.7126
Jiangxi 0.6955 0.5501 0.5657 0.6161 0.7026 0.5866

Shandong 1.0306 0.6868 0.7521 0.7496 1.0015 0.7709
Henan 1.0106 0.6834 0.7672 0.7358 0.8791 0.7602
Hubei 0.8098 0.5750 0.5296 0.5319 0.5649 0.5514
Hunan 0.6610 0.5466 0.5544 0.5134 0.5806 0.5335

Guangdong 1.0150 0.8263 0.7644 0.7889 1.0405 0.8375
Guangxi 1.0727 1.1226 1.1725 1.0875 1.1215 1.1223
Hainan 1.2293 1.1777 1.1873 1.1540 1.1508 1.1792

Chongqing 0.7502 0.6983 0.6876 0.6701 0.6791 0.6528
Sichuan 1.0172 0.7179 0.7089 0.6461 0.7155 0.6920
Guizhou 1.0450 0.6836 0.498 0.4903 0.6560 0.6098
Yunnan 1.0768 0.7222 0.7048 0.6426 0.7737 0.7610
Shaanxi 0.6135 0.6130 0.6194 0.5765 0.6286 0.5821
Gansu 0.6196 0.5499 0.5316 0.5300 0.6940 0.5703

Qinghai 0.4901 1.0195 0.4956 0.4217 1.0650 0.6287
Ningxia 0.5007 0.4238 0.4775 0.4600 0.5300 0.4628
Xinjiang 1.1486 1.0413 1.0926 1.0793 1.0639 1.0674
Eastern 0.9444 0.8156 0.8508 0.8614 1.0171 0.8711

Northeastern 1.0534 1.0498 1.0717 1.1040 1.1261 1.0778
Central 0.7053 0.5461 0.5744 0.5656 0.6498 0.5713
Western 0.8271 0.7468 0.6934 0.6608 0.7911 0.7096
Average 0.8645 0.7599 0.7599 0.7530 0.8717 0.7726

3.2.1. Overall evolution of the AEE

In Figure 3, we can observe that China’s AEE declined but was followed by an increase
between 2000 and 2020. The national average value of AEE in 2000 was 0.8645, followed by
an oscillating decline, reaching the lowest value of 0.7125 in 2008, and then slowly rising
to 0.8718 in 2020, with an overall upward U-shaped distribution. In terms of regional
differences, the AEE value of the northeast region (1.0778) maintained its lead, ranking
far above the national average, which has already reached an effective state, and showing
a slow upward trend from 2000 to 2020 with an increase of 6.9% overall. In the eastern
region, the AEE value presents a U-shaped change, with slowly declining rates from
2000 to 2008, which then fluctuate upward, reaching an efficiency value of 1.0171 in 2020.
In the western region, AEE values fluctuated greatly from 2000 to 2009, and then much
like the eastern region, shifted toward a trend of first decreasing and then increasing, with
an average efficiency value of 0.7096 from 2000 to 2020. The central region has the lowest
mean value of AEE at 0.5713. Overall, there are clear regional differences in AEE values;
the efficiency of the northeast region is the highest, followed by the eastern and western,
and the central region is the lowest.
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3.2.2. Inter-Provincial Variation in AEE

Ten provinces, accounting for 33.3% of all provinces, have mean AEE values above
the national average from 2000 to 2020: Jilin, Heilongjiang, and Liaoning in the northeast;
Hainan, Beijing, Shanghai, Guangdong, and Jiangsu in the east; and Guangxi and Xinjiang
in the west. Among them, eight provinces, including Hainan and Beijing, have efficiency
averages above 1 and have reached the DEA effective status in the vast majority of years.
Ningxia, Shanxi, Anhui, Hunan, Hubei, Gansu, Shaanxi, and Jiangxi have relatively low
AEE, with mean values below 0.6, and all belong to the central and western regions, with
Ningxia having the lowest efficiency value, at a mean value of 0.4628, which is only 39.2%
of the mean value of the highest-ranking province, Hainan, and 59.9% of the mean value
of the national average. It can be seen that from the perspective of geographic zones,
the AEE of some provinces in the central and western regions is not high enough. In
the future, emphasis in these regions should be placed on the integrated development
of resource allocation and low-carbon transformation, the establishment of a synergistic
development mechanism through exerting the demonstration effect and catch-up effect,
and the improvement of the overall level of AEE.

3.3. Spatiotemporal Characteristics of AEE in China
3.3.1. Kernel Density Estimation of AEE

Using Stata16 software, the Kernel density function was applied to estimate the
AEE values under the carbon neutrality target in 2000, 2005, 2010, 2015, and 2020, and a
kernel density curve was drawn (Figure 4). The investigation of the dynamic evolution
characteristics yielded the following observations. (1) From the position of the center of
gravity of the kernel density curve, which shifts left and then right from 2000 to 2020, it
is clear that China’s inter-provincial AEE under the carbon neutrality target first declines
and then increases. (2) From the shape of the kernel density curves, where all five curves
show the coexistence of the main peak and the secondary peak, we see the suggestion
of a significant pattern of polarization in AEE. The height of the main peak gradually
increases from 2000 to 2015, and the gap between provinces gradually widens, while the
gap between the peaks decreases and flattens out in 2020; this indicates that the AEE gap
among provinces narrowed and the degree of polarization was reduced. (3) From the
trailing edge of the kernel density curve, it can be noted that the left and right sides of the
corresponding curves in 2000 and 2020 are similar, while the trailing edge on the right side
of the corresponding curves in 2005, 2010, and 2015 is longer than the trailing edge on the
left side. This shift shows a clustering of low values of AEE under the carbon neutrality
target in this period. This demonstrates that the AEE of different provinces in China has
different patterns in different periods, with different dynamic evolutionary characteristics
such as development level and polarization degree.
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3.3.2. Spatial Distribution Patterns of AEE

To visualize the spatial characteristics of AEE per province, this paper uses ArcGIS
10.8 software to create a visual map of AEE at five time points and an average point, which
is shown in Figure 5.

Figure 5 demonstrates that during the study period, China’s AEE first decreased, then
increased, and had obvious spatial distribution characteristics of clustering and contiguity.
In 2000, AEE was relatively high, with 15 provinces having efficiency values greater than 1,
accounting for 50%. These provinces were mainly concentrated in the northeast, but also
included most of the eastern and some parts of the western regions, whereas low efficiency
was concentrated in the central region, which again shows high efficiency in the north and
south and low efficiency in the central region in terms of spatial distribution. The years
2005, 2010, and 2015 saw a decline in AEE, with the number of efficient provinces decreas-
ing. The number of provinces with AEE over 1 fluctuated to nine, eight, and nine again,
respectively, while the number of provinces with AEE less than 0.7 likewise fluctuated
but showed an increase, shifting between 17, 16, and 18, respectively, with a particularly
marked decline in the central and western regions, showing a spatial distribution character-
ized by the clustering of low values. In 2020, AEE improved considerably, with only one
province, Ningxia, having an efficiency value below 0.55, and with the number of provinces
with AEE above 1 rising to 14. These regions are mainly clustered in the northeast and
eastern regions, with a spatial distribution characterized by a concentration of high values
and a gradual narrowing of the gap between regions.

As a whole, the spatial distribution of AEE in China has obvious core–periphery
characteristics, whether from the perspective of five time points or the average efficiency
distribution map from 2000 to 2020. As established, the efficiency of the central provinces is
generally lower, while the eastern and northeastern provinces have higher efficiency rates,
with the northeastern provinces always in the high-efficiency group. With its flat terrain,
fertile resources, good lighting, and relatively high level of scale and intensification, the
northeastern region is more conducive to promoting a low-carbon transition in agriculture
and achieving a balance between carbon neutrality and agricultural production. The eastern
region is economically developed to achieve more efficient and low-carbon operations
while ensuring agricultural output via advanced technological tools and a strong policy
environment. The western and central regions, however, have a relatively poor economic
foundation, technological support has yet to be strengthened, and agricultural production
needs to be transformed from extensive to refined.

3.4. Analysis on the Influencing Factors of AEE in China

When using the Tobit model, we can determine whether fixed or random effects
should be used by testing for the presence of individual effects. The individual and random
errors in the model are small, the variance ratios ρ are above 0.5, and the individual effect
variances are large and all pass the LR test, strongly rejecting the original hypothesis. The
Wald test passes the 1% significance test and the model worked well, so it is reasonable to
use the random effects panel Tobit model.

According to Table 5, the coefficients of all variables pass the 1% or 5% significance
level test. URBAN, ISU, FSFA, and MECH have positive effects, while ACS, DISA, and
MCI have negative effects.
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Figure 1. SEM images of the surface of the coatings at different magnifications: (a,b) CaP/CS and
(c,d) CaP/CS/CL before aging; (e,f) CaP/CS and (g,h) CaP/CS/CL after aging in SBF.

SEM images reveal that galvanic deposition allows us to deposit the coating on
the entire metallic surface exposed to the cathodic solution. In Figure 1a–d, a massive
deposition of the CaP crystals can be observed after deposition. However, the presence of
biopolymers was not detected since co-deposition creates an intimate structure between
the CaP crystals and polymeric macromolecules. The addition of CL does not contribute to
a substantial modification of the structure. It can be interesting to highlight the presence of
circular macropores. This peculiarity is attributable to the formation of chitosan in synergy
with the hydrogen evolution reaction (HER) [46,84,85] during the deposition. Specifically,
the final effect is a porous coating since the bubbles act as a dynamic template [86,87].

Figure 5. Spatial distribution pattern of AEE in China.

Table 5. Influencing factors of AEE.

Variable Coefficient Standard Error Z-Statistic Probability

URBAN 0.648 0.033 19.85 0.000 ***
ISU 0.154 0.035 4.36 0.000 ***
ACS −0.072 0.030 −2.39 0.017 **
DISA −0.026 0.012 −2.15 0.031 **
MCI −0.025 0.006 −4.48 0.000 ***
FSFA 0.540 0.081 6.65 0.000 ***

MECH 0.004 0.002 2.39 0.017 **
Notes: **, *** denote statistical significance at 5% and 1%, respectively.
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This summary more specifically means the following:

(1) In relation to a region’s economic foundation, the urbanization rate positively affects
AEE at the 1% significance level. This is mainly due to the fact that although urban-
ization brings about the loss of arable land and labor migration, it also induces a
transition to more efficient specialization in agriculture as it increases the scarcity of
inputs. Furthermore, agricultural productivity increases due to a rise in technological
progress and the transformation of the industrial structure, which is brought about by
urbanization [59]. The coefficient of ISU is 0.154, which significantly and positively
affects AEE. This is because the industrial structure is optimized and upgraded, so
the cluster effect and specialization effect gradually emerge, which not only reduces
agricultural production costs and increases the added value of products, but also
brings huge structural and scale dividends, which further help improve AEE [53].

(2) In terms of production conditions, cropping structure negatively affects AEE at a
significance level of 5%, which is consistent with the findings of [38], and rejects
the assertion that cash crops increase the burden on the environment, and that it is
feasible to moderately adjust agricultural cropping structure on the basis of ensuring
food security. Natural disasters not only affect agricultural acreage and reduce crop
yields and agricultural output, but also drive ecological degradation, which has a
significant negative impact on AEE gains. The replanting coefficient, which reflects
the intensity of cultivation of arable land, can increase agricultural value added, but
can also bring about an increase in the number of tillage and chemical inputs. The
replanting coefficient also requires an increase in input intensity, thereby bringing
about an increase in undesired agricultural output, which likewise demonstrates the
unsustainability of long-term and high-intensity cultivation [60].

(3) As far as agricultural support policies are concerned, the financial support from the
government for agriculture comes mainly in the form of investment and subsidies,
which can support the construction of agricultural infrastructure and improve the
input structure of agricultural production, thus enhancing AEE.

(4) Regarding technological innovation, the widespread use of agricultural machinery
can enhance production technology [61], resulting in improved productivity and
production efficiency. However, increased machinery brings an increase in the use
of petrochemical resources, so it is necessary to preferentially use low-carbon, green,
and efficient agricultural machinery first.

4. Discussion and Policy Implications

Based on the measurement of agricultural carbon emissions and sequestration, this pa-
per has explored the spatiotemporal characteristics of AEE as well as its influencing factors.
The results from this study suggest, compared with rice fields and soil, that agricultural
materials generate relatively large carbon emissions, which is consistent with [3]. Therefore,
agricultural emission reduction and efficiency enhancement need to pay special attention
to the control of agricultural material input. China’s AEE has obvious core–periphery
characteristics and shows obvious regional differences. This means that a one-size-fits-all
policy is no longer applicable, and it is necessary to balance the distribution of resources in
different regions while improving the expected output. The main objectives are to reduce
the external inputs, increase agricultural output value and carbon sink level, and reduce
agricultural carbon emissions.

On the basis of the findings above, we make the following policy recommendations:

(1) Deploy differentiated initiatives to reduce emissions and increase sequestration in agri-
culture. Specifically, work to improve the utilization rate of agricultural inputs [62],
particularly in provinces such as Qinghai and Xinjiang, where the share of carbon
emissions from agricultural inputs is relatively high. This can be achieved by encour-
aging the application of organic fertilizers and soil testing fertilizers, while promoting
the resourceful use of straw. While the agricultural system works largely as a carbon
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sink, the agricultural cultivation structure should be further optimized to strengthen
the carbon sequestration role of crops.

(2) Assess the AEE under the carbon neutrality targets in each region, and change the
behavior cease of pursuing high efficiency while ignoring environmental constraints.
Agricultural carbon emissions and carbon sequestration must be central to the future
research framework and focus on the balance between economy and environment.
Furthermore, policies to promote AEE should be formulated in accordance with lo-
cal conditions with consideration of regional differences in resource endowments,
industrial structures, and economic bases. Agricultural carbon emission constraints
should be made a government planning target, and any agricultural subsidy poli-
cies oriented towards green and low-carbon development should be constructed to
cultivate and promote green agricultural technologies, so as to achieve a win-win
situation for both environmental protection and effective allocation of scientific and
technological resources.

(3) The current problems of low AEE and regional imbalances require the development
of cooperation plans for inter-regional collaboration, which must be formulated to
balance the distribution of poorer and wealthier regional resources, to strengthen the
supervision and management of resource elements, and to improve the allocation
performance of various types of resources for AEE. The central and western regions
have the opportunity to make large strides in the promotion of AEE by increasing
investment in scientific research and by strengthening collaborative innovation [63].
The eastern and northeastern regions should continue to improve the level of resource
allocation, increase research and development around core technologies, and play a
leading role in the achievement of balanced and integrated AEE practices through
active exchange and cooperation.

There are some shortcomings to this research. Firstly, our study only estimates agricul-
tural carbon emissions and carbon sequestration from the narrow perspective of plantation
agriculture, and lacks measurements that cover the broader scope of agricultural practices.
Secondly, the coefficients for agricultural carbon accounting were obtained from the list
published by the Chinese government and academic literature, but more accurate measure-
ments could be taken, so there are some uncertainties around the current coefficients, thus
affecting the reliability of the results to a certain extent. Thirdly, due to data availability
constraints, this study lacks small-scale studies at the municipal or county level, and in
the future, consideration will be given to a wider range of smaller-scale research units to
improve accuracy.

5. Conclusions

The strategic goal of carbon neutrality has placed higher demands on the green and
low-carbon development of agriculture in China. In this paper, we incorporated agricultural
carbon emissions and sequestration into the model to build an AEE measurement model
under the carbon neutrality target. On this basis, the Super-SBM model was employed to
measure the AEE per province in order to assess the efforts toward reduced emissions and
increased sequestration. Furthermore, we analyzed the spatial and temporal characteristics
of AEE, and used the Tobit model to investigate the factors influencing AEE. The results of
this study are as follows:

(1) China’s agricultural system functions as a net carbon sink, with the agricultural carbon
sequestration of all provinces from 2000 to 2020 measuring at higher rates than the
carbon emissions. The national average carbon sequestration is 5.585 t/hm2 and the
average net carbon sequestration is 3.754 t/hm2. Considering the national average
carbon emission intensity of 1.831 t/hm2, including 0.923 t/hm2 for agricultural
materials, 0.750 t/hm2 for paddy fields, and 0.158 t/hm2 for soils, it is clear that the
use of agricultural materials is the main source of carbon emissions from agriculture.
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(2) From 2000 to 2020, the national average AEE was not high enough, with an average
value of 0.7726, showing a trend of decreasing and then increasing, and there is
still much room for improvement. In terms of spatial distribution, China’s AEE has
obvious core–periphery characteristics and shows a clustered and contiguous spatial
distribution, with central provinces generally having lower efficiency, eastern and
northeastern provinces having higher efficiency, and northeastern provinces always
in the high-efficiency group.

(3) As for the influencing factors, urbanization, upgrading of industrial structure, finan-
cial support for agriculture, and mechanization can significantly contribute to AEE,
with urbanization and financial support for agriculture having a greater degree of
influence. In contrast, agricultural cultivation structure, agricultural disaster, and
replanting have a negative impact on the AEE.
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Appendix A. Agricultural Carbon Emission Sources and Coefficients

Agricultural Material Coefficient

Fertilizer 0.8956 kg C·kg−1

Pesticide 4.9341 kg C·kg−1

Mulch 5.1800 kg C·kg−1

Diesel 0.5927 kg C·kg−1

Irrigation 266.4800 kg C·hm−2

Appendix B. CH4 Emission Coefficients of Different Rice Varieties in Chinese
Provinces (Units: g·m−2)

Province
Early-Season

Rice
Late-Season

Rice
Mid-Season

Rice
Province

Early-Season
Rice

Late-Season
Rice

Mid-Season
Rice

Beijing 0 0 13.23 Henan 0.00 0.00 17.85
Tianjin 0 0 11.34 Hubei 17.51 39 58.17
Hebei 0 0 15.33 Hunan 14.71 34.1 56.28
Shanxi 0 0 6.62 Guangdong 15.05 51.6 57.02

Inner Mongolia 0 0 8.93 Guangxi 12.41 49.1 47.78
Liaoning 0 0 9.24 Hainan 13.43 49.4 52.29

Jilin 0 0 5.57 Chongqing 6.55 18.5 25.73
Heilongjiang 0 0 8.31 Sichuan 6.55 18.5 25.73

Shanghai 12.41 27.5 53.87 Guizhou 5.1 21 22.05
Jiangsu 16.07 27.6 53.55 Yunnan 2.38 7.6 7.25

Zhejiang 14.37 34.5 57.96 Shaanxi 0 0 12.51
Anhui 16.75 27.6 51.24 Gansu 0 0 6.83
Fujian 7.74 52.6 43.47 Qinghai 0 0 0.00
Jiangxi 15.47 45.8 65.42 Ningxia 0 0 7.35

Shandong 0.00 0.00 21.00 Xinjiang 0 0 10.50
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Appendix C. N2O Emission Coefficients of Soil From All Varieties of Crops
(units: kg·hm−2)

Crop N2O Emission Coefficients

Rice 0.24
Spring Wheat 0.40
Winter wheat 2.05

Soybeans 0.77
Maize 2.532

Vegetables 4.21

Appendix D. Economic Coefficient and Carbon Sequestration Rate of Main Crops in China

Crop
Economic

Coefficient
Moisture

Content/%
Sequestration

Rate
Crop

Economic
Coefficient

Moisture
Content/%

Sequestration
Rate

Rice 0.489 12 0.414 Yams 0.667 70 0.423
Wheat 0.434 12 0.485 Sugar cane 0.750 50 0.450
Core 0.438 13 0.471 Beet 0.667 75 0.407
Beans 0.425 13 0.450 Vegetables 0.830 90 0.450

Rapeseed 0.271 10 0.450 Melons 0.700 90 0.450
Peanut 0.556 10 0.450 Tobacco 0.830 85 0.450

Sunflower 0.300 10 0.450 Other crops 0.400 12 0.450
Cotton 0.100 8 0.450
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