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Abstract: The rapid expansion of different types of urban land continues to erode natural and semi-
natural ecological space and causes irreversible ecological damage to rapidly industrialized and
urbanized areas. This work considers Quanzhou, a typical industrial and trade city in southeastern
China as the research area and uses a Markov chain integrated into the patch-generating land use
simulation (PLUS) model to simulate the urban expansion of Quanzhou from 2005 to 2018. The
PLUS model uses the random forest algorithm to determine the contribution of driving factors and
simulate the organic and spontaneous growth process based on the seed generation mechanism of
multi-class random patches. Next, leveraging the importance of ecosystem services and ecological
sensitivity as indicators of evaluation endpoints, we explore the temporal and spatial evolution
of ecological risks from 2018 to 2031 under the scenarios of business as usual (BAU), industrial
priority, and urban transformation scenarios. The evaluation endpoints cover water conservation
service, soil conservation service, biodiversity maintenance service, soil erosion sensitivity, riverside
sensitivity, and soil fertility. The ecological risk studied in this work involves the way in which
different types of construction land expansion can possibly affect the ecosystem. The ecological risk
index is divided into five levels. The results show that during the calibration simulation period from
2005 to 2018 the overall accuracy and Kappa coefficient reached 91.77% and 0.878, respectively. When
the percent-of-seeds (PoS) parameter of random patch seeds equals 0.0001, the figure of merit of
the simulated urban construction land improves by 3.9% compared with the logistic-based cellular
automata model (Logistic-CA) considering organic growth. When PoS = 0.02, the figure of merit of the
simulated industrial and mining land is 6.5% higher than that of the Logistic-CA model. The spatial
reconstruction of multiple types of construction land under different urban development goals shows
significant spatial differentiation on the district and county scale. In the industrial-priority scenario,
the area of industrial and mining land is increased by 20% compared with the BAU scenario, but the
high-level risk area is 42.5% larger than in the BAU scenario. Comparing the spatial distribution of
risks under the BAU scenario, the urban transition scenario is mainly manifested as the expansion of
medium-level risk areas around Quanzhou Bay and the southern region. In the future, the study area
should appropriately reduce the agglomeration scale of urban development and increase the policy
efforts to guide the development of industrial land to the southeast.

Keywords: cellular automata; urban sprawl; spontaneous growth; scenario simulation; ecological risk

1. Introduction

Ecological risk research focuses on analyzing the probability that threats outside the
ecosystem will lead to irreversible damage to the structure and function of the ecosystem [1–3].
At the lower level, ecological risk assessments have focused more on the adverse effects of
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a single physical or chemical stress on an individual organism or a small group of repre-
sentative species [4,5]. At higher levels such as populations or communities, more effective
assessment of ecological risk in the context of multiple stressors and multiple ecological
receptors continues to attract the attention of assessors [6–8]. Analyzing ecological risk based
on ecosystem services can better describe the way in which external drivers stemming from
human well-being can negatively impact internal ecosystem mechanisms [9–11]. In rapidly
urbanizing areas, the loss of ecological space leads to the loss of ecological services and
the degradation of ecological functions [12]. Regional ecological risk assessment involves
evaluating the likelihood of adverse effects and the potential harm when ecological receptors
are exposed to natural disasters or man-made disturbances in the context of specific temporal
and spatial backgrounds [13–16]. Given the co-occurrence of multiple risk sources and multi-
ple ecological receptors in the environment on a specific spatial scale, ecological risk analysis
on the regional scale faces significant challenges, including complex interactions, variations
in the importance and sensitivity of ecological receptors, data acquisition, uncertainty, and
the involvement of numerous stakeholders [6,17].

To investigate ecological risks on the regional scale, studies have assessed the sensitiv-
ity of specific ecosystems near urban cores to pollution (such as heavy metals) produced by
human activity [13]. Following the principles of efficiency of ecological modeling, several
methods such as the relative risk model have been developed and used to assess ecological
risks in urban areas [18–21]. High-level ecological models on the regional scale prioritize
accuracy [6]. Simulating fine-scale changes in urban land use is an important way to
explore the ecological risks manifested by the loss of the ecosystem services provided by
an ecological space or by an increased sensitivity of the ecological environment [22,23].
However, simulations of urban expansion that consider “urban–non-urban” or land use
changes involving transitions between multiple land types generally combine impervious
surfaces into a single type of urban land [24,25]. Research remains sparse on the simulation
of the spatiotemporal evolution of various types of construction land such as industrial
land, mining land, urban construction land, and rural settlements. The observation of
patch-level modification of land use reveals two types of spatial expansion, organic growth
and spontaneous growth [26]. Such growth is common for all land types, especially land
types involving the spatiotemporal expansion of construction land [27–29]. Since the spon-
taneous growth of different types of construction land patches may differ significantly, the
simulation of urban land use scenarios involving multiple types of construction land has
fundamental temporal and spatial importance for regional ecological risk assessment.

Multi-scenario simulation is an effective way to explore the way in which urbaniza-
tion and industrialization affect natural ecological spaces, which helps to develop policy
responses [30,31]. Compared with conventional logical reasoning and mathematical deriva-
tions, cellular automata (CA) simulations can clarify the spatiotemporal dynamics of land
use and land cover change (LUCC). The dynamic simulation of urban development based
on CA continues to attract research, and CA-based urban models (e.g., SLEUTH, CLUE-S,
and FLUS) are widely used in fields such as ecology and environmental science [32–34].
Markov chains, system dynamics, and multi-objective constrained optimization are the
main approaches for predicting land demand in urban CA models [35–37]. Leveraging ac-
curate statistics of the transformation information between historical land uses, the Markov
chain model uses the estimated transition probability matrix to predict future land demand.
Since the scale of development of the dominant land use types is prone to sudden changes,
the key parameters and the structure of Markov models must improve to understand the
evolution of demand under multiple scenarios.

To simulate the spontaneous growth process at the patch level, this study predicts
land use scenarios based on the patch-generating land use simulation (PLUS) model
developed by [36]. The PLUS model uses the land use expansion analysis strategy (LEAS)
based on the random forest algorithm to determine the probability that certain land uses
develop. This method avoids the exponential growth that may result from traditional
transformation analysis strategy in multi-type land use simulations while at the same time
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enhancing the ability of pattern-analysis strategy to determine the mechanisms that drive
land use change. The CA model based on multi-type random patch seeds (CARS) accurately
simulates the spontaneous growth dynamics of land use, thereby providing fine-resolution
spatial distribution information of construction land for regional ecological risk assessment.
Studies have shown that the PLUS model more accurately predicts land use than the
traditional CA model [38]. Recently, the PLUS model was applied by the authors of [39] to
study the level of risk posed to landscape functions and ecosystems led by different modes
of urban expansion under shared socioeconomic pathways. Based on an ecological risk
prediction analysis of land use change under multiple scenarios, the authors of [22] claim
that in areas with dense population and concentrated construction land, the construction of
ecological corridors is an important option for alleviating ecological pressure. However, few
reports consider the regional ecological risk assessment while accounting for the complex
spatiotemporal evolution of multiple types of urban construction land.

Quanzhou is an important starting point of the “Maritime Silk Road” in ancient China
and one of the first 24 famous historical and cultural cities announced by the State Council
of China. At present, Quanzhou is actively integrating into China’s One Belt One Road
development strategy and continues to lead in the construction of the economic zone on
the west coast of the Taiwan Strait. In 2021, Quanzhou’s GDP reached 1.13 trillion yuan,
ranking it first among major cities in the Golden Triangle of Southern Fujian [40]. At
present, numerous industrial clusters have formed around Quanzhou with an output value
of more than 100 billion yuan, including machinery and equipment, petrochemicals, textiles
and garments, paper printing, building materials, and home furnishing. The registered
population of Quanzhou in 2020 was 7.6614 million, of which the agricultural population
accounts for 46.70% [41]. Various types of construction land, such as urban construction
land, industrial and mining land, and rural settlements, are densely distributed in the
middle and lower reaches of the Jinjiang River Basin. However, Quanzhou is in the hilly
red soil area of southern China, and its fragile ecological environment translates into
extremely limited space for the development of construction land. The dense spatial and
temporal connections among important ecological spaces, limited land resources, and
socio-economic development dynamics make Quanzhou a suitable case study for regional
ecological risk.

Therefore, to predict the temporal and spatial evolution of ecological risks in Quanzhou,
the objectives of this work are as follows: (1) to establish the linking mechanism of “urban
expansion ecological space occupation–ecosystem service damage” in regional ecological
risk assessment; (2) to accurately predict the hotspot areas of land use ecological risks by
using organic growth and spontaneous growth simulations of different types of construc-
tion land. We use a Markov chain integrated into the PLUS model to simulate the land
use change in Quanzhou over the period 2005–2031. Next, we establish a risk assessment
framework with construction land expansion as the risk source and ecosystem services and
ecological sensitivity as the evaluation endpoints. Finally, we evaluate the future ecological
risk in the study area on global and local scales and for different urban development
scenarios.

2. Study Area and Experimental Data
2.1. Study Area

Quanzhou is located on the southeast coast of China (117◦25′–119◦05′ E, 24◦30′–25◦56′ N)
and is one of the central cities on the west coast of the Taiwan Strait. It is also a modern
industrial, trade, and port city. Counties and urban areas in Quanzhou City, including
Quangang, Licheng, Fengze, Luojiang, Jinjiang, Shishi, Nan’an, Dehua, Anxi, Hui’an, and
Yongchun, were thus selected as the study area (Figure 1). The study area contains scattered
hills, valleys, and basins, with the elevation decreasing from the northwest to the southeast.
Quanzhou has an area of 11,015 km2, with mountains and hills accounting for about four-
fifths of the total area. Quanzhou has a subtropical marine monsoon climate, with an average
annual temperature of about 20.3 ◦C and an average annual rainfall of about 1700 mm.
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2.2. Experimental Data and Data Sources

The data in this study cover land use, driving factors, socioeconomic statistics, eco-
logical services, and ecological sensitivity. Land use and land cover data were obtained
from the Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
(http://www.aircas.cas.cn (accessed on 1 October 2022)) and include forest land, farmland,
grassland, water bodies, beaches, urban construction land, industrial and mining land,
and rural settlements. The driving factors are elevation, slope, distance to urban center,
distance to town center, distance to highway, distance to railway, distance to main roads,
distance to coastline, and distance to train station. The public budget, per capita disposable
income, fixed asset investment, and other social and economic statistics were obtained from
the Socio-economic Statistical Yearbook of Quanzhou City. Housing prices are based on
data released by China House Price Market Network (https://m.creprice.cn (accessed on
1 October 2022)) in January 2022. The industrial zone planning comes from the Territory
Development Plan of Quanzhou City (2021–2035). Geographical information system (GIS)
datasets related to the evaluation of ecosystem services and ecological sensitivity are mainly
composed of air temperature, precipitation, net primary productivity, and soil texture. The
temperature and precipitation are China’s ground cumulative annual values (1981–2010),
and the data come from the China Meteorological Data Network. Net primary productivity
is derived from NASA’s MOD17A3 dataset (2005–2018). The soil texture is derived from
the Chinese soil dataset of the “Big Data Center of Sciences in Cold and Arid Regions”
(http://www.casnw.net (accessed on 1 October 2022)). To simulate land use change, the
spatial resolution of the relevant GIS data is unified to 30 m × 30 m. The spatial grid thus
formed contains 5022 columns and 5277 rows and defines the data format for the input,
operation, and output of the PLUS model.

3. Methods

To explore the temporal evolution and spatial characteristics of regional ecological
risks under the complex spatial reconstruction of multiple types of construction land, this
work adopts the following technical process. First, based on the land use classification data

http://www.aircas.cas.cn
https://m.creprice.cn
http://www.casnw.net
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from 2005 to 2018, the revised Markov transition probability is used to estimate the urban
land demand under different development goals. Second, the random forest algorithm
is used to determine the way in which the various driving factors contribute to land use
change, and the PLUS model is used to predict the spatial structure of urban land use
under different development scenarios. Finally, based on the proposed ecological risk
assessment framework, regional ecological risks due to loss of ecosystem services and
increased ecological sensitivity are predicted.

3.1. Revised Markov Transition Probabilities to Predict Land Demand

A Markov chain is a special stochastic motion process that describes the “no aftereffect”
probability distribution upon moving from one state to another [42]. The key to predicting
urban land demand using a Markov model is to construct a transition probability matrix
for mutual transformation between different land uses [43]. The annual transfer rate of
a certain land use type can be calculated by using observational land use data from two
points in time, which gives the transition probability matrix for this period. According
to the homogeneous Markov chain and Bayesian conditional probability formula, the
following Markov model for predicting urban land demand can be established [44]:

P(n) = P(n−1)Pij, (1)

where P(n) is the state probability vector of the object being studied in the system at any
time and P(n−1) is the preliminary state probability vector of the object under study. To
increase the built-up land area by using a socioeconomic model or according to regional
macro-scale land use planning, the transition probability matrices used to predict land
conversion demand were further revised.

Let Aa and Am be the new area of specific construction land predicted by the plan-
ning scenario and the Markov model, respectively. These two parameters often differ
significantly. Although the urban expansion area that dominates urban LUCC needs to
be revised, the Markov model still reflects land use and land development characteristics
in a region. The probability of transition from different land use types to urban built-up
land can be modified by tuning the ratio µj of Aa to Am. A ratio µj < 1 indicates that the
conversion of other land use types to built-up land has been revised downwards, and vice
versa. Additionally, to ensure that the elements of the transition probability matrix satisfy
constraint (2), the probability of converting land use from land use type i to another land
use types is corrected by using µi, and the Markov transition probability matrix modified
by the planning development goal takes the form

P′ =
(

Pij
′) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ1P11 µ1P12 . . . µjP1j . . . µ1P1M
µ2P21 µ2P21 . . . µjP2j . . . µ2P2M

. . .
µiPi1 µiPi2 . . . µjPij . . . µiPiM
. . .
Pj1 Pj2 . . . Pjj . . . PjM
. . .

µMPM1 µMPM2 . . . µjPMj . . . µMPMM

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2)

where the subscript j indicates built-up land and µj and µi are the aforementioned transition
probability correction coefficients. Here, the renewal of built-up land and the corresponding
transition probabilities (Pj1, Pj2, . . . , PjM) are not modified. The correction coefficient µi can
be calculated as follows:

µi =
1− µjPij

∑M
k=1 Pik − Pij

; i = 1, 2, . . . , M; i 6= j, (3)
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where k is the subscript of land use in the transition probability matrix, Pik is the probability
of converting land use type i into land use type k, i indicates the land use type other than
built-up land, and j indicates the specific category of built-up land.

3.2. LUCC Simulation with CA Model Based on Multi-Type Random Patch Seeds

The PLUS model simulates organic and spontaneous growth due to land use change
primarily by using a generation strategy of multi-type random patch seeds. The simulation
of land use change by this model is implemented by two components: the LEAS and the
CA models based on CARS. The key objective of the LEAS is to accurately capture the
way in which the driving forces contribute to the various types of land use expansion
during the simulation period. LEAS first extracts the way various types of land use change
between the two input land use status quos, and samples from the newly developed
pixels of various types of land use. This module converts the transition rule mining of
each type of land use into a binary classification problem [36] and uses the random forest
algorithm to predict the probability of development of any given land use. Combined with
random seed generation and the decreasing threshold mechanism, CARS establishes an
adaptive competition mechanism to simulate the spontaneous growth process of land use
change. CARS establishes the following method to calculate the overall probability for
coupling organic growth and spontaneous growth according to whether the value of the
neighborhood function of the central cell is zero:

OPd=1,t
i,k =

{
Pd=1

i,k × (r× µk)× It
k if Ωt

i,k = 0 and r < Pd=1
i,k

Pd=1
i,k ×Ωt

i,k × It
k otherwise

, (4)

where OPd=1,t
i,k is the overall probability of land type k, Pd=1

i,k is the probability of develop-
ment of land type k in pixel i, Ωt

i,k is the cover fraction of land use type k in the 3 × 3 Moore
neighborhood of pixel i, r is a random number between zero and one, µk is the threshold for
generating new “enclave patches” for land type k, and It

k is an adaptive driving factor that
characterizes the impact of future demand on land type k, which is calculated as follows:

It
k =


It−1
k i f

∣∣∣Gt−1
k | ≤ |Gt−2

k

∣∣∣
It−1
k × Gt−2

k
Gt−1

k
i f Gt−1

k < Gt−2
k < 0

It−1
k × Gt−1

k
Gt−2

k
i f Gt−1

k > Gt−2
k > 0

. (5)

In Equation (5), Gt−1
k and Gt−2

k are the differences between the cumulative develop-
ment amount and future demand of category k at iterations t− 1 and t− 2, respectively.
Setting the driving coefficient establishes multi-directional feedback of competitive de-
velopment among various land types and promotes the orderly development of various
land uses. At the same time, CARS restricts spontaneous and organic growth of multiple
land uses through a decreasing threshold mechanism of a competitive process. The overall
probability of all land uses OPd=1,t

i,k as input into a roulette mechanism to select candidate
land use type c for pixel i. Next, whether the pixel transitions to land use type c is assessed
as follows by a decreasing threshold τ:

If ∑N
k=1

∣∣∣Gt−1
c

∣∣∣−∑N
k=1

∣∣Gt
c
∣∣ < Step, then l = l + 1, (6){

Change i f Pd=1
i,c > τ and TMk,c = 1

No change i f Pd=1
i,c ≤ τ and TMk,c = 0

τ = δl × r, (7)

where Step is the step length of CARS approaching land demand, l is the number of decay
steps for automatic adjustment, TMk,c is the cost matrix that allows the conversion of land
use type k to c [45], δ is a customizable attenuation factor that varies from zero to one, and
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r is a normally distributed random value between zero and two with a mean of one. In
this research, the patch generation threshold δ is set to 0.1, and the expansion coefficient µk
that determines the probability of random patch seeds is set to 0.9. Recently, an improved
version of CARS added a parameter “percent-of-seeds” (PoS) that controls the number of
random seeds and ranges from zero to one.

We evaluate the accuracy of PLUS simulations based on the overall accuracy, Kappa
coefficient, and figure of merit (FoM). The overall accuracy is the percent of pixels correctly
simulated [46]. The Kappa coefficient serves to test whether one map differs statistically
from another map (rather than simply reporting this value as another measure of accu-
racy) [47]. The FoM, such as the intersection over union for multiple classes, is computed by
superimposing the initial land use map in 2005, the actual map in 2018, and the simulated
map in 2018. The formula of the FoM is

FoM =
H

M + H + WH + FA
× 100%, (8)

where hits H is the area where the observed and simulated land use are completely consis-
tent, misses M is the error in the observed change simulated for persistence, wrong hits
(WH) is when the predicted land use does not correspond to the observed land use, false
alarms (FA) is the error of the observed persistence predicted for the change [48].

3.3. Scenario Setting and Forecasting

Land demands are calculated for the three scenarios, business as usual (BAU), industry
priority development (IP), and urban transformation development (UT), by using the
revised Markov transition probability matrix. Furthermore, the scenario development
probabilities of industrial land and urban construction land are estimated based on IP and
UT scenario settings. Table 1 describes the three scenarios.

Table 1. Setting of urban expansion scenarios based on CARS.

Scenario Type Description

BAU

Based on historical trends and driving factors from 2005 to 2018, this
scenario uses Markov chains to forecast land demand from 2018 to 2031. At
the same time, the development probabilities of various land uses obtained
during the calibration are used to control the micro-spatial allocation
process of CARS.

IP

As a high-speed industrial development goal that considers government
planning and rail transit orientation, the IP scenario sets a 20% increase in
the target value of industrial and mining land compared to the BAU
scenario. The scenario uses a revised Markov transition probability matrix
to forecast land demand in 2018–2031. At the same time, the designed IP
development probability is multiplied by the calibration probability to
obtain the development potential parameters of industrial land in CARS.

UT

This is a high-speed urban expansion scenario oriented to attract high-end
talents under a high degree of government intervention. The amount of
urban construction land set in the UT scenario is 20% higher than the BAU
scenario. Similarly, the revised Markov transition probability matrix is
used to forecast land demand in 2018–2031. Considering the level of
economic development and the spatial distribution of high-quality public
resources, the designed UT development probability is multiplied by the
calibration probability to obtain the development potential parameters of
urban construction land in CARS.

To expand and invest in new factories, industrials generally choose areas with lower
land prices and better traffic and terrain conditions, all hopefully near the city center. The
IP scenario further highlights the impact of rail transit, location, industrial agglomeration,
topography, and planning based on calibration. Specifically, the industry priority prob-
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ability Pip is multiplied by the calibrated development probability Pi, and the generated
new development probability P′i acts on the selection of new industrial patch seeds and the
expansion of the original industrial land. The formula is as follows:

Pip = (θ1·Dt + θ2·Dc + θ3·Ai)× [1− Env]×
(
θ4·Zi + θ5·Zi

)
, (9)

where Dt is the distance to traffic elements such as trains, expressways, train stations, and
expressway entrances and exits, Dc is the distance to the urban center, Ai is the aggregation
level of industrial land within a specific spatial range, θ1, θ2 , and θ3 are the corresponding
parameters that sum to one, Env is a terrain element represented by slope, the Boolean
variables Zi and Zi are the areas without industrial planning and with the industrial
planning, respectively, θ4 and θ5 are the corresponding parameters that sum to one and
reflect the intensity with which the planning policy is implemented.

Under the high-intensity government policy of introducing talents, the net inflow of
population hoping to obtain urban household registration will continue in urban areas.
The new city residents will pursue various high-quality resources provided by the city
and according to their own ability, resulting in the expansion of urban construction land
that exceeds the historical trend. Due to the relatively large planned space allotted to
urban construction land, no planning constraints are added to the generation of random
seeds. Similarly, we multiply the urban transformation probability Put by the calibrated
development probability Pu of urban built-up land to determine the way in which nature,
culture, and policy combine to affect urban expansion. The newly generated development
probability P′u acts on the seed selection and expansion process of urban construction land.
The constructed urban transformation development probability Put is as follows:

Put = ∑ υjRj × Eσ
l , (10)

where Rj is a variable that characterizes the social and economic development status and
public welfare level, including factors such as per capita disposable income, public budget,
high-quality educational and medical resources, employment potential, and housing prices.
υj are the weights of these factors, which sum to one, El is the land resource endowment of
a region, and σ is a constraint factor ranging from zero to one.

3.4. Assessment of Ecosystem Service and Ecological Sensitivity

For this research, we selected indicators such as water conservation service, soil
conservation service, biodiversity maintenance service, soil erosion sensitivity, riverside
sensitivity, and soil fertility to describe the gradient characteristics of the ecological environ-
ment. According to the Technical Guidelines for the Delineation of Ecological Protection
Red Lines issued by the Ministry of Environmental Protection of China in 2017, the quanti-
tative method of net primary productivity is used to evaluate the importance of ecological
services. The general soil erosion equation and the minimal cumulative resistance model
serve to evaluate the ecological sensitivity index [49]. The relevant formulas appear in
Table 2.

3.5. Ecological Risk Index of Ecological Space Damage

To characterize the potential threat to the ecosystem of urban land expansion, we
first define the regional ecological risk components and their relationships. Specifically,
risk sources and ecological receptors are defined as urban land use spatial reconstruction
and regional ecosystems, respectively. The stress and quantified stress factors relate to the
expansion of different types of construction land and the occupation of important ecological
space, respectively. The evaluation endpoint is the ecosystem services provided by the
ecosystem, and the indicators of the evaluation endpoint are the loss of ecological service
importance and the increase in ecological sensitivity. The occupancy of ecological space in
the risk zone and the quantification of the evaluation endpoint indicators characterize the
exposure level of ecological receptors and the negative impact of stress on the evaluation
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endpoint, respectively. The probability of occurrence of risk is represented by the ratio of
urban construction land, industrial and mining land, and rural settlements to the total area
of the risk zone. The ecological risk index is calculated as follows:

ERI = ∑n
i=1

Ar,i

Ar
× wi

(
aWR + bSpro + cSbio + dSS + eRS + f SF

)
(11)

where ERI is the ecological risk index, Ar is the total area of risk zone r, Ar,i is the space
occupied by stress factor i, and wi is the stress level of stress factor i. This work uses the
concept of relative risk and sets the stress levels of industrial and mining land, urban
construction land, and rural settlements as 3, 2, and 1, respectively. At the same time, a
buffer zone of these three types of construction land is established at 1.5, 1, and 2 km,
respectively, and the stress level within the buffer zone is reduced by half. WR, Spro,
Sbio, SS, RS, and SF are the changes in the different ecological indicators in the risk zone,
respectively, and a, b, c, d, e, and f are the corresponding weights that sum to unity.

Table 2. Formulas for calculating the importance of ecosystem services and the sensitivity of the
ecological environment.

Indicator Formula Description

Water conservation
service (WR)

WR = NPPmean × Fsic × Fpre ×
(1− Fslo)

Water conservation service is a process in which ecosystems redistribute
precipitation to effectively regulate water flow and water cycle. NPPmean
is the average annual net primary productivity, Fsic is the soil seepage
factor, Fpre is the annual average precipitation, Fslo is the slope factor.

Soil conservation
service (Spro)

Spro =
NPPmean × (k− 1)× (1− Fslo)

Soil conservation service is the ability of an ecosystem through its
structure and processes to reduce soil erosion due to rainfall or runoff. k
is the soil erodibility factor.

Biodiversity
maintenance
service (Sbio)

Sbio = NPPmean × Fpre × Ftem ×
(1− Falt)

Biodiversity maintenance services are the ability of an ecosystem to
maintain the diversity of genes, species, habitats, communities, and
ecological processes. Fpre is the annual average precipitation, Ftem is the
annual average temperature, Falt is the altitude factor.

Sensitivity of soil
erosion (SS) SSi =

4
√

Ri × Ki × LSi × Ci

Sensitivity of soil erosion is the possibility of soil and its parent material
being destroyed, denuded, transported, and deposited under the action
of natural external forces dominated by hydrodynamics. Ri is rainfall
erosivity, Ki is soil erodibility, LSi is slope length and slope, and Ci is
vegetation cover on the ground.

Sensitivity of
riverside zone (RS) MCR = fmin

i=m
∑

j=n

(
Dij × Ri

)
Sensitivity of riverside zone is the sensitive response and self-recovery
ability of the transition zone between rivers and land under natural and
man-made external disturbances. MCR is the minimum cumulative
resistance value, Dij is the spatial distance of the evaluation target from
source j to landscape unit i, Ri is the resistance value of landscape unit i,
fmin represents the positive correlation between the minimum
accumulated resistance and the variables Dij and Ri.

Soil fertility (SF) SF = TN × 0.15 + TP× 0.3 +
TK× 0.4 + TOM× 0.15

Soil fertility characterizes the ecological adaptability of soil. TN is total
nitrogen, TP is total phosphorus, TK is total potassium, TOM is total
organic matter.

4. Results
4.1. Revised Transition Probability Based on Markov Chain Model

The transition probability matrix and transition area matrix can be obtained by in-
putting the 2005 and 2018 land use classification maps into the Markov chain model.
The resulting transition probability matrix reflects the likelihood of each land use type
to transition to another type. The Markov transition probability matrix thus obtained
for 2005–2018 is used to predict the land demand for the BAU scenario for the period of
2018–2031. At the same time, the Markov transition probability matrix is revised according
to the settings for the IP and UT scenarios (see Table 3). The results show that the proba-
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bility of farmland remaining unchanged from 2005 to 2018 is 0.8939, and the probability
of conversion to urban construction land, rural residential land, or industrial and mining
land is 0.0225, 0.0164, and 0.0431, respectively. The probabilities of converting forest land
into urban construction land, rural settlements, or industrial and mining land are 0.0015,
0.0006, and 0.0048, respectively. The probability of converting rural settlements to urban
construction land and industrial and mining land is 0.0539 and 0.0115, respectively. The
probability of converting industrial and mining land into urban construction land and
rural settlements is 0.0156 and 0.0235, respectively. Under the IP scenario, the probabilities
of agricultural land, forest land, and rural settlements being converted to industrial and
mining land are revised to 0.0739, 0.0082, and 0.0197, respectively. Under the UT scenario,
the probabilities of agricultural land, forest land, and industrial and mining land being
converted into urban construction land are 0.0486, 0.0032, and 0.0337, respectively.

Table 3. The Markov transition probability matrices for three evolutionary scenarios over the period
of 2018–2031.

Evolutionary
Scenarios

Probability of Changing to the Following Land Use:

AG WL GL WT UB BC RS IM

2018–2031 (BAU)
AG 0.8939 0.0164 0.0062 0.0013 0.0225 0.0002 0.0164 0.0431
WL 0.0077 0.9754 0.0096 0.0004 0.0015 0.0000 0.0006 0.0048
GL 0.0084 0.0280 0.9516 0.0003 0.0014 0.0000 0.0015 0.0086
WT 0.0207 0.0082 0.0043 0.8930 0.0034 0.0530 0.0033 0.0142
UB 0.0124 0.0036 0.0054 0.0010 0.9726 0.0001 0.0019 0.0030
BC 0.0255 0.0011 0.0001 0.0049 0.0026 0.8991 0.0044 0.0623
RS 0.0389 0.0040 0.0018 0.0019 0.0539 0.0004 0.8875 0.0115
IM 0.0248 0.0138 0.0064 0.0063 0.0156 0.0009 0.0235 0.9087

2018–2031 (IP)
AG 0.8652 0.0159 0.0060 0.0013 0.0218 0.0002 0.0159 0.0739
WL 0.0077 0.9720 0.0096 0.0004 0.0015 0.0000 0.0006 0.0082
GL 0.0083 0.0278 0.9457 0.0003 0.0014 0.0000 0.0015 0.0147
WT 0.0205 0.0081 0.0043 0.8838 0.0034 0.0525 0.0033 0.0243
UB 0.0124 0.0036 0.0054 0.0010 0.9705 0.0001 0.0019 0.0051
BC 0.0243 0.0010 0.0001 0.0047 0.0025 0.8565 0.0042 0.1068
RS 0.0386 0.0040 0.0018 0.0019 0.0535 0.0004 0.8801 0.0197
IM 0.0248 0.0138 0.0064 0.0063 0.0156 0.0009 0.0235 0.9087

2018–2031 (UT)
AG 0.8701 0.0160 0.0060 0.0013 0.0486 0.0002 0.0160 0.0420
WL 0.0077 0.9737 0.0096 0.0004 0.0032 0.0000 0.0006 0.0048
GL 0.0084 0.0280 0.9501 0.0003 0.0030 0.0000 0.0015 0.0086
WT 0.0206 0.0082 0.0043 0.8895 0.0073 0.0528 0.0033 0.0141
UB 0.0124 0.0036 0.0054 0.0010 0.9726 0.0001 0.0019 0.0030
BC 0.0254 0.0011 0.0001 0.0049 0.0056 0.8964 0.0044 0.0621
RS 0.0363 0.0037 0.0017 0.0018 0.1163 0.0004 0.8289 0.0107
IM 0.0243 0.0135 0.0063 0.0062 0.0337 0.0009 0.0231 0.8920

Note: AG: Agricultural, WL: Woodland, GL: Grassland, WT: Water, UB: Urban built-up, BC: Beach, RS: Rural
settlement, IM: Industrial and mining land.

4.2. LUCC Simulation and Sensitivity Analysis of Parameters

To test the simulation of the PLUS model, the land use map and driving forces
of Quanzhou in 2005 are input into the LEAS module to determine the probability of
developing different land use types. In the random forest algorithm of the LEAS, the
sampling rate is set to 0.05, the number of regression trees is 20, mTry = 9, and the number
of threads is four. Furthermore, the CARS parameters such as neighborhood weight,
moving window size, cost matrix, and land demand are set to simulate the spatiotemporal
evolution dynamics of land use in 2018 when the percentage of seeds was 0.0001 (Figure 2).
The simulation results are compared with the observational data for the years 2005 and
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2018, and we calculate the accuracy indicators for the simulation such as overall accuracy,
Kappa coefficient, and FoM. The results show that at a sampling rate of 0.05, the overall
accuracy and the Kappa coefficient reach 91.77% and 0.878, respectively, which suggests
that the simulation results of the PLUS model for the spatial distribution of land use in
Quanzhou in 2018 are extremely accurate, so this model can be used to predict future land
use.
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To test the simulation accuracy of the PLUS model integrating the spontaneous growth
mechanism of urban land expansion, we use four figures of merit, one each for urban
construction land, industrial and mining land, rural settlements, and urban land, which
are denoted FoM UB, FoM IM, FoM RS, and FoM urban, respectively. We then use these
FoMs to compare the simulation results of the PLUS model with those of the Logistic-CA
model (Figure 2). The results show that, for the PLUS model, FoM UB, FoM IM, FoM RS,
and FoM urban are 29.45%, 13.07%, 14.12%, and 19.55%, respectively, which are 3.99%,
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2.68%, 0.59%, and 2.01% greater than the corresponding FoMs of the organically grown
Logistic-CA model. The PLUS model thus more accurately simulates the land use dynamics
than the traditional urban model, which means that the PLUS model is more suitable for
predicting the expansion dynamics of various types of construction land and for exploring
the ecological risk faced by urban areas.

In view of the constant total target demand for a specific land type, the number of new
patch seeds determined by the PoS parameter strongly affects both organic growth and
spontaneous growth. To explore the way in which the number of random patch seeds in
CARS affects the simulation, we conduct a sensitivity analysis of this parameter (Table 4).
After step-by-step debugging, the results show that when the 0 < PoS < 0.1, the FoM for
the PLUS model varies over a relatively large range. Therefore, we assign more candidate
parameters in the interval 0–0.1 and fewer in the interval 0.1–1. The results show that as
PoS increases from 0.0001 to 0.02, FoM UB and FoM RS decrease from 29.45% and 14.12% to
28.19% and 12.12%, respectively. Moreover, FoM IM increases from 13.07% to 16.93%, and
FoM IM and FoM urban increase from 13.07% and 19.55% to 16.93% and 21.58% respectively.
When PoS increases from 0.02 to 1, most FoMs decrease to a relatively narrow range and
stabilize. The sensitivity of the simulation accuracy to the parameter values for different
types of construction land can provide a basis for setting parameter values for different
urban development scenarios.

Table 4. Sensitivity of FoMs of construction land to the number of random seeds (PoS).

PoS
FoM (%)

PoS
FoM (%)

UB IM RS Urban UB IM RS Urban

0.0001 29.45 13.07 14.12 19.55 0.06 27.34 16.23 11.95 20.91
0.001 29.11 13.46 14.04 19.73 0.07 27.27 16.22 12.06 20.94
0.005 28.58 14.82 13.12 20.33 0.08 27.20 16.08 11.89 20.81
0.01 28.31 15.75 12.77 20.87 0.09 27.26 16.04 12.03 20.68
0.02 28.19 16.93 12.12 21.58 0.1 27.34 16.11 11.92 20.85
0.03 27.63 16.70 11.96 21.24 0.5 27.12 15.96 12.03 20.70
0.04 27.46 16.26 11.98 20.96 0.999 27.14 16.01 11.75 20.72
0.05 27.44 16.22 11.99 20.96 0.9999 27.14 15.98 11.93 20.72

4.3. Scenario Prediction of Future LUCC

Using the 2018 land use map as a starting point, the baseline and revised Markov
transition probabilities are used to predict the 2031 land demand under different scenarios
(Table 5). The revised coefficients µj of the Markov transition probability matrix under
the industrial priority and urban transition scenarios are 1.54 and 2.16, respectively. The
increase in the three types of construction land in the baseline scenario is mainly caused
by the encroachment of cultivated land, whereas forest land, grassland, water bodies, and
beach areas did not change significantly. Under the IP scenario, farmland, forest land,
and grassland decrease, whereas the urban construction land and rural settlements do not
change significantly. This indicates that the increase in industrial and mining land is mainly
at the expense of farmland, forest land, and grassland. Under the UT scenario, the increase
in urban construction land is at the expense of cultivated land, forest land, and industrial
and mining land.

When simulating the spatial allocation of land use, the industrial priority probability
and the urban transition probability are both multiplied by the LEAS-calibrated develop-
ment probability and then used as the development potential input to CARS. According to
the sensitivity to PoS parameters of construction land types (Table 4), the PoS value that
provides relatively high simulation accuracy is selected as the parameter configuration for
the corresponding development scenario. That is, the PoS values of CARS in the BAU, IP,
and UT scenarios are set to 0.01, 0.02, and 0.0001, respectively. Figure 3 shows the land
use dynamics for 2018–2031 under three development scenarios and shows three enlarged
areas Z1–Z3 to the northwest, east, and south of Quanzhou Bay. The results show that
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the expansion of urban construction land under the UT scenario mainly occurs around
Quanzhou Bay, especially in Fengze and Luojiang in the east and in Jinjiang and Shishi in
the south. This is attributed mainly to the level of economic development, high-quality
educational and medical resources, and good public social welfare in these regions. Under
the IP scenario, the region generally experiences expansion of industrial and mining land,
which is more concentrated in the periphery of urban areas. The dense distribution of
expressways in the region is an important factor driving the expansion of industrial and
mining land.
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Table 5. Land demand in 2031 in Quanzhou under different development scenarios (units: ha).

Land Use Type 2018
BAU Scenario IP Scenario UT Scenario

2031 2031 2031

AG 246,167.64 229,085.55 221,993.37 223,121.52
WL 553,564.17 549,437.22 547,411.14 548,387.01
GL 158,190.3 158,029.47 157,015.17 157,703.85
WT 14,150.07 13,633.92 13,515.57 13,589.55
UB 45,880.29 53,397.09 53,092.8 64,036.44
BC 6286.14 6537.78 6232.05 6486.93
RS 34,193.07 36,587.79 36,195.12 34,428.42
IM 44,488.89 56,211.75 67,436.28 55,161.18

Table 6 predicts the increase in urban construction land and industrial and mining
land under different development goals from 2018 to 2031. The results show that under
the IP scenario, the industrial and mining land increase the most in Nan’an, followed by
Anxi, Hui’an, and Jinjiang. Compared with the BAU scenario, the growth of industrial
and mining land under the IP scenario does not differ significantly between districts and
counties. The UT scenario produces significant growth in urban construction land in
Jinjiang, Nan’an, and Fengze, and, relative to the BAU scenario, the rate of change of urban
construction land differs strongly between districts and counties.

Table 6. Construction land expansion at district and county scale during 2018–2031.

County

Increment of BAU
Scenario (2018–2031) Increment of IP Scenario (2018–2031) Increment of UT Scenario

(2018–2031)

UB (ha) IM (ha) IM (ha)
Rate of Change

Compared to the BAU
Scenario (%)

UB (ha)
Rate of Change

Compared to the BAU
Scenario (%)

Licheng 344.7 18 29.34 1.63 640.44 1.86
Fengze 618.84 240.84 338.4 1.41 1720.62 2.78

Luojiang 207.54 444.06 863.01 1.94 556.02 2.68
Quangang 414.18 687.69 1402.47 2.04 1045.44 2.52

Hui’an 692.91 2045.34 3885.3 1.90 1540.26 2.22
Anxi 474.66 2112.03 4249.08 2.01 640.62 1.35

Yongchun 259.11 769.86 1549.44 2.01 497.7 1.92
Dehua 197.55 486.99 954.72 1.96 203.04 1.03
Shishi 483.66 637.2 1204.38 1.89 1166.76 2.41

Jinjiang 2251.17 1531.98 2656.53 1.73 6308.46 2.80
Nan’an 2051.01 2721.15 5787 2.13 4315.32 2.10

Note: The spatial range simulated in this research does not include Kinmen County.

4.4. Indicators of Evaluation Endpoints

Using the raster calculator and cost–distance analysis tool of ArcGIS 10.6, the spatial
distribution of indexes such as ecological service, ecological sensitivity, and soil fertility
can be obtained by combining operation and least-cost path analysis. Furthermore, all
ecological indicators are graded by applying the natural breakpoint classification method,
and the indicator values are divided into five grades: extremely low, low, medium, high,
and extremely high (Figure 4). Overall, the importance of ecosystem services is mainly
distributed in the areas south of Daiyun Mountain and west of Qingyuan Mountain. The
extreme importance of the water conservation service and soil conservation service occurs
mainly in the northern region, with Dehua County and Yongchun County as the geographic
centers (they occupy 7.7% and 12.3% of the study area, respectively). The extremely
important areas of biodiversity appear mainly in the middle of the study area and account
for 13.3% of the area. The ecological environment sensitivity is mainly distributed in the
northwest of the study area and near water bodies such as rivers, lakes, and reservoirs (see
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Jinjiang and Luoyang Rivers). The extremely important areas of soil erosion sensitivity and
riverside sensitivity account for 3.4% and 9.0% of the total area, respectively. The areas
with extremely high soil fertility are mainly located in the northwest of the study area and
account for 17.8% of the area.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 15 of 23 
 

 

Table 6. Construction land expansion at district and county scale during 2018–2031. 

County 

Increment of BAU 
Scenario (2018–2031) 

Increment of IP Scenario (2018–2031) Increment of UT Scenario (2018–2031) 

UB (ha) IM (ha) IM (ha) 
Rate of Change Compared 
to the BAU Scenario (%) UB (ha) 

Rate of Change Compared to 
the BAU Scenario (%) 

Licheng 344.7 18 29.34 1.63 640.44 1.86 
Fengze 618.84 240.84 338.4 1.41 1720.62 2.78 

Luojiang 207.54 444.06 863.01 1.94 556.02 2.68 
Quangang 414.18 687.69 1402.47 2.04 1045.44 2.52 

Hui’an 692.91 2045.34 3885.3 1.90 1540.26 2.22 
Anxi 474.66 2112.03 4249.08 2.01 640.62 1.35 

Yongchun 259.11 769.86 1549.44 2.01 497.7 1.92 
Dehua 197.55 486.99 954.72 1.96 203.04 1.03 
Shishi 483.66 637.2 1204.38 1.89 1166.76 2.41 

Jinjiang 2251.17 1531.98 2656.53 1.73 6308.46 2.80 
Nan’an 2051.01 2721.15 5787 2.13 4315.32 2.10 

Note: The spatial range simulated in this research does not include Kinmen County. 

4.4. Indicators of Evaluation Endpoints 
Using the raster calculator and cost–distance analysis tool of ArcGIS 10.6, the spatial 

distribution of indexes such as ecological service, ecological sensitivity, and soil fertility 
can be obtained by combining operation and least-cost path analysis. Furthermore, all 
ecological indicators are graded by applying the natural breakpoint classification method, 
and the indicator values are divided into five grades: extremely low, low, medium, high, 
and extremely high (Figure 4). Overall, the importance of ecosystem services is mainly 
distributed in the areas south of Daiyun Mountain and west of Qingyuan Mountain. The 
extreme importance of the water conservation service and soil conservation service occurs 
mainly in the northern region, with Dehua County and Yongchun County as the geo-
graphic centers (they occupy 7.7% and 12.3% of the study area, respectively). The ex-
tremely important areas of biodiversity appear mainly in the middle of the study area and 
account for 13.3% of the area. The ecological environment sensitivity is mainly distributed 
in the northwest of the study area and near water bodies such as rivers, lakes, and reser-
voirs (see Jinjiang and Luoyang Rivers). The extremely important areas of soil erosion 
sensitivity and riverside sensitivity account for 3.4% and 9.0% of the total area, respec-
tively. The areas with extremely high soil fertility are mainly located in the northwest of 
the study area and account for 17.8% of the area. 

 

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 16 of 23 
 

 

 
Figure 4. Spatiotemporal distribution of evaluation endpoints. 

4.5. Assessing Future Ecological Risk 
Using the fishing net tool of ArcGIS, the study area was divided into a 600 m × 600 m 

grid, which we use as the basic spatial unit for expressing ecological risk. We calculate the 
ecological risk index (ERI) of each risk zone based on the land use scenarios and key eco-
logical factors. The risk at the center of the risk unit is thus obtained and converted into 
raster data by using ArcGIS (Figure 5). In general, compared with the BAU scenario, the 
IP scenario leads to the continuous expansion of the high-risk area, the medium-high-risk 
area, and the medium-risk area, which account for 1.90%, 3.75%, and 8.03% of the study 
area, respectively. Similarly relative to the BAU scenario, the high-risk area and the me-
dium-high-risk area of the UT scenario continue to decline. Particularly remarkable is that 
the medium-risk of the UT scenario expands significantly, with its area rising from 7.67% 
of the baseline to 8.66%. The expansion of industrial and mining lands in the central and 
northwestern regions produces an increase in high-risk areas (A1–A3), while the expan-
sion of industrial and mining land in the southeast increases the medium-high-risk areas 
(A4). The expansion of urban construction land in the Quanzhou Bay and South Wing 
areas undergoes a rapid increase in medium-risk areas (A5 and A6). The industrial expan-
sion in the southern and eastern parts of the study area (the A4 area) contributes to the 
development of numerous medium-high-risk areas and high-risk areas. In contrast, in-
dustrial development in the northwest region results in a significant expansion of high-
risk areas. These results provide an important reference for the spatial configuration of 
industrial projects. The change in the spatial distribution of ecological risk in the UT sce-
nario is mainly attributed to the fact that urban expansion mainly occurs in the Quanzhou 
Bay area, where the importance of ecosystem services is relatively low. At the same time, 
with this scenario, some industrial and mining land is converted into urban construction 
land. 

Table 7 shows the areas with ecological risk greater than medium under different 
development scenarios and at the district and county scale. Comparison with Table 6 
shows that under the IP scenario, the large expansion of industrial and mining land in 
Anxi and Nan’an in the northwest significantly increases the high-risk area. The expan-
sion of industrial and mining land in Dehua, also located in the northwest, is relatively 
slow but causes a greater increase in high ecological risk. In southeastern districts and 
counties such as Jinjiang and Shishi, the rapid expansion of industrial and mining land 
has less impact on high-level ecological risks, but more on medium-level and medium-
high-level risks. In the UT scenario, except for Dehua, the high-risk areas shrink in all 
districts and counties. In particular, the high-risk areas of Nan’an decrease significantly. 
Except for Fengze, Quangang, Anxi, and Yongchun, the medium- and high-risk areas of 
other districts and counties also decrease. The medium-risk areas increase significantly in 
all districts and counties under this scenario, especially Jinjiang, Nan’an, and Fengze. 

Figure 4. Spatiotemporal distribution of evaluation endpoints.

4.5. Assessing Future Ecological Risk

Using the fishing net tool of ArcGIS, the study area was divided into a 600 m ×
600 m grid, which we use as the basic spatial unit for expressing ecological risk. We
calculate the ecological risk index (ERI) of each risk zone based on the land use scenarios
and key ecological factors. The risk at the center of the risk unit is thus obtained and
converted into raster data by using ArcGIS (Figure 5). In general, compared with the
BAU scenario, the IP scenario leads to the continuous expansion of the high-risk area, the
medium-high-risk area, and the medium-risk area, which account for 1.90%, 3.75%, and
8.03% of the study area, respectively. Similarly relative to the BAU scenario, the high-risk
area and the medium-high-risk area of the UT scenario continue to decline. Particularly
remarkable is that the medium-risk of the UT scenario expands significantly, with its
area rising from 7.67% of the baseline to 8.66%. The expansion of industrial and mining
lands in the central and northwestern regions produces an increase in high-risk areas
(A1–A3), while the expansion of industrial and mining land in the southeast increases the
medium-high-risk areas (A4). The expansion of urban construction land in the Quanzhou
Bay and South Wing areas undergoes a rapid increase in medium-risk areas (A5 and
A6). The industrial expansion in the southern and eastern parts of the study area (the
A4 area) contributes to the development of numerous medium-high-risk areas and high-risk
areas. In contrast, industrial development in the northwest region results in a significant
expansion of high-risk areas. These results provide an important reference for the spatial
configuration of industrial projects. The change in the spatial distribution of ecological risk
in the UT scenario is mainly attributed to the fact that urban expansion mainly occurs in
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the Quanzhou Bay area, where the importance of ecosystem services is relatively low. At
the same time, with this scenario, some industrial and mining land is converted into urban
construction land.
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Table 7 shows the areas with ecological risk greater than medium under different
development scenarios and at the district and county scale. Comparison with Table 6
shows that under the IP scenario, the large expansion of industrial and mining land in
Anxi and Nan’an in the northwest significantly increases the high-risk area. The expansion
of industrial and mining land in Dehua, also located in the northwest, is relatively slow
but causes a greater increase in high ecological risk. In southeastern districts and counties
such as Jinjiang and Shishi, the rapid expansion of industrial and mining land has less
impact on high-level ecological risks, but more on medium-level and medium-high-level
risks. In the UT scenario, except for Dehua, the high-risk areas shrink in all districts and
counties. In particular, the high-risk areas of Nan’an decrease significantly. Except for
Fengze, Quangang, Anxi, and Yongchun, the medium- and high-risk areas of other districts
and counties also decrease. The medium-risk areas increase significantly in all districts and
counties under this scenario, especially Jinjiang, Nan’an, and Fengze.
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Table 7. Ecological risks greater than medium in all districts and counties in 2031.

County
Increment of BAU Scenario (2031) Increment of IP Scenario (2031) Increment of UT Scenario (2031)

MR (ha) MHR
(ha) HR (ha) MR (ha) MHR

(ha) HR (ha) MR (ha) MHR
(ha) HR (ha)

Licheng 3168 792 36 3168 756 36 3780 468 36
Fengze 4356 936 0 4284 1080 144 5436 1044 0

Luojiang 2232 1188 900 2484 1404 1152 2484 1152 468
Quangang 3852 1584 216 3636 2052 720 3744 1800 0

Hui’an 8316 3744 504 9216 4932 720 8820 3420 180
Anxi 10,008 6084 5112 10,584 7452 6840 10,836 6912 4536

Yongchun 3924 2340 1440 4248 3168 1692 4032 2664 1188
Dehua 2880 2196 1008 3096 2160 1656 2844 2160 1404
Shishi 4284 936 108 4464 1332 108 4896 900 0

Jinjiang 21,168 3924 252 22,032 4392 468 25,632 3636 108
Nan’an 20,484 11,376 5148 21,456 12,672 7452 23,148 10,080 2844

Note: The area simulated in this research does not include Kinmen County.

5. Discussion

The simulation accuracy of the PLUS model is very sensitive to its parametrization
(i.e., the number of random patch seeds), which means that the ratio of spontaneous
growth of different types of construction land affect the accuracy of the urban model.
When PoS changes from 0.0001 to 0.02, the accuracy with which rural settlements are
simulated decreases by 2.0%. This is mainly attributable to the relatively small number
of discontinuous expansions in rural settlements during the simulation period. At the
same time, the accuracy with which urban construction land is simulated drops by 1.26%,
which indicates that some discontinuous development exists with urban construction
land. However, since the total predicted urban construction land is constant, the organic
growth of urban construction land is somewhat disturbed. In this case, correct predictions
of spontaneous urban growth do not suffice to offset the decrease in accuracy of the
predicted organic growth process. This trade-off in the simulation manifests itself as a
slight loss of accuracy in simulating urban built-up land. The simulation accuracy of
industrial and mining land increases by 3.9%, and the simulated spontaneous growth aids
the overall accuracy of the simulation. This result testifies to a broad-based discontinuous
development of industrial and mining land. When PoS changes from 0.02 to 0.9999, the
accuracy with which industrial land is simulated drops from its maximal value to around
16.00%, which shows that by continuously increasing the number of random patch seeds,
the contribution of spontaneous growth to the simulation accuracy has difficulty offsetting
the error introduced by organic growth. Another possible explanation is that the predicted
scale of the spontaneous growth of industrial land exceeds the historical observations of
spontaneous growth [26], which would also cause the spontaneous growth to degrade the
simulation. For similar reasons, the accuracy with which urban construction land and rural
settlements are simulated decreases when PoS changes from 0.02 to 0.9999.

Investigating possible future development trajectories of cities will provide credible
evidence for the spatial distribution of risk sources. The simulation results indicate that
significant differences in urban form appear under different development scenarios, and
these differences are mainly reflected in the two categories of urban construction land
and industrial and mining land. The past development of different types of construction
land and the factors that drive such development are fundamentally responsible for the
differences in urban form. In the UT scenario, Jinjiang and Shishi in Quanzhou Bay and
southern regions gain rapid development. These regions offer more advantages in economic
development, social welfare, and educational and medical resources compared with other
districts and counties. Since the historical development of urban construction land remains
extremely compact, the setting of spontaneous growth and urban transition probability
guides urban expansion to the southeast. In other words, the UT scenario provides more
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development opportunities to the southeastern non-urban areas with superior potential,
and as a result, the density of urban construction land decreases somewhat. In the IP
scenario, industrial and mining land expands widely in areas with developed traffic and
close to urban centers. Due to the high-speed network reaching every district and county,
highway entrances and exits are spread throughout the region, which is one of the most
important forces driving industrial development. Therefore, the expansion pattern of
industrial and mining land reflects the characteristics of local agglomeration but remains
relatively discrete over the whole area. These differences in the development of urban
spatial forms cause the increased development of construction land in the UT and IP
scenarios to differ completely on the district and county scale.

Compared with the BAU scenario, the ecological risks predicted by both the UT and
IP scenarios changed significantly. Although the industrial and mining land in the IP
scenario increases by 20% with respect to the BAU scenario, the high-risk area increases
by 42.5%. Under the UT scenario, the urban construction land increases by 20% compared
with the BAU scenario, and the change in risk is mainly reflected in the 13% expansion of
the medium-risk area. In the future, both medium and high ecological risk in Quanzhou
Bay and the northwest will continue to expand.

The expansion of different types of construction land may produce different ecological
risks in different local spaces, so it is vital to explore ways to protect ecological resources
and reduce ecological risk. On the one hand, reducing the development density and
controlling the development scale of urban construction land in Quanzhou Bay should
reduce such risk. On the other hand, the newly added industrial land incurs a relatively
low risk in the southeast, and it is extremely urgent to guide the development of industrial
land in this area. Given that all districts and counties possess the inherent motivation
to develop industrial projects to promote rapid economic development, the planning of
industrial land should adopt a more binding implementation strategy. At the same time,
given that construction land is mainly developed in the southeast, the development space,
timing, and scale in towns of the same size require scientific demonstration. The urban
form and ecological risks predicted herein provide a spatially quantified basis for trade-offs
in formulating and implementing planning strategy.

In a continuous space in a large area, the availability of evaluation data superimposes
the compound influence of natural and human factors, making regional ecological risk
assessment an important challenge. By adopting a greater spatial resolution, more classifi-
cation of construction land, and more accurate LUCC prediction models, more accurate
spatial information on stress sources can be obtained. At the same time, the spatiotempo-
ral gradient characteristics of regional ecosystems are described from the perspectives of
ecosystem services and ecological sensitivity, so the evaluation endpoint indicators can
be accurately quantified. Based on these scientific foundations, we explore the way in
which construction land expansion affects ecological risks and their spatial differentiation
in rapidly urbanizing regions. Such risk assessment is based on the following assumptions:
A greater development scale or frequency of the “urbanization source” of construction land
corresponds to a greater possibility of stressing ecological receptors. Next, the character-
istics of the evaluation endpoint of ecological receptors, including the service type and
provision capacity of ecosystem services and the level of ecological sensitivity, are closely
related to the availability of the ecological space on which they depend. Finally, the severity
of the negative effects of stress on evaluation endpoints depends on relative exposure and
the endpoint characteristics.

We now discuss the more complex factors that affect the ecological risk that may
arise from development activities. Does the intensity of changes in ecological risk differ
from location to location? These issues still need to be addressed in future research. From
individual to planetary scales, nonlinear stress response relationships such as adaptive,
dynamic, and interactive commonly occur [50]. Such ecological nonlinearity clearly ex-
plains the occurrence and development of ecological risk. For example, in high-density
industrialized or urbanized areas with strict environmental regulations, strong citizen
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awareness of environmental protection, and excellent social management capabilities,
specific construction land, and human activities on it do not necessarily cause ecological
risks. In some less-developed regions, the situation is often the exact opposite. At the
same time, Darwinian ecological fitness explains that the long-term presence of low-dose
stress in a specific spatiotemporal context may not always negatively affect receptors [51].
Considering the inherent nonlinearity of the stress influence relationship in ecological risk
assessment, more in-depth research into regional ecological risk is urgent.

In the context of the path dependence of the development of the spatial form of urban
land use, the Markov method is a reliable method for predicting land demand in the
relatively near future (several decades) [38,52]. It makes the important assumption that the
future transformation of urban land use is based on historical land use and is significantly
affected by the transformation of historical land use. However, the question arises of
whether the speed of urban expansion remains constant from the historical time frame
to the future time frame. In particular, when the time span is significantly enlarged, the
speed of urban expansion may change [28]. This allows the Markov method used herein to
improve the accuracy of predictions of BAU scenarios.

The speed of urban expansion is driven or constrained by various factors such as
population, the economy, and natural ecology [53,54]. In [39], a multiple regression model
between urban area, population, and GDP was used to improve the prediction of land
demand and land use conversion by applying Markov chains. In contrast, the present work
examines a more detailed classification of construction land. Therefore, the following issues
should be considered a priority when predicting the future development of construction
land: (1) How does the integration of social, economic, and ecological models help predict
the future population, GDP, and environmental carrying capacity of urban areas? (2) Given
these socio-economic and ecological factors, how do we predict the speed and scale of
expansion of different types of construction land? (3) Finally, how do we correct the Markov
transition probability matrix during the forecast period to obtain the future land conversion
demand of different types of land?

6. Conclusions

This research reveals the way in which the spatial reconstruction of different types
of construction land affects the temporal and spatial evolution of regional ecological risk.
First, taking Quanzhou City as the study area and using the Markov chain method, the
land use transition probability matrix under different urban development orientations
was revised to predict land demand. Next, the contribution of land use expansion is
intelligently mined based on the random forest algorithm, and the organic growth and
spontaneous growth of land use are simulated by CA based on multi-type random patch
seeds. Finally, the key ecosystem services and ecological sensitivity indicators are screened
to predict areas of intense ecological risk given the spatial stress produced by various types
of construction land.

The results show that (1) land use change can be simulated by the PLUS model ef-
fectively, and the simulation results are sensitive to the parametrization (i.e., the number
of random patch seeds). The overall accuracy and Kappa coefficient reach 91.77% and
0.878, respectively. The urban construction land for PoS = 0.0001 has the highest FoM,
which is 3.9% higher than that produced by the Logistic-CA model. The accuracy with
which industrial and mining land is simulated with PoS = 0.02 is 6.5% greater than that
of the Logistic-CA model. (2) Since the temporal and spatial evolution paths of different
types of construction land differ significantly, the future urban forms of different devel-
opment scenarios will have significant spatial differences. Under the UT scenario, urban
construction land is mainly concentrated in the Quanzhou Bay area, whereas the southern
areas such as Jinjiang and Shishi have high development potential. Industrial and mining
land continues to expand mainly in suburbs with good traffic conditions and proximity to
town centers. Nan’an, Anxi, and Hui’an are the key areas for the continuous expansion
of industrial and mining land in the future. (3) In the future, the spatial expansion of
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construction land in Quanzhou will lead to medium and high ecological risks. Compared
with the BAU scenario, the industrial and mining land area increases by 20% under the
IP scenario, whereas the high ecological risk increases by 42.5%. At the same time, the
medium-high and medium risks in this scenario also continue to increase. Under the UT
scenario, the urban development of Quanzhou Bay and the southern region mainly leads
to the agglomeration and increase in medium-level ecological risk. Compared with the
BAU scenario, the high- and medium-high risks continue to decline in the UT scenario.
The results provide a scientific reference for implementing territory development plans
and formulating risk management policies. Given the nonlinear relationships between
stress and effects, the question of how to scientifically characterize regional-scale nonlinear
ecological risks requires further exploration and research.
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LUCC Land use and land cover change
ERI Ecological risk index
CA Cellular automata
GIS Geographical information system
GDP Gross Domestic Product
PLUS Patch-generating land use simulation model
CARS CA model based on multi-type random patch seeds
LEAS Land use expansion analysis strategy
PoS Percent-of-seeds
BAU Business as usual
IP Industry priority development
UT Urban transformation development
FoM Figure of merit
WH Wrong hits
FA False alarms
AG Agricultural
WL Woodland
GL Grassland
WT Water
UB Urban built-up
BC Beach
RS Rural settlement
IM Industrial and mining land
LR Low risk
LMR Low-medium risk
MR Medium risk
MHR Medium-high risk
HR High risk
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