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Abstract: Background: The possible benefits of using semantic language models in the early diagnosis
of major ischemic stroke (MIS) based on artificial intelligence (AI) are still underestimated. The present
study strives to assay the feasibility of the word2vec word embedding-based model in decreasing the
risk of false negatives during the triage of patients with suspected MIS in the emergency department
(ED). Methods: The main ICD-9 codes related to MIS were used for the 7-year retrospective data
collection of patients managed at the ED with a suspected diagnosis of stroke. The data underwent
“tokenization” and “lemmatization”. The word2vec word-embedding algorithm was used for text
data vectorization. Results: Out of 648 MIS, the word2vec algorithm successfully identified 83.9% of
them, with an area under the curve of 93.1%. Conclusions: Natural language processing (NLP)-based
models in triage have the potential to improve the early detection of MIS and to actively support the
clinical staff.

Keywords: artificial intelligence; emergency department; major ischemic stroke; word2vec

1. Introduction

Major ischemic stroke (MIS) affects over 600,000 patients/year, being among the top
five causes of death and the first cause of disability in the United States [1]. The MIS evolu-
tion time is 10 h on average (range 6–18 h) and it has been estimated that the patient loses
1.9 million neurons for each minute that MIS is untreated [2]. The misdiagnosis of MIS has
been associated with false positives (stroke mimics) and false negatives (stroke chameleons)
in up to 26% and 43% of cases, respectively [3]. Randomized trials demonstrated that the
best outcome is achievable within 4.5 h from the onset of stroke [4–8]. Accordingly, an
early and accurate diagnosis of possible MIS patients and their aggressive treatment are
mandatory [2,3,9–12]. While vital, the involvement of human resources such as nurses,
neurologists, and radiologists has been reported to act as a time-limiting step in the stroke
triage and imaging pathway, especially because this expertise may not be available at
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all sites or times [2]. These are the main reasons for the increasing interest toward the
automatization of the acute management of MIS. Machine learning-based technology has
already been used in acute ischemic and hemorrhagic stroke imaging [2,13,14]. However,
the semantic models of representation languages and their potential advantages in the
optimization of the MIS management still remain largely underestimated.

The aim of the present study is to test the feasibility of the implementation of the
word2vec word embedding-based AI model in decreasing the risk of false negatives during
the triage of patients with a suspected diagnosis of MIS in the emergency department (ED).

2. Methods

The python code for this project is available in the GitHub repository at the following link:
https://github.com/pimorandi/MIS_in_ED_admissions (accessed on 14 November 2022).

2.1. Data Collection

The study was approved by the Internal Review Board of Humanitas Research Hospi-
tal. The patients’ data were retrospectively collected from clinical notes at triage of the ED
and referred to the timeframe January 2015–March 2021.

Admission diagnoses were derived from the assigned International Classification of
Diseases 9th revision (ICD-9) code after the first visit. The ICD-9 codes specifically selected
for their relevance to an MIS were as follows: 434.01 (cerebral thrombosis with cerebral
infarction); 434.90 (cerebral artery occlusion, unspecified without mention of cerebral
infarction); 434.91 (cerebral artery occlusion, unspecified with cerebral infarction).

2.2. Text Preprocessing

The text data underwent “tokenization” consisting of some preprocessing steps to
clean and normalize the variables and to separate the paragraphs into words (tokens). Text
words were lowercased and normalized through the removal of punctuation, numbers,
and non-ASCII characters. A white space character was used as a delimiter for each
token, transforming the paragraphs into lists of tokens. Stop words, such as prepositions
and articles, were removed to further clean the texts from undesired tokens. The last
preprocessing step was the “lemmatization”, aimed at reducing the number of different
tokens. The TreeTagger library was used for this step [15].

2.3. Text Data Vectorization

The word2vec word-embedding artificial intelligence algorithm was used for the text
data vectorization. To produce the embedding, word2vec builds a shallow neural network
able to predict a word given its context. The values assumed by the intermediate layer
during this prediction are then used as embedding for the given word. The embedding
dimension N chosen in this setup is 300, meaning that each word is transposed to a
numerical vector of 300 dimensions (Figure 1). The training of the word2vec model was
performed using the Gensim Python library [16].

The final vector for each paragraph was obtained averaging the values of the embed-
ding tokens.

2.4. Classification and Model Training

Prior to the training, we employed Propensity Score Matching (PSM) [17] to our
available confounders (age and gender) to mitigate the bias effect that may skew the results
from our model. We devised this latter methodology to retain 100 controls with matched
confounders for each MIS sample. The model performances were evaluated via stratified
five-fold cross-validation using the scikit-learn Python library [18]. The chosen model
was a Gradient Boosted Classification Tree (LightGBM library [19]) and the optimal choice
of hyper-parameters was performed using a Bayesian optimization framework (scikit-
optimize library) [20]. A logistic regression and a single hidden-layer neural network were
also tested, and their performance can be found in Appendix A. The chosen optimization
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metric was the F1 score since it is a metric particularly fit to deal with imbalanced datasets
defined as the harmonic mean of precision and recall. To deal with the data imbalance,
different weights were associated with the two classes.
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3. Results
3.1. Dataset

The dataset was composed of 305,227 ED admissions divided into 648 MIS and
304,579 non-MIS. The number of female admissions in these two groups is respectively
305 (47.1%) and 148,464 (48.7%). The mean age is 75 (Q1 = 63.9, Q3 = 83.9) for MIS
observations and 55 (Q1 = 38.4, Q3 = 73.8) for non-MIS (Table 1).
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Table 1. Gender and age distribution before PSM.

Control MIS Measure p-Value

Female 148,464 (48.7%) 305 (47.1%) # 0.13
Age 55 (Q1 = 38.1, Q3 = 73.8) 75 (Q1 = 67.9, Q3 = 83.9) Years <<0.001

Admissions 304,579 648 #

Q1: first quartile, Q3: third quartile, #: not available.

Since age is strictly correlated with the outcome, the control class had to be subsampled
to account for its covariate effect using a PSM technique. The subsampling ratio was 100:1,
so for each MIS observation, 100 control observations were selected. After PSM, both
gender and age have a non-significant p-value related to the outcome. The final cohort is
composed of 65,448 observations divided into 648 MIS and 64,800 controls (Table 2).

Table 2. Gender and age distribution after PSM.

Control MIS Measure p-Value

Female 30,163 (46.5%) 305 (47.1%) # 0.13
Age 75 (Q1 = 68.3, Q3 = 83.9) 75 (Q1 = 67.9, Q3 = 83.9) Years 0.86

Admissions 64,800 648 #

#: not available.

3.2. Classification

In Table 3 is shown the average performance in both the train and test steps of the
cross-validation using different metrics. As can be seen, the model is able to learn and
generalize to new data. In Figure 3 are plotted the mean ROCs for the train and test steps
during cross-validation.
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Table 3. Performance metrics in the training and testing datasets of the five-fold cross-validation
shown as mean (± standard deviation).

Train Test

Control MIS Control MIS

F1 0.941 (±0.001) 0.137 (±0.002) 0.941 (±0.002) 0.132 (±0.005)
Precision 0.998 (±0.001) 0.074 (±0.001) 0.998 (±0.001) 0.072 (±0.003)

Recall 0.891 (±0.002) 0.878 (±0.005) 0.891 (±0.005) 0.839 (±0.021)
Support 243,663 519 60,916 129
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The word2vec algorithm was able to identify the top 15 words positively correlated to
MIS diagnosis using the cosine similarity as a metric between the average stroke patients
text vector and the different word vectors. Dysarthria and aphasia were the text words
more strongly correlated with the correct diagnosis of MIS (Figure 4).
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Afasia or afasico/a: aphasia/aphasic (masculine and feminine adjective); clonie: clonic
movements; disartria/disatria: dysarthria, the second word is misspelled/orthographically
wrong; disartrico/a: dysarthric (masculine and feminine adjective); disorientamento: disori-
entation; eloquio: language; espressivo: expressive, a type of aphasic speech (e.g., expressive
aphasia); ipostenia/ipoastenia: weakness, the second word is misspelled/orthographically
wrong; plegia: plegy; sguardo: gaze.

A brief analysis of the predictive performance of the model stratified per color code
(Table 4) shows that for those that are labeled low priority (green) at ED entrance, the model
correctly identifies MIS patients when the clinical staff do not; in other words, 61.3% of
patients would have been assigned as low priority when in reality they were MIS patients.
Of course, due to the low precision for green codes (0.009), the model would trigger far too
many false positives to be implemented in an actual clinical setting.

Table 4. Cross-validation performances across color codes.

Color Code Precision Recall F1

Control MIS Control MIS Control MIS

Red 0.987 0.138 0.721 0.834 0.833 0.237
Yellow 0.995 0.110 0.827 0.864 0.903 0.195
Green 0.999 0.009 0.927 0.613 0.961 0.018

4. Discussion
4.1. Diagnosis of Major Ischemic Stroke

The present study strived to test the feasibility of the implementation of an NLP-
based classification model to optimize the acute management of MIS from triage clinical
notes. More than 80% of strokes result from ischemic damage to the brain due to an acute
reduction in the blood supply. The goal in the management of acute ischemic stroke is early
arterial recanalization to limit the brain damage, since the delay in starting the treatment is
associated with worse physical and cognitive outcomes, with a high level of disability and
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comorbidities [2,21,22]. Although faster triage, improvements in neuroimaging techniques,
thrombolysis, and thrombectomy represent the major advances of MIS management, the
overall outcome of patients affected by stroke is still largely dependent on a prompt and
accurate diagnosis at admission at the ED [12,23–28]. Based on our results, keywords-based
analysis seems to point to promising results that may yield to a more rapid diagnosis of
stroke. The cross-validation performance shows that stroke patients were identified with a
recall of 83.9% and an AUC of 93.1%. Dysarthria and aphasia were the text words most
importantly correlated with the stroke diagnosis. It is noteworthy that the model was
still able to correctly associate a suspected diagnosis of stroke with those misspelled text
words that were accidentally recorded during the triage. “Disatria” instead of “disartria”,
namely, dysarthric speech, was an example. The practical implication of such a model
in daily practice would be non-negligible, since it may contribute to the optimization
of the acute management of patients affected by MIS. In a combined vision, where the
machine learning models are integrative rather than substitutive of the human resources,
the availability of a computer alert generated by the algorithm may be of help to nurses and
others to more rapidly recognize those patients suspected to be affected by ischemic stroke.
Further algorithms such as those reported in the present study may also be adopted for
hemorrhagic stroke, as well as other vascular and non-vascular pathologies of the central
nervous system for which a multifactorial genesis is now recognized [29–33].

4.2. Word2vec Word Embedding-Based Artificial Intelligence Model

One-hot encoding and word embedding are two of the most popular concepts for
vector representation in natural language processing. Word2vec is an algorithm created
in 2013 that uses a neural network model to identify words that are associated starting
from a big matrix of datasets, and once trained, it can select words with similar meaning
from the words surrounding it. It represents each word identified by a list of numbers
called vectors. The vectors are selected with a simple mathematical function and share a
certain level of semantic similarity between the words associated with those vectors [34].
The choice of word2vec embedding-based algorithm lets us work on a large volume of
data in a simple way. This algorithm selects words with intrinsic meaning, starting with
a numeric vector obtained from a dependent variable. From the numeric vector (whose
length is about 300, established by our team), we process data with a statistic model that
can interpret artificial neural networks obtained using the word2vec algorithm. Another
algorithm that could be used because of the ease of implementation is “one-hot encoding”,
working in a faster way than word embedding: every word has its own value in a vector,
but in this process, it loses the semantic meaning of the word in a sentence. One-hot
encoding was one of the first techniques used in artificial intelligence models, but with the
birth of word embedding, it becomes obsolete, especially in scientific fields. Furthermore,
by using a one-hot encoding algorithm, the size of the embedding vector grows with the
vocabulary, so it could be difficult to elaborate those data because of the entity of the
matrix of embedding obtained, so it does not work well in applications that require a
large amount of data. Word2vec, with its implementation, could be a good middle ground
because the precision of word embedding depends on the volume of the dataset, so it
works well on large datasets obtaining the best word embedding with the smallest matrix.
Other algorithms for word embedding include GloVe and FastText. With word2vec, we
train a neural network with a single hidden layer to predict a target word based on its
context. With FastText, each word is composed of a character n-gram so it can help to
generate better word embeddings for rare words or for out-of-vocabulary words; a big
limit of this algorithm is that it takes longer to do the embedding and as the dataset grows,
the memory required grows too, so in this way is no different to one-hot encoding. The
GloVe is a word-embedding technique similar to word2vec, but it differs from it because
it is a count-based model instead of a predictive model. In fact, GloVe focuses on word
co-occurrences over the whole corpus, while word2vec leverages co-occurrence within a
local context (neighboring words). GloVe embeddings relate to the probability that two
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words appear together. Word-embedding techniques, with respect to count-based methods,
are used in different language tasks such as semantic relatedness, synonym detection,
concept categorization, and analogy. With word2vec, we observe large improvements in
the accuracy at a much lower computational cost, e.g., it takes less than a day to learn
high quality. As reported, the need for continuous training of the model, by means of the
increase of the data collected from other clinical studies, is a key aspect for the further
improvement and optimization of the model itself [35,36].

Lastly, it should be highlighted that the word2vec model has a non-negligible rate
of false negatives. Despite this aspect raising concerns about the overall accuracy, it must
be stressed that in the authors’ experience, the model was proven to be able to emulate
human performance, decreasing the rate of human error, but keeping the clinical biases. For
this reason, the model cannot theoretically overcome the overall human performance. We
consider this aspect an intrinsic limitation of the model rather than a weakness of the study.
Other promising scenarios are worthy of mention since they may prove more accurate in
the near future, as suggested by some groups [37–40].

Limitations of the Study

The first limitation of the present study lies in the exclusion of hemorrhagic stroke
or TIA, considering only MIS. Furthermore, this word-embedding-based model did not
explore the vital signs, which are extremely useful to detect the critical issues of the patient.
Using word2vec, we obtained the classification of a word strongly associated with MIS
in terms of clinical features, but this algorithm does not work on the definite diagnosis
of the disease. With AI models, it would be easy to create a warning signal with those
“embedded words”, popping up on computers of triage’s nurses, but the meaning of that
“alert” must be evaluated according to the cases. For example, one of the words most
associated with stroke diagnosis, according to the word2vec model, is “disorientation”,
but only in a few cases is this clinical feature observed in patients. Another limitation
of the algorithm is that the detection of true positive cases is not well balanced by the
identification of true negative rates. It could overestimate the real impact of the disease
in triage. With word2vec, the word embedding obtained using the algorithm is “static”,
which means that the model has no awareness of the context in which the word is found.
By using recurrent neural networks, the word embedding could become dynamic and more
accurate: this new model is able to detect the hidden relationship between inputs as well as
to provide a precise sequence prediction of words, giving a high level of accuracy to the
results. Future perspectives could involve dynamic models of word embedding such as
BERT. Outcome selection is another limitation of this study since we only used the ICD-9
at hospital discharge. Potentially, we would need verified outcomes at 14/28 days and
6 months for every suspected case of MIS at ED admission that was not hospitalized. Those
outcomes would further alleviate clinical and other biases.

5. Conclusions

The present feasibility study demonstrated that the word2vec word embedding-based
AI model was reliable in identifying a suspected diagnosis of MIS during patients’ triage in
the ED.

Further studies on larger patient cohorts are mandatory to definitively validate the
proposed model.
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Appendix A

In addition to the Gradient Boosted Trees, the model selection process also considered
a logistic regression and a feed-forward neural network. The logistic regression underwent
the same hyper-parameter optimization described in Section 2.4. The neural network is com-
posed of a single hidden layer whose dimensionality has been set by manual investigation
to six neurons. The performances are shown below.

Table A1. Neural network performances.

Train Test

Control MIS Control MIS

F1 0.959 (±0.005) 0.187 (±0.018) 0.957 (±0.007) 0.175 (±0.018)
Precision 0.999 (±0.001) 0.109 (±0.011) 0.998 (±0.001) 0.098(±0.011)

Recall 0.921 (±0.010) 0.959 (±0.011) 0.920 (±0.013) 0.847 (±0.029)
Support 243,663 519 60,916 129

Table A2. Logistic regression performances.

Train Test

Control MIS Control MIS

F1 0.955 (±0.004) 0.177 (±0.011) 0.954 (±0.004) 0.169 (±0.011)
Precision 0.999 (±0.001) 0.098 (±0.007) 0.998 (±0.001) 0.094(±0.007)

Recall 0.914 (±0.008) 0.923 (±0.006) 0.914 (±0.009) 0.879 (±0.019)
Support 243,663 519 60,916 129

As can be seen, both of these models seem to lead to better classifications compared to
the Gradient Boosted Trees, but a more in-depth analysis of the performances across color
codes shows that the ensemble method generalizes better to low priority code (green).

Table A3. Neural network performance across color codes.

Color Code Precision Recall F1

Control MIS Control MIS Control MIS

Red 0.990 0.163 0.762 0.869 0.861 0.275
Yellow 0.996 0.134 0.861 0.871 0.923 0.233
Green 0.999 0.013 0.953 0.568 0.976 0.026

Table A4. Logistic regression performance across color codes.

Color Code Precision Recall F1

Control MIS Control MIS Control MIS

Red 0.995 0.163 0.743 0.939 0.851 0.279
Yellow 0.997 0.126 0.846 0.897 0.915 0.221
Green 0.999 0.013 0.952 0.568 0.975 0.026
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