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Abstract: The Persulfate‑based advanced oxidation process is the most efficient and commonly used
technology to remove organic contaminants inwastewater. Due to the large surface area, unique elec‑
tronic properties, abundant N functional groups, cost‑effectiveness, and environmental friendliness,
N‑doped biochars (NBCs) are widely used as catalysts for persulfate activation. This review focuses
on the NBC for oxidative degradation of organics‑contaminated wastewater. Firstly, the prepara‑
tion and modification methods of NBCs were reviewed. Then the catalytic performance of NBCs
and modified NBCs on the oxidation degradation of organic contaminants were discussed with an
emphasis on the degradation mechanism. We further summarized the detection technologies of ac‑
tivation mechanisms and the structures of NBCs affecting the PS activation, followed by the specific
role of theN configuration of theNBC on its catalytic capacity. Finally, several challenges in the treat‑
ment of organics‑contaminated wastewater by a persulfate‑based advanced oxidation process were
put forward and the recommendations for future research were proposed for further understanding
of the advanced oxidation process activated by the NBC.

Keywords: N‑doped biochar; persulfate; advanced oxidation process; N configuration; wastewater

1. Introduction
With the rapid development of urbanization and industrialization inmodern societies,

environmental crises have drawn the world’s attention towards a sustainable future [1,2].
Over the past decades, the deterioration of water resources has always been a serious prob‑
lem. Therefore, a variety of technologies have been developed to remedy various organic
pollutants, including antibiotics, dyes, phenols, and pesticides, in water matrices [3–5].
For example, physical methods such as adsorption and flocculation can easily remove
harmful substances from water by transferring them from one phase to another, but es‑
sentially they cannot remove organic matter completely [6]. Biological methods include
the aerobic‑activated sludge method and the sludge anaerobic digestion biodegradation
method which can also remove organic contaminants via microorganisms; however, be‑
cause microorganisms have selectivity to the degradation of pollutants, they cannot com‑
pletely degrade and mineralize the pollutant molecules thus making the effluent unable
to meet the water quality requirements [7]. Therefore, it is urgent to develop an efficient
and environmentally friendly technology to control water pollution. The chemical method
is an effective alternative. The advanced oxidation processes (AOPs) with the generation
of free radicals as the core is a new technology for the treatment of organic pollutants
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in water in recent years [8–10]. For chemically oxidization‑based AOPs, the free radicals
produced by various activated peroxides (e.g., ozone, persulfates, and hydrogen peroxide,
etc.), such as hydroxyl radicals (·OH), sulfate radicals (SO4

·−), and superoxide ion radicals
(O2

·−), are generally considered as themajor species of reactive oxygen species (ROSs) that
cause organic degradation. In these cases, hydroxyl radicals (·OH) produced in the Fenton
or Fenton‑like processes always have disadvantages such as pH restriction (pH = 3–4), low
catalytic efficiency of Fe2+, and high quenching of ·OH reactions [11]. Compared with Fen‑
ton oxidation, persulfate‑based AOPs (PS‑AOP) have the advantages in terms of higher
redox potential, wider pH range, and a longer half‑life period [8,12].

In general, persulfates (PSs), such as peroxymonosulfate (PMS) and peroxydisulfate
(PDS) shown in Figure 1a,b, has a low oxidative potential (2.01 V and 1.82 V for PDS and
PMS, respectively) for organic decomposition [13–15]. Therefore, the PS‑AOP relies on
the reactive species produced by PS activation to degrade pollutants, such as the gener‑
ated SO4

·− has a pair of arc pair electrons which makes it have a high oxidation potential
(2.5–3.1 V) [16]. The type of produced reactive species depends on the activation mecha‑
nism of the PS, including radical and nonradical pathways. The radical pathway produces
a highly reactive SO4

·− and ·OH from PDS/PMS through O‑O bond cleavage. The non‑
radical pathway produces singlet oxygen (1O2) through nucleophilic addition of PMS, or
forms the surface activate complex by binding PMS/PDS onto the catalyst surface (electron
transfer) [17].

One of the key factors of the PS‑AOP is the catalyst which can determine the type
of PS activation pathway and the efficiency of the pollutants degradation. In PS‑AOP,
catalysts can be roughly divided into two types: homogeneous catalysts dominated by
transition‑metal ions [18], and heterogeneous catalysts including zero‑valent metals [19],
metal oxides [20], and carbon‑based materials [21,22]. Homogeneous catalysts possesse
better reaction efficiency but causes a secondary pollution resulting from metal ion leach‑
ing. Therefore, a heterogeneous catalyst is more commonly used in PS‑AOP. Recently,
carbon‑based materials have been used as a new type of green catalyst due to their large
surface areas, unique electronic properties, sp2‑hybridized carbon (Sp2‑C) configuration,
and non‑secondary pollution [23–27]. Because commonly used carbon precursors in car‑
bon catalysts (such as fullerenes, carbon nanotubes, and graphene oxide) are expensive, it
is difficult to use them on a large scale and they are hazardous to the environment. There‑
fore, low cost and an environmentally friendly biomass that can be applied on a large scale
are promising materials for the preparation of carbon catalysts [28–30].

Recently, biochars derived from biomass waste such as spend coffee grounds, sludge,
rice straw, and corncobs have drawn increasing attention as a potential carbon‑based cat‑
alyst for pollutant removal [31–34]. As a carbon‑based catalyst, biochars are usually pro‑
duced by the slow pyrolysis of a biomass in anoxic or anaerobic environments; however,
the primary biochar has limited catalytic activity due to the disordered structure of amor‑
phous carbon, which cannot effectively realize directional charge transfers. As an effec‑
tive method to induce a Sp2‑C skeleton to offer more active sites and to regulate its elec‑
tronic properties, heteroatom doping, especially N‑doping, has attracted extensive atten‑
tion [35–38]. High‑electron cluster density is required to start the catalytic process. Un‑
der certain electron environments, electron reconfiguration can be caused by accelerated
electron transfer and heteroatomic doping, which is a theoretically feasible approach for
PS‑activation‑state formation and active species generation. Introducing a heteroatom into
the carbon lattice increases the degree of charge delocalization, thus breaking the inertia
of the Sp2‑C network structure.
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As shown in Figure 1c, for the N‑doped biochar (NBC), pyridinic N, pyrrolic N, and
graphitic N are the three main N‑bonding configurations in the carbon networks struc‑
ture [40]. Pyrrolic N with sp2 hybridization exists in the six‑membered ring bonding of
two C atoms at the edges of NBC, providing one p electron for the π‑system. Pyridinic
N with sp2 hybridization can exist in a five‑membered ring, providing two p electrons to
the aromatic system [41]. Graphitic N generally refers to the bonding of sp2‑hybridized
N atoms with three sp2‑C atoms [42,43]. However, there is a lack of review on the role of
different N configuration in PS‑AOPs.

Therefore, in order to reveal the relationship between the N configuration and the
catalytic efficiency/mechanism of NBC in PS‑AOP, we believe that it is timely to conduct
a comprehensive review of the articles and progress of NBC, especially with respect to its
synthesis process, applications, performance, and feasibility. This review includes four
main parts: (1) Overview of NBC preparation and modification methods; (2) Catalytic
ability of NBCs andmodified NBCs on PS activation to degrade organic contaminants and
the detection technologies for PS activation mechanism; (3) How the structure of NBCs
are affecting the PS activation and the role of N configuration; (4) Recommendations for
future work.

2. Preparation and Modification of NBC
The preparation methods of NBCs can be mainly divided into two types: in situ

method and the post‑treatmentmethod. The in situmethoduses naturallyN‑rich biomasses
directly as N sources for N‑doping, such as sludge, spirulins residue, lotus leaf, bean dreg,
etc. The post‑treatment method uses N‑based chemicals as the N dopant including urea,
melamine, thiourea, NH4OH, NH4NO3, etc. In addition, the catalytic performance of
NBCs can also be improved by co‑doping with other elements (i.e., metal element and
non‑metal element). The specific NBC synthesis and modification is described below.

2.1. Preparation Methods of NBC
N‑doping is considered to be an effective method to enhance the catalytic perfor‑

mance of inert carbonaceous materials by tuning the spin density and charge distribu‑
tion [31,44–47]. As shown in Table 1, we summarized the recentNBCmaterials for PS‑AOP.
We found that aquatic plants such as lotus leaves, spirulina residue, and water hyacinth
are always used as biomass feedstock for the in situ method. The reason may be related
to the fact that aquatic plants can absorb inorganic N from water sludge. Liu et al. [48]
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reported that water hyacinth can accumulate a considerable amount of the inorganic N
in domestic sewage, while the free‑floating perennial plant contains about 30% protein.
Since these aquatic plants can obtain N from sludge, sludge is also a good natural N
source. Yin et al. [49] reported the N content of the N‑enriched biochar prepared from
sludge reached up to 4.94%. The content of graphitic N of biochar prepared from sludge
is particularly prominent, which proves to be a favorable N configuration of PS‑AOP [50].
In addition, external N sources can be added to the sludge to prepare NBCs. Yin also re‑
ported that through the co‑pyrolysis of sludge and urea, the N content was increased from
4.94% to 11.16%, and the corresponding catalytic efficiency was also greatly increased.

In addition to sludge, bamboo biomass is also a suitable feedstock with the addition
of external N dopants. Zhang et al. [51] reported that N content of maso bamboo biochar
increased from 0.45% to 5.04% after N‑doping. There are also some biomass materials that
are not suitable for the preparation of NBCs due to their own characteristics. Oh et al. [52]
prepared NBCs by the co‑pyrolysis of different biomass materials with urea, and found
that the structural characteristics of the biomass materials have an important influence
on the degree of N‑doping. Biomass with high inorganic content (e.g., banana peels, rice
straw, etc.) may not suitable for the preparation of NBCs, because the high content of
inorganic salts reduces the C content which is unfavorable for N‑doping [53]. In addition,
the presence of veins in the biomass (e.g., dry leaf) leads to a low specific surface area (SSA)
of NBCs, because the chemical doping is more difficult for this structure [52].

Xu et al. [54] investigated how the different organic N‑containing compounds includ‑
ing urea, melamine, thiourea, and dicyandiamide affect the catalytic activity of the NBC.
Mian et al. [50] prepared NBC from widespread sewage sludge with inorganic N dopant
(i.e., NH4OH), and the NBC deposited a large amount of inorganic salts on its surface
which is not favorable for PS‑AOP. Therefore, urea is currently the main N dopant for the
preparation of NBCs for PS‑AOP. However, the dominant N configuration of NBCs pre‑
pared by urea is different for different biomasses. Therefore, the precise synthesis of NBCs
is still challenging.

Table 1. Preparation of N‑doped biochar from different biomass by pyrolysis.

Method Biomass N‑Dopant Temperature
(◦C)

N Content of
Biochar (%)

SSA
(m2g−1) Ref.

In situ

Spirulins residue 400–900 0.77–3.61 67–117.9 [55]
Water hyacinth 600–800 2.8–5.02 700.6–1199.3 [48]
Candida utilis 700 3.69–5.91 3.8–47.1 [56]

Sludge 700 4.94 ‑ [49]
Lotus leaf 700–900 1.58–3.43 118.93–360.49 [57]
Bean dreg 400–900 1.27–3.23 31.6–3194.9 [58]

Passion fruit shell 900 1.43 536.55 [59]

Post‑
treatment

Dry leaf Urea 1000 1.0 118

[52]
Spend coffee ground Urea 1000 2.1 439

Banana peel Urea 1000 1.1 450
Orange peel Urea 1000 1.0 238
Saw dust Urea 1000 0.3 423
Corncob Urea 700 11.36 ‑ [49]Sludge Urea 700 11.16 ‑

Wood residue Urea 800 12.1 588 [60]
Rice straw Urea 1000 4.39 158.3 [61]
Sludge Urea 700 0.39 161.004 [62,63]

Rice straw Urea 700–900 0.12–18.35 333.7–514.3 [64]
Sludge Urea 500–800 12.141–24.968 241.85–370.54 [65]

Spend coffee powder Urea 500–1000 16.6–25.7 23.3–438.8 [33]
Moso bamboo Urea 700 5.04 250.31 [51,66]
Sewage sludge Urea 300–900 0.081–0.384 14.4–36.5 [62,67]

Corncob Urea 700 10.43 4.98 [31]
Pine‑wood 2‑methylimidazole 800 2.06 1398 [64,66]
Straw Thiourea 700–900 2.21–4.35 417.24–570.74 [68]
Sludge NH4OH 600 3.9 50.6 [50,51]
Reed NH4NO3 400–900 1.76–8.11 71.5–498.7 [63,67]

Sawdust Dicyandiamide 800 19.53 174.45 [50,54]
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2.2. Modification of NBC
Co‑doping with other atoms is considered as a modification method to enhance the

catalytic performance ofNBCs. The co‑doped elements aremainly divided into non‑metallic
elements (e.g., S, B) and metal elements (e.g., Fe, Cu, Co).

Boron is one of the main non‑metallic elements co‑doped in NBCs because its atomic
size is similar to that of C atom, and it is easy to incorporate into the C grid (usually ‘B‑
C’ and ‘B‑O’ are incorporated into the middle of C grid). B‑doping induces a shift in the
conduction band of the Fermi level, which can improve the surface electron transfer of
carbonmaterials [69]. B‑doping also results in the grafting of oxygen to the carbon surface,
improving the electron plane and chemical stability of carbon. Due to the high stability of
the boron group, the B‑doped biochar has better long‑term durability than the N‑doped
carbon [70].

As a non‑metallic element, the incorporation of S atom into NBCs for PS‑AOP has
attracted extensive attention. S atoms are generally incorporated into NBCs in the form of
“C‑S‑C”. Since its electronegativity is higher than that of C atoms, the incorporation of S
atoms into the C matrix can improve charge transfer capacity [71,72]. At present, there are
two main preparation methods for S‑doped NBCs (S‑NBC). One is one‑step pyrolysis that
directly co‑pyrolysis the biomass and N/S‑rich precursors (such as thiourea, tert‑butanol).
The other is two‑step pyrolysis that co‑pyrolysis the N‑containing precursor and biomass
first and then co‑pyrolysis with S‑containing precursor (e.g., thiophene). The catalytic ef‑
fect of S‑NBCprepared by one‑step pyrolysis is not as good as that ofNBC [51,61] prepared
under the same conditions, while the catalytic effect of S‑NBC prepared by two‑step pyrol‑
ysis (sequential impregnation) method is stronger [73]. This shows that the properties of
S‑NBC manufactured by different preparation methods are different. Therefore, further
research on the synthesis and catalytic mechanism of non‑metallic element‑co‑doped NBC
is needed, which will be further discussed in Section 3.2.

Metal atoms can also be incorporated into NBCs to enhance the PS‑AOP catalytic
degradation ability [74,75]. Doping with N and Cu (Cu‑NBC) is an effective way to pre‑
pare high‑efficiency biochar‑based catalysts. The prepared Cu‑NBC had massive carbon
structure and urchin‑like structure of Cu, and the Cuwere themain active substances. This
material has advantages including low consumption of PS, strong pollutant degradation
efficiency, and suitability for a wide range of pH conditions [75]. Similarly, co‑doping Co
into NBC can synergistically enhance the catalytic activity of the catalyst for PMS/PDS ac‑
tivation. The valence state transition of the divalent and trivalent Co ions has a significant
impact on the activation mechanism [76].

In recent years, many researchers have demonstrated that Fe andN co‑doped biochars
(Fe‑NBCs) have high catalytic performance in PS‑AOP [74,77–80]. As shown in Figure 2,
Xu et al. [78] used dicyandiamide as theN source and FeCl3 as the iron source, respectively,
and then heated, stirred, and dried with sawdust in water to obtain Fe‑NBC. The prepared
Fe‑NBC has high SSA and abundant defects. Fe and the synergistic effect exhibited by
N after co‑doping endows it with superior catalytic ability in PS‑AOP (removal efficiency
=97%). Woody biomasses such as corn stover [79,81] and rice husk [77] can be used to pre‑
pare Fe‑NBC using a impregnation‑pyrolysis method. For sludge biomass, the source of
sludge needs to be paid attention. Wu et al. [82] studied sludge from different sources and
found that the municipal sewage sludge is rich in metals and other insoluble substances.
In the process of preparing Fe‑NBCs from municipal sewage sludge, Fu et al. [74] used
ethylene diamine tetraacetic acid (EDTA)‑citric acid for pretreatment to recover the heavy
metals in the sludge. Therefore, for the sludge extracted from urban domestic sewage, it
is necessary to pay attention to the risk of metal overflow if mixed with metal elements.
Doping metal atoms can effectively enhance the catalytic activity of NBC, but precise con‑
trol of metal incorporation is a major challenge in synthesis. In addition, the synergistic
mechanism of different metals should be extensively studied.
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3. Catalytic Performance of NBC on Persulfate Activation and the Activation
Mechanism
3.1. NBC for PS‑AOP

The characteristics of a NBC are high SSA, a certain degree of graphitization and de‑
fects, abundant N functional groups, etc. Table 2 summarizes the previous work using
NBC catalysts to activate PDS/PMS to degrade organic pollutants.

For the current activation mechanism of NBCs involved in PS‑AOP, the free‑radical
pathwaydegradationmechanism represented by SO4

·− and ·OH is relatively simple. NBCs
can act as electron donors and activate PS by electron transfer through the cleavage of O‑O
bond and thereby produce SO4

·− and ·OH as follow (Equations (1) and (2)).

HSO−
5 + e− → SO•−

4 + ·OH (1)

S2O2−
8 + e− → 2SO•−

4 (2)

Then pollutants (electron donor) can be oxidized into CO2 and H2O by SO4
·− and

·OH (electron acceptor) as follows (Equations (3) and (4)).

Pollutants + SO•−
4 → intermediates → SO2−

4 + H2O + CO2 (3)

Pollutants + ·OH → intermediates → H2O + CO2 (4)

However, the free‑radical pathway usually only plays an auxiliary role in the NBC/PS
system, and the reason may be that the incorporation of N enhances the non‑radical path‑
way [83]. Pei et al. [62] prepared NBCs (i.e., urea‑doped sludge biochar) to activate PDS
for the degradation of sulfadiazine. It demonstrated that the doping of N atoms positively
charged the adjacent C atoms, thereby allowing the electrons to interact with S2O8

2− by
direct transfer and generate 1O2 via non‑radical pathways (Equation (5)) [84].

NSBC/SO3 − O − O − SO2−
3 → NSBC/1O2 + 2SO2−

4 (5)

In addition, the C=O functional group formed during the pyrolysis of NBC can also
generate 1O2 in a similar manner, see Equations (6)–(8) [12].

NSBC = O + S2O2−
8 + OH− → NSBC − OH/SO3 − O − O− + SO2−

4 (6)

NSBC − OH/SO3 − O − O− + OH− → NSBC − O−/SO3 − O − O− + H2O (7)

NSBC − O−/SO3 − O − O− + S2O2−
8 + 2OH− → NSBC = O + 3SO2−

4 + 1O2 + H2O (8)
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Table 2. List of N‑doped biochar as catalysts for PS‑AOP.

Biomass Oxidant Catalysts Pollutant Reaction
Conditions

Removal
Efficiency

(%)

Rate
Constant
(min−1)

Active Sites Activation
Mechanism Ref.

Raw silk PMS PGBF‑N‑900 Tetracycline

T = 25 ◦C, pH = 7,
Catalyst = 0.1 g/L,
[PMS] = 1 mM,
[TC] = 20 mg/L

96.5 0.0206
C=O,

Graphitic N,
Defect sites

SO4
·−,

·OH, 1O2,
Electron transfer

[85]

Corncob PDS NBC3 Sulfadiazine

T = 25 ◦C, pH = 7,
Catalyst = 1.0 g/L,
[PDS] = 1 mM,
[SDZ] = 10 µM

96.5 0.0748
Pyridinic N,
Pyrrolic N,
C‑N atoms

Electron transfer [31]

Candida utilis PMS NCS‑6 Bisphenol A

T = 25 ◦C, pH = 7,
Catalyst = 0.4 g/L,
[PMS]= 0.4 g/L,
[TC] = 20 mg/L

100 1.36

Sp2‑C,
Defect sites,
Graphitic N,
Pyridinic N

SO4
·−,

·OH, 1O2,
Electron transfer

[56]

Sludge PDS NSBC‑700 Sulfadiazine

pH = 3.1,
Catalyst = 1.0 g/L,
[PDS] = 600 mg/L,
[SD] = 20 mg/L

97 ‑

C (adjacent to N
atom),
C=O,

Pyridinic N

Surface‑bound
radical,
1O2

[62]

Sludge PMS NC‑700 Methylene blue

T = 25 ◦C,
Catalyst = 0.3 g/L,
[PMS] = 0.4g/L,
[MB] = 50 mg/L

93.2 0.3009 Graphitic N,
C=O

1O2,
SO4

·−,
·OH

[65]

Pinewood PMS NKBC800 Ciprofloxacin

T = 25 ◦C,
Catalyst = 0.2 g/L,
[PMS]= 3 mg/L,
[CIP] = 50 mg/L

87 0.053
C=O,

Pyridinic N,
Sp2‑C

SO4
·−,

·OH, 1O2,
Electron transfer

[66]

Spirulina
residue PDS SDBC900 Sulfamethoxazole

T = 25 ◦C,
Catalyst = 0.5 g/L,
[PDS]= 6 mM,

[SMX] = 20 mg/L

100 ‑ Graphitic N Electron transfer,
O2

·− [55]
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Table 2. Cont.

Biomass Oxidant Catalysts Pollutant Reaction
Conditions

Removal
Efficiency

(%)

Rate
Constant
(min−1)

Active Sites Activation
Mechanism Ref.

Lotus leaf PDS LLC800 Acid orange 7

T = 25 ◦C, PH = 6.4 ± 0.1,
Catalyst = 0.25 g/L,

[PDS]= 4 g/L,
[AO7] = 200 mg/L

99.46 N.R Biochar Surface
SO4

·−,
·OH, 1O2,
O2

·−
[57]

Bean dreg PDS BDK900 Bisphenol A
Catalyst = 0.1 g/L,
[PDS]= 5 mM,

[BPA] = 80 mg/L
100 0.4296 Pyridinic N

Surface‑bound
radical,

Electron transfer
[58]

Rice straw PMS NRSBC800 Acid orange 7

T = 25 ◦C,
Catalyst = 100

mg/L,
[PMS]= 2 mM,

[AO7] = 50 mg/L

100 0.21
Graphitic N,
Pyridinic N,
Pyrrolic N

SO4
·−,

·OH, 1O2,
O2

·−
[64]

Straw PDS N‑BC Tetracycline

T = 25 ◦C, Catalyst = 200
mg/L,

[PDS]= 2 mM,
[TC] = 20 mg/L

100 ‑

Graphitic N,
Defect edge,

Graphitization
structure

Surface‑bound
reactive species,
Electron transfer

[68]

Sorghum stalk PDS SG650 Sulfadiazine

T = 25 ◦C, pH = 5.8,
Catalyst = 1.8 g/L,
[PDS]= 9.1 mM,
[SDZ] = 36.3 µM

94.4 0.0102 PFR,
Sp2‑C

Electron transfer,
1O2

[86]

Reed PDS N‑BC Orange G

T = 25 ◦C, pH = 5.8,
Catalyst = 0.2 g/L,
[PDS]= 2 mM,
[OG] = 50 ppm

100 0.039

C=O,
Defect sites,

N‑doped sites,
Sp2‑C

Electron transfer,
1O2

[63]

Wood residue PMS NC800–20 Acid orange 7

T = 25 ◦C, pH = 3–4,
Catalyst = 0.1 g/L,
[AO7] = 10 mg/L,

AO7:PMS ratio = 1:50

100 0.342

Graphitic N,
C=O,

Pyridinic N,
Pyrrolic N

SO4
·−,

·OH, 1O2,
Electron transfer

[60]
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Table 2. Cont.

Biomass Oxidant Catalysts Pollutant Reaction
Conditions

Removal
Efficiency

(%)

Rate
Constant
(min−1)

Active Sites Activation
Mechanism Ref.

Sludge PMS NSDB800 Sulfamethoxazole

T = 25 ◦C, pH = 3–4,
Catalyst = 0.2 g/L,
[SMX] = 0.04 mM,
[PMS] = 0.8 mM

100 ‑ Grapitic N Surface‑bound
reactive species [67]

Spent coffee
ground PMS PC‑SC Bisphenol A

T = 25 ◦C, pH = 4,
Catalyst = 0.2 g/L,
[BPA] = 5 mg/L,
[PMS] = 0.3 g/L

95% 0.072 Graphitic N,
Sp2‑C

1O2 [52]

Sawdust PMS N‑C‑d‑4–800 Bisphenol A

T = 25 ◦C, pH = 6.28,
Catalyst = 0.5 g/L,
[BPA] = 10 mg/L,
[PMS] = 2 mM

100% 1.48
Graphitic N,
Pyridinic N,
Defect sites

SO4
·−,

·OH, 1O2,
Electron transfer

[54]
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However, some studies believe that the incorporation of N atoms into biochar will
weaken the effect of C=O in the activation of PMS to produce 1O2 [61]. Wang et al. [31]
proposed an electron transfer pathway involving surface‑bound reactive complexes for the
degradation of sulfadiazine (SDZ) by activating PDS using NBCs prepared from corncob
biomasses and urea (Equations (9)–(11)). The PS‑AOP system with the electron transfer
pathway as the main pathway not only possesses broad pH adaptability, but also exhibits
high resistance to inorganic anions in the aquatic environment.

NBC + PDS → [NBC − PDS] (9)

[NBC − P
→
e DS] → NBCOX + 2SO2−

4 (10)

SDZ + [N
→
e BC − P

→
e DS] → SDZOX + NBC + 2SO2−

4 (11)

Since non‑radical pathways mainly occur at the NBC surface, the higher adsorption
capacity and similar adsorption rates allow more targeted organics to participate in the
charge‑transport process. Therefore, the enhanced adsorption between organics andNBCs
determines the non‑radical oxidation rate.

Another pathway is to complete the electron transfer with PMS through NBCs
to generate free radicals, but it is not equivalent to direct electron transfer pathway.
Wang et al. [67] proposed that PMS was adsorbed on the NBC surface to produce the
surface‑bound reactive species by inner‑sphere complexation, then the reactive species
reacted with sulfamethoxazole (SMX) resulting in the SMX degradation, as shown in
Figure 3.
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In summary, it can be concluded that the current pathway for PDS/PMS activation by
NBC is dominated by 1O2, electron transfer and surface‑bound radicals. It is supplemented
by SO4

·− and ·OH, both of themhave great effects on the degradation of organic pollutants.
Besides the abovementioned C=O, the graphitization degree of NBC, the degree of defects,
especially the type of N configurations, are all affect the catalytic activity of NBC to varying
extents. The related discussions will be presented in Sections 4.1 and 4.2.

3.2. Modified NBC for PS‑AOP
Different from NBCs, the free‑radical pathway in modified NBCs plays a more im‑

portant role in the PS‑AOP. Fu et al. [74] prepared iron species self‑doped biochar derived
frommunicipal sludge by a simple method of EDTA‑citric acid leaching/pyrolysis, explor‑
ing an efficient PMS activationmethod for perfluorooctanoic acid (PFOA) degradation. As
can be seen in Figure 4, element mapping was used to prove that there was a uniform dis‑
tribution of iron on the surface of iron self‑doped of sludge‑derived biochar (ISBC), and
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the changes in Fe2+ and Fe3+ contents before and after catalysis confirmed that iron species
induced free radicals to participate in PS‑AOP as follows (Equations (12)–(15)).

Fe2+ + HSO−
5 → Fe3+ + SO•−

4 + OH− (12)

Fe3+ + e− → Fe2+ (13)

SO•−
4 + H2O → SO2−

4 + HO• + H+ (14)

Fe3+ + HSO−
5 → Fe2+ + SO•−

5 + H+ (15)
Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 10 of 22 
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Similarly, the incorporation of S atoms into NBC forms thiophene S (C‑S‑C), which
is also considered to facilitate the cleavage of O−O in PMS/PDS, and is a key active site
for the generation of SO4

·− radicals [71,73,87]. However, the catalytic performance of a
catalyst is not simply determined by the number of active sites. Ding et al. [61] prepared
N@S co‑doped biochar by rice straw for the catalytic degradation of metolachlor (MET)
through activating PMS. It was found that N‑doping positively whilst S‑doping negatively
influenced the MET degradation process. The S‑doping modification results in negligible
charge transfer between the involved C atoms and may disrupt the charge balance of the
covalent carbon electron system, thereby disrupting charge redistribution. It should be
noted that the synergistic effect largely depends on the preparation method, and the effect
of the preparation method on the catalytic activity needs to be further studied.

Moreover, the use of NBC as a carrier to composite with spinel ferrites materials to
achieve synergistic catalysis of the two materials has received more and more attention.
Liu et al. [34] synthesized magnetic NBC‑supported CoFe2O4 composite (MNBC) using
agricultural waste straw as precursor. The prepared catalyst exhibited excellent perfor‑
mance in catalytic degradation of MET by coupling with PMS. As shown in the Figure 5,
the CoFe2O4 nanoparticles supported on the surface of NBC are the active sites to generate
sulfate through the redox reaction of Co2+ and PMS (Equations (16)–(18)) [88,89].

Co2+ + HSO−
5 → Co3+ + SO•−

4 + OH− (16)

Co3+ + HSO−
5 → Co2+ + SO•−

5 + H+ (17)

HSO−
5 + SO2−

5 → SO2−
4 + HSO−

4 + 1O2 (18)

Table 3 shows some emergingmaterials of modifiedNBCmaterials as PS‑AOP hetero‑
geneous catalysts. It can be found that the Fe ismost commonly used in themanufacture of
modifiedNBCs. In addition, modifiedNBCs have high‑activation properties for PMS/PDS;
therefore, these studies provide directions for the development of other high‑performance
and stable NBC materials for environmental remediation.
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Table 3. List of modified NBC materials as catalysts for PS‑AOP.

Biomass Oxidant
Attached
Functional‑
Groups

Catalysts Pollutant Reaction
Conditions

Removal
Efficiency

(%)

Rate Constant
(min−1) Active Sites Activation

Mechanism Ref.

Rice straw PMS CoFe2O4 MNBC800 Metolachlor

pH = unadjusted,
Catalyst = 0.2g/L,
[MET] = 10 mg/L,
[PMS] = 0.5 mM

100 0.104 Graphitic N,
Co2+

SO4
·−,

·OH, 1O2,
Electron transfer

[34]

Sludge PMS Co, S Co9S8@N‑S‑
BC Sulfamethoxazole

T = 25 ◦C, pH = 3,
Catalyst = 0.2 g/L,
[NOR] = 10 mg/L,
[PMS] = 1.6 mM

100 0.379

Carbon defects,
Quaternary N,
the carbon

atoms next to
pyridinic N,
C=O, ‑C‑S‑C‑,

Co (II)

SO4
·−,

·OH [90]

Maize straw PDS Fe
Fe@N

co‑doped
biochar

Norfloxacin

T = 25 ◦C, pH = 7,
Catalyst = 0.1 g/L,
[SMX] = 0.08 mM,

[PMS] = 10
mmol/L

96.45 0.258 Fe, Graphitic N,
C‑OH/C = N

SO4
·−,·

·OH, 1O2
[79]

Banyan PMS Fe, Ce Fe‑Ce@N‑BC Metronidazole

T = 25 ◦C, pH = 5.74,
Catalyst = 0.75 g/L,
[MNZ] = 0.01 g/L,
[PMS] = 2 mM

97.5 0.0566

Graphitic N,
Pyridinic N,
C=O, Defects,
Fe2+/Fe3+,
Ce3+/Ce4+

SO4
·−,

·OH, 1O2
[91]

Sawdust PMS Fe Fe‑N‑C‑BPA Bisphenol A

T = 25 ◦C, pH = 6.76,
Catalyst = 0.1 g/L,
[BPA] = 0.01 g/L,
[PMS] = 0.5 mM

97 0.0556

Fe‑Nx,
Pyridinic N,
graphitic N,
Fe2O3, Fe0

SO4
·−

·OH, 1O2
[78]

Rice
husk PMS Fe3O4,

NCNT
Fe3O4@NCNTs‑

BC800 Sulfamethoxazole

T = 25 ◦C, Ph = 7,
Catalyst = 0.4 g/L,
[SMX] = 0.01 g/L,
[PMS] = 0.6 mM

98.2 0.092
Pyridinic N,

Fe (II),
Fe (III)

Surface bound
O2

·−,
·OH, SO4

·−,
Electron transfer

[77]
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Table 3. Cont.

Biomass Oxidant
Attached
Functional‑
Groups

Catalysts Pollutant Reaction
Conditions

Removal
Efficiency

(%)

Rate Constant
(min−1) Active Sites Activation

Mechanism Ref.

Human
hair PMS S NSC‑800 Bisphenol A

Catalyst = 0.08 g/L,
[BPA] = 25 mg/L,
[PMS] = 0.4 g/L

98.4 ‑
Graphitic N, Sp2‑C,

‑C‑S‑C,
Defect sites

1O2,
·OH,
SO4

·−
[87]

Glucose PDS Cu N‑Cu‑biochar Tetracycline

Catalyst = 200
mg/L, pH = 5,
[TC] = 20 mg/L,
[PDS] = 2 mM

100 0.0482 Cu2+
·OH,
SO4

·−,
Electron transfer

[75]

Maso
bamboo PMS S NSBC‑500 Antibiotic

Catalyst = 3 mg/L,
[antibiotic] = 20

mg/L,
[PMS] = 5 mM

70.97 0.0274 EPFR,
Defect structure

SO4
·−,

·OH, 1O2,
O2

·−
[51]

Camphor
sulfonic PDS S NSC‑750 Sulfamethoxazole

pH = 5,
Catalyst = 0.2 g/L,
[SMX] = 20 mg/L,
[PDS] = 0.4 mM

96 0.0348

Pyridinic N,
C‑S‑C,

Defect sites,
C=O

1O2,
·OH,
SO4

·−,
Electron transfer

[71]

Sludge PDS Fe MS‑800 Tetracycline

pH =2.17,
Catalyst = 0.2 g/L,
[TC] = 100 mg/L,
[PDS] = 4.2 mM

82.24 0.0096
Fe species,
Sp2‑C,

N species

·OH,
SO4

·− [92]

Wheat
straw PDS Fe Fe‑N‑BC Acid orange 7

pH = 3,
Catalyst = 0.2 g/L,
[AO7] = 20 mg/L,
[PDS] = 1 mM

100 0.114
Fe species,
N species,

PFR

1O2, SO4
·−,

·OH, O2
·−,

Surface‑bounded
radical,

Electron transfer

[80]

Wood
chip PDS Fe, K KMBC Metronidazole

T = 25 ◦C, pH = 6.5,
Catalyst = 0.5 g/L,
[MNZ] = 20 mg/L,
[PDS] = 1 mM

98.4 0.025 Fe(II)
PFR

1O2, SO4
·−,

·OH, O2
·−,

Surface‑bounded
radicals,

Electron transfer

[93]
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Table 3. Cont.

Biomass Oxidant Attached Func‑
tionalGroups Catalysts Pollutant Reaction

Conditions

Removal
Efficiency

(%)

Rate Constant
(min−1) Active Sites Activation

Mechanism Ref.

Banana PDS Fe2O3 Fe2O3@BC‑2 Bisphenol A

T = 25 ◦C,
pH = unadjustment,
Catalyst = 0.3g/L,
[BPA] = 20 mg/L,
[PDS] = 5 mM

100 0.1849

Pyridinic N,
Graphitic N,
‑OOH, ‑OH
Defect sites,

PFR,
Fe species

SO4
·−,

·OH,
O2

·−
[94]

Melamine PDS S ACO850‑
20N20S Methyl orange

T = 30 ◦C, pH = 5,
Catalyst = 0.8 g/L,
[MO] = 200 mg/L,
[PDS] = 1.2 g/L

99 0.0075

C=O,
C‑S‑C,

Graphitic N,
Pyridinic N

Surface bound
radical [73]

Sludge PDS Fe SDBC Sulfamethoxazole

T = 25 ◦C, pH = 5,
Catalyst = 2.0 g/L,
[SMX]= 40 µM,
[PDS] = 1.5 mM

94.6 0.0145 Fe species,
N species

1O2 [49]

Sludge PMS Fe ISBC Perfluorooctanoic
acid

T = 60 ◦C, pH = 6.4,
Catalyst =1 g/L,
[PFOA] = 2 mg/L,
[PMS] = 10 mM

99.9 0.054
Pyridinic N,

C=O,
Quinone groups

1O2 [74]



Int. J. Environ. Res. Public Health 2022, 19, 14805 15 of 25
Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 11 of 22 
 

 

 
Figure 5. Mechanism of PMS activation by MNBC800 and MET degradation [34], copyright 2019, 
Elsevier. 

Table 3 shows some emerging materials of modified NBC materials as PS-AOP het-
erogeneous catalysts. It can be found that the Fe is most commonly used in the manu-
facture of modified NBCs. In addition, modified NBCs have high-activation properties 
for PMS/PDS; therefore, these studies provide directions for the development of other 
high-performance and stable NBC materials for environmental remediation. 

Table 3. List of modified NBC materials as catalysts for PS-AOP. 

Biomass Oxi-
dant 

Attached 
Functional 

Groups 
Catalysts Pollutant Reaction Condi-

tions 

Removal 
Efficiency 

(%) 

Rate Con-
stant 

(min−1) 
Active Sites Activation 

Mechanism 
Ref. 

Rice straw PMS CoFe2O4 
MNBC80

0 
Metolachlor 

pH = unadjusted, 
Catalyst = 0.2g/L, 
[MET] = 10 mg/L, 
[PMS] = 0.5 mM 

100 0.104 
Graphitic N, 

Co2+ 

SO4·−, 
·OH, 1O2, 

Electron transfer 
[34] 

Sludge PMS Co, S 
Co9S8@N-

S-BC 
Sulfamethoxa-

zole 

T = 25 °C, pH = 3, 
Catalyst = 0.2 g/L, 
[NOR] = 10 mg/L, 
[PMS] = 1.6 mM 

100 0.379 

Carbon defects,  
Quaternary N,  

the carbon atoms next 
to pyridinic N,  

C=O, -C-S-C-, Co (II) 

SO4·−, 
·OH 

[90] 

Maize 
straw 

PDS Fe 
Fe@N 

co-doped 
biochar 

Norfloxacin 

T = 25 °C, pH = 7, 
Catalyst = 0.1 g/L, 
[SMX] = 0.08 mM, 

[PMS] = 10 
mmol/L 

96.45 0.258 
Fe, Graphitic N,  

C-OH/C = N 
SO4·−,· 

·OH, 1O2 
[79] 

Banyan PMS Fe, Ce 
Fe-Ce@N

-BC 
Metronidazole 

T = 25 °C, pH = 
5.74, 

Catalyst = 0.75 g/L, 
[MNZ] = 0.01 g/L, 

[PMS] = 2 mM 

97.5 0.0566 

Graphitic N, 
Pyridinic N, 

C=O, Defects, 
Fe2+/Fe3+, Ce3+/Ce4+ 

SO4·−, 
·OH, 1O2 

[91] 

Sawdust PMS Fe 
Fe-N-C-B

PA 
Bisphenol A 

T = 25 °C, pH = 
6.76, 

Catalyst = 0.1 g/L, 
[BPA] = 0.01 g/L, 
[PMS] = 0.5 mM 

97 0.0556 

Fe-Nx, 
Pyridinic N, graphitic 

N, 
Fe2O3, Fe0 

SO4·− 
·OH, 1O2 

[78] 

Rice 
husk 

PMS 
Fe3O4, 
NCNT 

Fe3O4@N
CNTs-BC

800 

Sulfamethoxa-
zole 

T = 25 °C, Ph = 7, 
Catalyst = 0.4 g/L, 
[SMX] = 0.01 g/L, 
[PMS] = 0.6 mM 

98.2 0.092 
Pyridinic N, 

Fe (II), 
Fe (III) 

Surface bound 
O2·−, 

·OH, SO4·−, 
Electron transfer 

[77] 

Figure 5. Mechanism of PMS activation by MNBC800 and MET degradation [34], copyright
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3.3. Detection Technologies for Activation Mechanism
At present, chemical quenching experiments and electron spin resonance (ESR) are

adopted to detect the ROS of NBCs in PS‑AOP. For the free radicals that widely exist in
the NBC/PS system, the role of the corresponding free radicals in the degradation process
can be analyzed by adding a quencher to conduct a comparative experiment. Currently,
the quenchers used in the NBC/PS chemical quenching experimentmainly include ethanol
(EtOH), methanol (MEOH), Tert‑butanol (TBA), P‑Benzoquinone (PBQ), lycopene (LCP),
Nitrobenzene (NB), and phenol. Table 4 lists the second‑order reaction constants of com‑
monly used quenchers to ROS. ETOH and MeOH are usually used as quenchers for ·OH
and SO4

·− due to their high reaction rates with ·OH and SO4
·−. TBA has a much lower re‑

action rate for SO4
·− than ·OH; therefore, it is used to quench ·OH. LCP and PBQ are used

as quenchers for 1O2 and O2
·−, respectively. In addition, for surface‑bounded radicals,

Ye et al. [85] used a hydrophobic radical quencher to analyze the degradation pathway by
selectively terminating the surface free‑radical reaction.

Table 4. The second‑order reaction constants of commonly used quenchers to ROS.

Scavengers
Rate Constant (M−1s−1)

Ref.
·OH SO4·− 1O2 O2·−

EtOH 1.2–2.8 × 109 1.6–7.7 × 107 ‑ ‑ [63,64]
MeOH 9.7 × 108 3.2 × 106 ‑ ‑ [68,75]
TBA 6 × 108 4.0 × 105 ‑ ‑ [56,79,92,94,95]
PBQ ‑ ‑ ‑ 9.6 × 108 [62,77,79]
LCP ‑ ‑ 3.1 × 1010 ‑ [61]

Phenol (surface) 8.8 × 109 8.8 × 109 ‑ ‑ [60,85]NB (surface) 3.9 × 109 <106 ‑ ‑

In addition to chemical quenching experiments, ESR is also often used to further iden‑
tify the type of generated free radicals. The spin‑trappingmethod is to add an unsaturated
anti‑magnetic compound (spin traps) into the reaction system, and the combination of free
radicals and spin traps forms a relatively stable spin adduct [70]. 2,2,6,6‑Tetramethyl‑4‑
piperidinol (TEMP) and 5,5‑dimethyl‑1‑pyrrolidine N‑oxide (DMPO) are commonly used
as spin traps. As shown in Figure 6, the ESR signals with hyperfine coupling constants
of αH = 1.44 G, αH = 0.76 G, αN = 15.02 G, and αH = 14.81 G were assigned to be the
DMPO‑SO4 adduct. The ESR signals with hyperfine coupling constants of αN = 15.05 G
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andαH = 14.21 Gwere attributed to the DMPO‑OH adduct. The triplet ESR signal with the
same intensity ratio (1:1:1, α = 17.2 G) was corresponded to the oxidized TEMP by 1O2 [34].
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Electrochemical experiments are generally used to explore the non‑radical pathways
of NBC/PS. In the electrochemical impedance spectroscopy (EIS) Nyquist plot, the diam‑
eter of the semicircle presented by the NBC is proportional to its charge‑transfer resis‑
tance [63,96,97]. Linear sweep voltammetry (LSV) is to further explore the electron transfer
process, and the strong current response indicated NBCs have good electrical conductiv‑
ity [86,98]. Ye et al. [85] studied the electron transfer process by LSV and EIS. Through
the comparison of EIS, they found that the incorporation of N and the increase in the
graphitization degreemade the graphitic biochar fiber dopedwithN (PGBF‑N) have lower
impedance and stronger electron transfer abilities, as shown in Figure 7. Through the anal‑
ysis of LSV, it was found that when using PGBF‑N as the working electrode, the addition
of PMS caused an increase in the current, which implies the interaction and electronic re‑
arrangement between the PMS and the PGBF‑N. The addition of contaminants leads to
another current enhancement, demonstrating fast electron transfer over the established
PMS/PGBF‑N/Tetracycline ternary system, where the current forms a bridge across PBGF‑
N to facilitate the transfer of electrons from TC molecules to metastable PMS.
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Figure 8 details the PMS activation mechanism of PGBF‑N on the degradation behav‑
ior of the above TCmolecules. The PMSmolecule is gaining electrons to generate free radi‑
cals. These things considered, the positive charge on the adjacent carbon of the graphitic N
induces the PMSmolecule to lose electrons to generate 1O2 through a nucleophilic reaction.
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Adirect electron‑transfer pathway also exists, since the addition of Sp2‑C promotes graphi‑
tization to a degree that shows better electrical conductivity than sp3‑hybridized carbons
(Sp3‑C). Similar to the degree of graphitization, theN configuration of NBC also has a great
influence on the catalytic activity, which will be further explained in the next chapter.
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4. Structures of NBCs Affecting the PS Activation and the Role of N Configuration
4.1. Structures of NBCs Affecting the PS Activation

As above discussed, the catalytic activity of biochar is closely related to its adsorption
capacity, charge transfer capacity, and potential active sites. Therefore, we could regulate
the structures of NBC including SSA, defect degree, and graphitization degree to promote
its catalytic activity.

The carbon structure of NBCs can be studied by Raman spectra. The D band
(~1350 cm−1) is the result of disordered levels caused by vacancies, zigzag/armchair
edges, functional groups, and heteroatom doping. The G band (~1580 cm−1) is related
to the E2g mode vibration of sp2‑ hybridized carbon domains [99]. The ratio of ID/IG
reveals the defect degree and graphitization degree of NBCs. Zaeni et al. [60] compared
the degree of structural defects of pristine biochar and NBCs, and the ID/IG value of NBCs
was higher than that of BC, as shown in Figure 9a. One commonly accepted theory at the
moment is that N‑doping increases the distortion of carbon layers and creates more defect
sites [31,61,63]. These defect sites are beneficial because they can perturb the electronic
charge distribution of the conjugated carbon system and act as redox‑active functional
groups for PMS activation. Xu et al. [54] compared the defect degree of pristine biochar,
NBCs, and Fe@N co‑doped biochar as shown in Figure 9b, and the Fe@N co‑doped biochar
was found to exhibit a higher degree of defects. The results indicated that the co‑doping of
iron and N would lead to the distortion of the carbon network and generate more defects.
Abundant defects due to zigzag/armchair edges, vacancies, and functional groups in
carbon‑based catalysts help to promote the adsorption and activation of PMS [42]. Besides
heteroatom doping, pyrolysis temperature also is an important factor affecting ID/IG. As
shown in Figure 9c, Luo et al. [100] compared biochars prepared at different temperatures
and found that the ID/IG ratio increases with the increase in the pyrolysis temperature
(<800 ◦C), indicating more defects were formed; however, when the temperature reached
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800 ◦C, the ID/IG decreases significantly, indicating that a higher degree of graphiti‑
zation is obtained. Studies have shown that the graphitic structure contributes to the
charge‑transfer process, and the high degree of graphitization helps to facilitate electron
transfer between PMS and carbon catalysts, thereby promoting non‑radical degradation
pathways [32]. Moreover, this study also reported that a high degree of graphitization
promotes charge transfers to enhance PS activation, while graphitized carbon structures
with many defects can also promote a charge transfer and lead to non‑radical pathways.
Therefore, both the high‑defect degree and the high‑graphitization degree can promote
PS activation at different levels.
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The SSA and pore structure of NBCs are another key factor affecting its catalytic ac‑
tivity in PS‑AOP. Zhu et al. [63] reported that N‑doping enhanced the specific surface area
of NBCs derived at 900 ◦C (496.7 m2g−1) compared to that of primary biochar derived
at 900 ◦C (95.2 m2g−1) due to the N precursors also releasing gases that further adjust
the porous structure of the biochar. In addition, for NBCs, at a high‑pyrolysis temperature
above 750 ◦C, the SSAwill greatly increase due to the volatilization of tar compounds, thus
forming more porous structures [101]. The successful performance of NBC in the catalytic
oxidation of organic pollutants can partially attributed to a large SSAwhich providesmore
reactive site [102]. Wang et al. [31] also reported that apparent rate constant (k) and SSA
have a close correlation and that the correlation coefficient is 0.981. However, porosity is
inversely proportional to the graphitization degree, hence the NBC needs an appropriate
balance between mass transfer and conductivity [85]. Appropriate SSAs and pore distri‑
bution are conducive to exposing more reaction sites for easy contact of the catalysis with
substrates without damaging electron conduction [85,102].

4.2. The Role of N Configuration in PS Activation
N‑doping is one of the simplest andmost promisingmethods to enhance the reactivity

of catalysts; N‑doping with localized unpaired electrons is capable of (1) increasing the
electron density of adjacent carbon atoms, (2) the electron flow in Sp2‑C is enhanced by
conjugation [42], (3) producing more functional groups and defects, and (4) increasing the
surface polarity of carbon materials and attracting polar adsorbents. However, as for the
reaction sites of PS‑AOP, it is still controversial whether the reaction sites are caused by
pyridinic N, pyrrolic N, or graphitic N [103]. Oh et al. [33] found that NBC prepared at
1000 ◦C is rich in graphitic N, which acting as a possible active site for 1O2 generation
through non‑radical pathway. Meanwhile, pyrrolic N and pyridinic N are conducive to
redox reaction and vital for radical pathway. This is similar to the rule of the degradation
pathway corresponding to the active sites listed in Table 2.

On this basis, Hu et al. [59] found that graphitic N can accelerate the electron transfer
between adjacent carbon atoms and destroy the inertia of conjugated graphitized carbon
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networks, whichwill increase the positive charge of carbon atoms. It is favorable toweaken
the O‑O bond and form surface metastable PMS through electron rearrangement or gen‑
erate reactive substances by nucleophilic addition reaction of the PMS towards positively
charged carbon (Equations (19) and (20)) [104]. Furthermore, the pyridinicNwith the long‑
pair electrons could promote the transfer of free‑flowing π‑electrons from the Sp2‑C of
biochar to activate PMS and further generated SO4

·− and ·OH [105]. In addition, pyrrolic
N could adsorb pollutant molecules, which could accelerate the formation of complexes
and boost the transfer of electrons [77].

HSO−
5 → SO•−

5 + H+ + e (19)

SO•−
5 + SO•−

5 → 1O2 + 2SO−
4 (20)

However, some studies put forward different views. Wang et al. [31] found that the
incorporation of edge N configuration (pyridinic N and pyrrolic N rather than graphitic
N) generate reactive sites for the PDS activation, and a non‑radical pathway (electron
transfer) involving surface‑bond reactive complexes was proved to play a major role in
the NBC/PDS system. For the research on the important role of non‑graphitic N in the
non‑radical pathway, it was assumed that the type of persulfate plays an important role.
Cai et al. [58] analyzed the adsorption behaviors of PDS and PMS on pyrrolic N as shown
in Figure 10. The adsorption energy and dissociation adsorption energy of PDS (−0.24 and
−2.71 eV) on pyrrolic Nwere higher than PMS (−1.10 and−0.78 eV), which indicated that
pyrrolic N‑rich biochars exhibited better adsorption towards PDS than PMS.
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To sum up, graphitic N is the dominant N configuration of NBCs in the non‑free‑
radical pathway of PS‑AOP, while pyridinic N and pyrrolic N play more important role in
the free‑radical pathway. The type of PS is another key factor determining the participation
degree of pyridinic N and pyrrolic N in the non‑free‑radical pathway.

5. Conclusions and Outlook
In conclusion, we comprehensively reviewed the research progress of NBCs in

PS‑AOP to treat organic pollutants in water. The in situ N‑doped method and the post‑
treatment method are most commonly used to prepare NBC materials. Aquatic plants
are suitable for the in situ N‑doped method, while sludge and bamboo are suitable for
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the post‑treatment method. In addition, biomasses with high inorganic salt content or
leaf veins are not suitable for NBC preparation. The addition of other atoms in NBCs
will induce the generation of free radicals through charge transfers and the change in the
valence state of metal ions, so that the original non‑free radical‑dominated degradation
pathway will be transformed into free‑radical‑dominated degradation pathway. As a
heterogeneous catalyst for PDS/PMS, the above NBC shows excellent catalytic perfor‑
mance in removing organic pollutants. A variety of methods can be used to determine
the activation mechanism, including chemical quenching experiment, ESR detections, EIS
detections, and LSV detections.

Moreover, we further summarized the influence of various physical and chemical
properties of NBCs on the catalytic capacity. The degree of graphitization and the degree
of defect cooperatively promote the activation of PS, and the opposite relationship between
the SSA and the degree of graphitization requires NBCs to strike a proper balance between
mass transfer and electrical conductivity. Graphitic N is considered to be the dominant N
configuration of non‑radical pathways, while pyridinic N and pyrrolic N play more im‑
portant roles in radical pathways. The type of PS is one of the key factors affecting the
dominant N configuration of NBC in PS‑AOP.

However, the current studies are mainly focused on fundamental research at the labo‑
ratory scale, and commercial applications that treat real wastewater are insufficient. More‑
over, there are only a fewpapers on the reuse performance ofNBC catalysts, although it is a
significant property for a catalyst. In addition, ID/IG values obtained from Raman analysis
combined with XRD analysis are commonly used to characterize both the graphitization
degree and defect degree of NBCs, which is not precise enough. It is highly demanded to
find a more precise technology, not only for the NBCs but also for all biochars and even
carbon materials. Last but not least, the treatment of by‑products from producing NBCs,
e.g., bio‑oil and toxic gases, needs to be considered for both the economic and environmen‑
tal benefits.

For further investigations, the following recommendations are given. First, it is nec‑
essary to develop a method that precisely regulates the structure of NBCs, especially its
N configuration, to improve the catalytic performance. Currently, there is no preparation
method that can design the N configuration or the content of the targeted type of N func‑
tional group. Second, the degradation mechanism and catalytic effect of the same NBC on
different organic compounds are different. The relationship between the catalytic perfor‑
mance of NBCs and the structure of degraded organic compounds should be established.
This helps to determine the structure of NBCs that achieve the best catalytic activity for the
targeted organic compound. Third, systematic research should be conducted on the differ‑
ences in selectivity, oxidation potential, and degradation pathways between free radicals
and non‑free radicals.
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