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Abstract: Appropriate prioritisation of geographic target regions (TRs) for healthcare interventions
is critical to ensure the efficient distribution of finite healthcare resources. In delineating TRs, both
‘targeting efficiency’, i.e., the return on intervention investment, and logistical factors, e.g., the number
of TRs, are important. However, existing approaches to delineate TRs disproportionately prioritise
targeting efficiency. To address this, we explored the utility of a method found within conservation
planning: the software Marxan and an extension, MinPatch (‘Marxan + MinPatch’), with comparison
to a new method we introduce: the Spatial Targeting Algorithm (STA). Using both simulated and
real-world data, we demonstrate superior performance of the STA over Marxan + MinPatch, both
with respect to targeting efficiency and with respect to adequate consideration of logistical factors.
For example, by design, and unlike Marxan + MinPatch, the STA allows for user-specification of a
desired number of TRs. More broadly, we find that, while Marxan + MinPatch does consider logistical
factors, it also suffers from several limitations, including, but not limited to, the requirement to apply
two separate software tools, which is burdensome. Given these results, we suggest that the STA could
reasonably be applied to help prevent inefficiencies arising due to targeting of interventions using
currently available approaches.

Keywords: geographic target regions; healthcare interventions; targeting efficiency; logistical factors;
Marxan; MinPatch; Spatial Targeting Algorithm

1. Introduction

Worldwide, health authorities are tasked with efficiently distributing finite healthcare
resources to address disease among populations. Often, this requires appropriate prioritisa-
tion of geographic target regions (TRs) for intervention. Such prioritisation has been widely
proposed or realised previously, including to address both infectious and non-infectious
diseases [1–4]. For example, spatial prioritisation of resources has recently been suggested
to guide distribution of COVID-19 vaccines [5,6].

In delineating TRs, both ‘targeting efficiency’, i.e., the return on intervention invest-
ment, and logistical factors, e.g., the number of TRs, are important [7]. In particular, it is
important to consider both the number of TRs and their size and degree of compactness.
This is because it might be infeasible for authorities to intervene in a large number of
locations, and certain interventions might be best located within regions of certain sizes or
shapes. Testing clinics, for example, might be best located within relatively large, compact
TRs, in order to efficiently service correspondingly large population sizes while limiting
travel time to and from the new clinics for staff and patients. However, recent approaches
to delineate TRs have disproportionately prioritised targeting efficiency. For example,
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Lessler et al. (2018) [3] described how the efficiency of oral cholera vaccine distribution in
sub-Saharan Africa could be maximised through prioritising distribution to 20 × 20 km
grid cells with the highest rates of infection [3]. Similarly, Coburn et al. (2017) [8] described
how the efficiency of HIV interventions in Lesotho could be maximised through targeting
1 × 1 km grid cells with the highest density of infection [8]. However, it would likely be
infeasible to target HIV interventions to the numerous, discontiguous TRs delineated by
Coburn et al. (2017) [8]. For this and other reasons, Lessler et al. (2018) [3], rather than
advocating the optimally efficient strategy described above, instead suggested prioritis-
ing oral cholera vaccine distribution in Africa by either: (1) local administrative districts
(continent-wide), or (2) countries, and subsequently districts within each country. However,
both of these approaches are undermined by the modifiable areal unit problem (MAUP) [9]
due to relying on the district boundaries. Briefly, the MAUP describes how results that are
based on areal units will depend on the unit boundaries. In the present context, this means
that, in general, pre-defined, ‘single-aggregation’ administrative boundaries will not ade-
quately represent the geographic distribution of a given disease, except possibly by chance.
Recognising this, Tuson et al. (2020) [7] showed how the MAUP can be mitigated through
targeting interventions guided by smoothed maps of fine-resolution data. However, that
approach did not allow for adequate control over either the number of TRs or their size
and degree of compactness.

Given these limitations, we endeavored to search outside of health for tools that could
address these issues. In particular, we were interested in tools that sought to optimise
targeting efficiency while also considering logistical factors, and, with regards to the
latter, in particular: (1) the number of TRs, and (2) the size and degree of compactness
of individual TRs within a given set. However, only one such tool was forthcoming: a
method found within conservation planning, namely the software Marxan [10] and an
extension, MinPatch [11] (hereafter ‘Marxan + MinPatch’). Briefly, Marxan + MinPatch can
be used to produce ‘portfolios’ (i.e., sets) of ‘protected areas’ (PAs, or TRs), which in turn
may be used to guide conservation of one or more ‘abundance features’ while minimising
associated costs. Marxan was developed to guide systematic, multi-objective planning
in conservation, while MinPatch can be applied to sets of Marxan portfolios to ensure
a user-specified minimum size for individual PAs within a given portfolio. Abundance
features examined using Marxan are typically species of plants or animals, and the cost of
conservation is generally the economic cost of purchasing PAs. However, in the context of
health, abundance features examined using Marxan + MinPatch might be cases of disease
or other health events, such as hospital admissions, and the cost of conservation might
be the population size or geographic area of regions to be conserved (i.e., targeted). For
example, to help control the spread of infectious diseases such as COVID-19, Marxan +
MinPatch could be applied to delineate sets of TRs for testing or vaccine distribution that
collectively contain a minimum proportion of infected individuals while minimising the
target population size/area.

Unfortunately, application of Marxan + MinPatch suffers from several limitations. First,
the requirement to apply two separate software tools, which is potentially burdensome.
Second, the incorporation within both Marxan and MinPatch of a global, rather than a local,
parameter (the boundary length modifier (BLM)) to control for the degree of fragmentation
among TRs in their output portfolios [11]. Third, MinPatch’s reliance on a distance-based
radius when defining new TRs, which limits flexibility when examining irregularly shaped
units such as administrative boundaries. And fourth, an inherent potential of MinPatch
to output sub-optimally targeting efficient portfolios due to the ‘top-down’ nature of its
algorithm. Regarding the latter, within MinPatch, the locations of new TRs are defined before
those TRs are whittled to reduce cost. Therefore, it is likely that a ‘bottom-up’ approach,
where TRs are purpose-built from the ground up, would yield greater targeting efficiency.
Together, these limitations suggest that superior approaches might be developed.

Accordingly, in this paper, we compare the utility of Marxan + MinPatch for effi-
ciently delineating geographic TRs for healthcare interventions, to that of a new method
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we introduce: the Spatial Targeting Algorithm (STA). By design, the STA incorporates
comparatively greater control over logistical features, for example through allowing for
user-specification of a desired number of TRs. However, the relative targeting efficiency
of the two algorithms in the context of health was unknown. Therefore, we compared the
two methods using both simulated and real-world data, the latter a dataset of ischaemic
stroke hospital admissions in Perth, Western Australia (WA) that has been previously
examined in the literature [7]. As noted by Tuson et al. (2020) [7], strokes require rapid
intervention to avoid irreparable damage to nerve tissue [12], which necessitates ongoing
consideration of patients’ access to essential stroke services, such as specialist hospital
units and ambulance depots. This endeavour is supported by the precise, efficient and
logistically effective delineation of TRs for the placement of such services, a practice which
both Marxan + MinPatch and the STA inform.

2. Materials and Methods
2.1. Marxan + MinPatch

To apply Marxan, users specify: (1) an input set of ‘planning units’; (2) the number
of independent ‘runs’ to be undertaken; and (3) a BLM to be applied in each run. The
number of runs corresponds to the number of output portfolios, while the BLM governs
the degree of fragmentation amongst PAs within a given portfolio; relatively high BLMs
result in relatively little fragmentation, and vice versa. For a given set of portfolios, Marxan
automatically designates as ‘optimal’ the portfolio that minimises cost; however, users may
consider one or more portfolios when making decisions.

Applied to a set of Marxan portfolios, for each portfolio, MinPatch: (1) removes PAs
that are smaller than the specified minimum size; (2) adds new PAs according to a specified
radius; and (3) applies ‘simulated whittling’ to both the new and original PAs in order
to reduce cost. Here, simulated whittling describes an iterative process of identifying
and removing planning units located on the boundaries of PAs, while maintaining the
specified abundance targets and enforcing the minimum size. MinPatch also incorporates a
BLM that is often, but not necessarily always, the same as that specified for Marxan [11].
Depending on the type of output desired, one or more of MinPatch’s steps may be excluded;
for example, simulated whittling might be excluded if portfolios of relatively compact PAs
are desired. MinPatch produces one portfolio for each of a given set of Marxan portfolios.
Similarly to Marxan, it designates as ‘optimal’ the portfolio that minimises cost; however,
again, users may consider one or more portfolios when making decisions.

2.2. The Spatial Targeting Algorithm (STA)

The STA involves creating numerous, differently shaped polygons at a user-specified
scale, and ‘targeting’ these polygons to delineate sets of TRs for intervention. Specifically, it
comprises the following steps:

Step 1. Specify a set of ‘minimal-resolution’ spatial units (hereafter ‘minimal units’)
The minimal units are analogous to the planning units specified for Marxan. Usually,

they will be a set of fine-resolution administrative units or grid cells. In Australia, for
example, they might be Australian Bureau of Statistics (ABS) Statistical Areas Level 1
(SA1s), for which minimally aggregated health and Australian Census population counts
are obtainable. Comparable units in other countries include Census Blocks in the US and
Output Areas in the UK, though the latter are generally smaller than SA1s. To apply the
STA, users must specify:

Step 2. Specify parameters

• The number of polygons to create (specified per minimal unit);
• A target polygon size (typically a population size or geographic area);
• One or more weighting functions; and
• A target percentage of cases (or other health events, e.g., hospital admissions).

The number of polygons to create should be chosen based on a rule of thumb devel-
oped later; briefly, it will be suggested that the number of polygons to create should be
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chosen such that the algorithm’s output is stable while maintaining computational feasibil-
ity. Meanwhile, the target polygon size should be chosen guided by the characteristics of a
proposed intervention; for example, if an intervention is planned that will target relatively
large TRs, then a relatively large target polygon size will be appropriate. The weighting
functions govern the general shape of the polygons created and thence the TRs delineated.
For example, specification of an inverse distance-based weighting function will lead to
relatively compact polygons being created, and consequently to correspondingly compact
TRs being delineated. By contrast, specification of a number of cases-based weighting
function will lead to relatively ‘tree-like’ polygons being created, and consequently to
correspondingly tree-like TRs being delineated. As for the target polygon size, the choice of
weighting functions should be guided by the characteristics of a planned intervention. For
example, if an intervention is planned that will be targeted to relatively compact regions (as
will often be the case in health), then specification of an inverse distance-based weighted
function might be appropriate. Finally, the target case percentage should reflect corre-
sponding targets specified for planned interventions; for example, a target case percentage
of 50% might be specified to align with a corresponding target specified for a treatment
intervention aimed at limiting the spread of an infectious disease.

Step 3. Create polygons
In this step, the STA designates each minimal unit in turn as the ‘seed’ unit and creates

the specified number of polygons beginning with that unit. For each polygon, this involves
iterating the following steps:

• Identify minimal units neighbouring either:

a. The seed unit, if iteration = 1, or
b. Any unit already selected, if iteration > 1;

• Compute a ‘selection probability’ for each neighbouring unit; and
• Select one neighbouring unit through sampling from a multinomial probability distri-

bution defined by the set of computed selection probabilities. If the target polygon
size is reached, end.

In step ii, each of the specified set of weighting functions wi, i = 1, . . . , I are evaluated
for each neighbouring unit u to compute sets of weights wi(u). Here, for simplicity, we
suppress in our notation the dependency of the weights on the seed unit. For each weighting
function in turn, the resulting weights are then normalised across units u:

wnorm, i(u) =
wi(u)

∑u wi(u)
(1)

The product of the normalised weights is taken across weighting functions, for each
unit u:

wu = ∏i wnorm,i(u) (2)

and the resulting products are again normalised across units u to compute a set of selection
probabilities:

wnorm,u =
wu

∑u wu
(3)

where wnorm,u is the selection probability computed for unit u.
Step 4. Delineate target regions
To delineate a set of TRs, the STA iteratively targets the set of created polygons until

the set of targeted polygons collectively contains at least the pre-specified target percentage
of cases. Specifically, the following steps are iterated:

• Order available polygons by their values, from highest to lowest; then
• Target (i.e., remove) the polygon with the highest value. If the target percentage of

cases is reached, end; otherwise, exclude overlap with the targeted polygon from all
remaining polygons and recalculate the values of any affected polygons.
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The value calculated for each polygon will typically be a rate or a density, e.g., cases
per unit capita or geographic area. Furthermore, it will usually be related to the specified
target polygon size; for example, if the chosen value is cases per unit capita, then the target
polygon size might be population size. Figure 1 visually illustrates the architecture of the
STA in a flow chart.
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2.3. Simulation Study

In order to: (1) illustrate the STA’s application, and (2) compare the two methods’
performance, a simulated point location dataset of 100 disease cases was generated by ap-
plying a multinomial probability distribution across a square, spatially correlated random
field. The random field was created using functions within the gstat package in R version
4.0.3 [13], following an online guide (http://santiago.begueria.es/2010/10/generating-
spatially-correlated-random-fields-with-r/, accessed on 24 August 2021), while the genera-
tion of cases was undertaken primarily using the rmultinom() function in base R and the
spsample() function in the sp package, among other functions. The values used in each of
these functions were chosen in order to generate a sensible dataset.

2.3.1. Illustration of the STA’s Application

To illustrate the STA’s application, for simplicity, we defined a 5 × 5 unit grid over-
laying the simulated field to be the set of minimal units specified for the STA, and we
specified:

• that only 1 polygon be created per minimal unit;
• a target polygon size of 5 minimal units;
• no weighting functions;
• ‘cases per minimal unit’ to be the value calculated for each polygon; and
• a target case percentage of 40% of cases.
• The STA was applied using R.

http://santiago.begueria.es/2010/10/generating-spatially-correlated-random-fields-with-r/
http://santiago.begueria.es/2010/10/generating-spatially-correlated-random-fields-with-r/
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2.3.2. Comparison of the STA to Marxan + MinPatch

To compare the two methods’ performance, we defined a 20 × 20 unit grid overlaying
the simulated field to be the set of minimal units specified for the STA and the set of
planning units specified for Marxan + MinPatch. Marxan + MinPatch was applied via the
Conservation Land-Use Zoning software (CLUZ) plug-in to QGIS [14]. To ensure a fair
comparison, and to highlight each method’s flexibility, we specified:

• a minimum size for each PA within MinPatch and a corresponding target polygon size
within the STA of 16 minimal units;

• a target abundance proportion within Marxan and a corresponding target case per-
centage within the STA of 50% of cases;

• ‘cases per minimal unit’ to be the value calculated for each polygon within the STA,
and the related ‘cost of conservation’ within Marxan to be 1 per planning unit;

• BLMs of 0, 0.001, 0.002 and 0.005 within Marxan + MinPatch (preliminary analyses
gave no indication that doing so would usefully extend the simulation, so we did not
vary the BLM specified between Marxan and MinPatch);

• radii of 2.25, 3 and 5, and either simulated whittling or no simulated whittling within
MinPatch; and

• an inverse distance- or value-based weighting function, and either splitting or no
splitting within the STA.

Finally, and although attainment of complete equivalence in this aspect was impossible,
we specified that: 10 polygons be created per minimal unit within the STA, and 10 runs be
undertaken within Marxan. Thus, 24 sets of 10 MinPatch portfolios and four STA portfolios
were produced in total, the former corresponding to the different combinations of BLM,
radius and application (or not) of simulated whittling (4 values × 3 values × 2 options
= 12), and the latter corresponding to the different combinations of weighting functions
and the different options for splitting (2 values × 2 values = 4). However, to facilitate a
fair comparison, we considered only the portfolios designated as ‘optimal’ for the 24 sets
of MinPatch portfolios (i.e., one per set). We refer to the STAs applied with the inverse
distance- and value-based weighting functions as the ‘distance-weighted’ and ‘value-
weighted’ STAs, respectively. For the distance-weighted STA, weights for neighbouring
units u in the polygon creation process were calculated as

w(u) =
1

du pd
(4)

where du is the Euclidean distance between the geographic centroids of unit u and the seed
unit and pd is a weighting factor, which we set equal to 25 to ensure that only compact TRs
are delineated. For the ‘value-weighted’ STA, corresponding weights for neighbouring
units u were calculated as:

w(u) = vu
pv (5)

where vu is the value of unit u and pv is a weighting factor, which we again set equal to 25
to ensure that only tree-like TRs are delineated.

Two comparisons were undertaken: (1) of the portfolios produced using the two
methods that contained maximally compact TRs, and (2) of the corresponding portfolios
that contained maximally targeting efficient TRs. Portfolios produced using the distance-
weighted STA applied without splitting and Marxan + MinPatch applied without simulated
whittling were considered to be candidates for designation as maximally compact, while
all portfolios produced using the two methods were considered to be candidates for desig-
nation as maximally targeting efficient. To avoid the undue impact of idiosyncrasies of any
particular dataset, the comparisons were repeated for an additional nine datasets that were
simulated in the same manner as the one described previously. More datasets than these
were not considered due to the inhibitory point-and-click nature of Marxan + MinPatch’s
application within CLUZ. Thus, based on the ten datasets, for each comparison we report:
(1) the mean difference in targeting efficiency between the portfolios produced using the
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STA and Marxan + MinPatch, and (2) the range of observed differences, across the ten
datasets.

2.4. Comparison of the STA to Marxan + MinPatch

Following Tuson et al. (2020) [7], we defined the study area of Perth to comprise the
five Greater Perth ABS Statistical Areas Level 4 (SA4s): “Perth—Inner”, “Perth—South
East”, “Perth—South West”, “Perth—North East”, and “Perth—North West”, excluding
two single-SA1 islands: Rottnest Island and Garden Island, due to the primary purpose of
those islands being to operate as tourist/day-trip destinations and to house the Australian
Navy’s largest fleet base, respectively. We defined SA1s to be the set of minimal units
specified for the STA and the set of planning units specified for Marxan + MinPatch, and
we obtained 2016 Australian Census population data for Perth, stratified by SA1, via the
ABS’ web-based TableBuilder tool.

The stroke dataset consists of admissions by Perth residents to WA hospitals with
principal International Classification of Diseases, Tenth Revision, Australian Modifica-
tion) [15] diagnoses of I63 (Cerebral infarction), I64 (Stroke, not specified as haemorrhage
or infarction) or H34.1 (Central retinal artery occlusion). We extracted these data from the
WA Hospital Morbidity Data Collection (HMDC). Following various exclusions (see Tuson
et al., 2020 [7]), 2523 admissions were available for analysis; these we aggregated by SA1.

It has previously been suggested that targeting interventions such as mobile stroke
units to address stroke in Perth might be guided by portfolios of relatively large, com-
pact TRs [7]. Therefore, we applied the distance-weighted STA without splitting and
Marxan + MinPatch without simulated whittling. Within the STA, we specified the same
weighting function as for the distance-weighted STA in the simulation study. Further, to
ensure a fair comparison, we specified:

• A target polygon size within the STA and a corresponding minimum size for each PA
within MinPatch of 11,250 people; and

• The crude rate of stroke admissions to be the value calculated for each polygon within
the STA, and population size to be the related cost of conservation within Marxan +
MinPatch.

Furthermore, we specified an arbitrary target of 15% of admissions for both methods.
This value is the same as that used previously by Tuson et al. (2020) [7], while the target
polygon size of 11,250 was chosen to approximately match the mean population size of
SA2s in 2016 (11,248; [7]). We tested various BLMs within Marxan + MinPatch; however,
observing little difference in the resulting portfolios, we (arbitrarily) selected zero. Within
MinPatch, we specified a radius of 0.011; this was the smallest value that could be defined
in order to delineate maximally compact TRs while still maintaining the specified target
admissions percentage and satisfying the minimum size constraint. Finally, based on a
rule-of-thumb suggested for the STA in the simulation study, we specified that 10 poly-
gons be created per minimal unit within the STA and that 10 runs be undertaken within
Marxan + MinPatch.

3. Results
3.1. Illustration of the STA’s Application to Simulated Data

This section describes the application of the STA to the simulated point location dataset
described in Methods. Figure 2 shows the 25 polygons created in the STA’s polygon creation
step (‘Step 3’ in Section 2.2). Since no weighting functions were specified, each polygon’s
shape was determined randomly. The polygons’ values ranged between 1 and 7.4 cases
per minimal unit, with both polygon 13 and polygon 20 having the maximum value. For
the full range of values of polygons in Figure 2, see Supplementary Material. Thus, in the
STA’s targeting step (‘Step 4’ above), either of those polygons could have been targeted first.
The algorithm arbitrarily selected and removed polygon 13, and subsequently removed
overlap with that polygon from all remaining polygons; Figure 3 shows the result. Since
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polygon 13 contained 37 cases, i.e., 37% of all cases, which is less than the specified target
of 40% of cases, the algorithm continued.

1 

 

 

Figure 2. Polygons created within the STA applied to a simulated point location dataset of 100 disease
cases. Black dots depict the locations of simulated cases, and grid lines represent the set of minimal
units specified for the STA. In each panel, the pink shaded region represents the single polygon
created beginning with seed unit (shaded red).

3.2. Splitting

For some polygons in Figure 2, removal of overlap with polygon 13 resulted in
multiple, discontiguous polygon fragments being defined (e.g., see ‘polygon’ 15 in Figure 3).
In subsequent iterations, these fragments could either be considered to be independent
or not. If the former, we refer to the STA as having been applied “with splitting”, and if
the latter, “without splitting”. In the case of polygon 15, supposing the STA was applied
with splitting in this case, two polygon fragments remained; these comprised two minimal
units each and had values of 5 and 1 case(s) per minimal unit, respectively. The values
of all polygons (and polygon fragments) represented in Figure 3 ranged between 0.667
and 8 cases per minimal unit, with only polygon fragment 7B (see Figure 3) having the
maximum value. For the full range of values among polygons and polygon fragments in
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Figure 3, see Supplementary Material. Thus, that fragment was targeted second (i.e., in
iteration 2 of the targeting algorithm). Since it contained eight cases, 45 cases (and thus 45%
of all cases) had then been targeted in total and the algorithm ended. Figure 4a shows the
resulting TRs—only one TR, in fact—the targeting efficiency of which can be expressed as
7.5 cases per minimal unit (calculation: 45 cases/6 minimal units). 

2 

 

 

Figure 3. Reproduction of Figure 2 after removing overlap with polygon 13. As in Figure 2, black dots
depict the locations of simulated cases and grid lines represent the set of minimal units specified for
the STA. In each panel, the pink shaded regions represent the remainder of the respective polygons
in Figure 2 after removing overlap with polygon 3.

Supposing the STA was instead applied without splitting in the above case, the values
of the 25 ‘polygons’ represented in Figure 3 ranged between 0.667 and 7.5 cases per minimal
unit, with only polygon 20 having the maximum value. Thus, that polygon was targeted
second. Since it contained 30 cases, 67 cases (and 67% of all cases) had then been targeted
in total, and again the algorithm ended. Figure 4b shows the resulting TRs—again only one
TR, in fact—the targeting efficiency of which can be expressed as 7.444 cases per minimal
unit (calculation: 67 cases/9 minimal units). This value is slightly lower than that of the
single TR delineated using the STA applied with splitting (7.5 cases per minimal unit),
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reflecting the fact that, in general, the targeting efficiency of portfolios produced using the
STA applied with splitting will exceed that of portfolios produced using the STA applied
without splitting due to the increased degree of flexibility that splitting allows.

 

2 

 

 

Figure 4. TRs delienated through applying the STA to the simulated dataset represented in
Figures 2 and 3, either (a) with splitting or (b) without splitting, based on a target case percent-
age of 40% of cases. Black dots depict the locations of simulated cases, grid lines represent the set of
minimal units specified for the STA and the red-shaded regions represent TRs.

It is important to note that neither of the portfolios shown in Figure 4 are particularly
(targeting) efficient. This is because only a simple application of the STA was undertaken in
order to convey the method; no weighting functions were specified, and only one polygon
was produced per minimal unit. Further, in both cases, the percentage of cases ultimately
targeted using the STA exceeded the specified target of 40% of cases. This is because the
STA’s targeting step, by design, identifies the set of maximally efficient TRs that contains
at least the specified target percentage of cases. In this characteristic, the STA is similar
in nature to Marxan + MinPatch, the application of which may result in somewhat larger
percentages than the specified targets of one or more abundance features being earmarked
for conservation. However, the relatively large differences between the target and targeted
percentages observed here simply reflect the rudimentary nature of the simulation.

3.3. Comparison of the STA to Marxan + MinPatch Using Simulated Data

Figure 5 depicts the locations of the simulated dataset and the 20 × 20 unit grid of plan-
ning units specified for Marxan. Additionally shown are the optimal portfolios designated
for the four sets of 10 Marxan portfolios (i.e., those based on the BLMs of 0, 0.001, 0.002
and 0.005; Figure 6a–d, respectively). These portfolios evidence the inverse relationship
that exists between the BLM specified for Marxan and the degree of fragmentation among
TRs in its output portfolios [11]. Additionally demonstrated is the known shortcoming
of Marxan that varying the BLM does not provide for sufficient control over the size and
shape of individual TRs within a given portfolio [11]. For example, in Figure 6d, while one
TR is large and relatively elongated, the others are small and relatively compact.

Figure 6 shows the optimal portfolios designated for the 12 sets of MinPatch portfolios
produced through applying MinPatch without simulated whittling to the four sets of
Marxan portfolios, and Figure 7 shows the corresponding portfolios designated through
applying MinPatch with simulated whittling. In these figures, two results are demonstrated:
first, and most strikingly, many of the portfolios in each figure are identical; specifically, in
both figures, the portfolios based on BLMs of 0, 0.001 and 0.002 are identical for a given
radius (Figures 6a,d,g and 7a,d,g). This is because the TRs in the underlying Marxan
portfolios (Figure 5) were smaller than the minimum size of 16 minimal units specified
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for MinPatch. Thus, within MinPatch, those TRs were removed and, regardless of the
specified BLM, replaced by the same set of new, larger TRs that were subsequently either
whittled or not. By contrast, the Marxan TRs that were based on a BLM of 0.005, which
sometimes satisfied the minimum size constraint (e.g., see the large TR in Figure 5d), being
not removed by MinPatch, are consequently either fully (e.g., in the case of Figure 6) or
partially (e.g., in the case of Figure 7) represented in the final MinPatch portfolios. 

3 

 

Figure 5. Optimal portfolios produced through applying Marxan to a simulated dataset while varying
the specified BLM. Black dots depict the locations of the simulated cases, grid lines represent the set of
spatial planning units specified for Marxan and the red-shaded regions represent the PAs delineated
using Marxan.

The second result demonstrated is that, unexpectedly, the portfolios shown in Figure 7,
despite comprising TRs that are relatively tree-like, are not maximally efficient. For example,
the single TR in Figure 7a could have been further whittled while still maintaining the
target percentage of cases and the specified minimum size constraint. Since application
of simulated whittling within MinPatch purportedly leads to delineation of maximally
efficient TRs [11], this result bears further investigation.

Table 1 shows targeting efficiency and number of TRs values for each of the optimal
MinPatch portfolios (Figures 6 and 7). These data demonstrate that, as expected, regardless
of the specified BLM and radius, portfolios produced using Marxan + MinPatch applied
with as opposed to without simulated whittling exhibit greater targeting efficiency. For
example, the efficiency of the optimal MinPatch portfolio that was based on a BLM of zero, a
radius of 2.25 and simulated whittling was 1.162 cases per minimal unit, while the efficiency
of the corresponding portfolio produced through applying MinPatch without simulated
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whittling was 0.847 cases per minimal unit. None of the 24 portfolios in Figures 6 and 7
contained more than two TRs. 

4 

 

Figure 6. Optimal portfolios produced through applying Marxan + MinPatch to a simulated dataset
based on 12 combinations of BLM and radius, and no simulated whittling. Black dots depict the
locations of simulated cases, and grid lines represent the set of spatial planning units specified for
Marxan + MinPatch. In each panel, shaded regions comprise ≥50% of cases.
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Figure 7. Optimal portfolios produced through applying Marxan + MinPatch to a simulated dataset
based on 12 combinations of BLM and radius, and simulated whittling. Black dots depict the locations
of simulated cases, and grid lines represent the set of spatial planning units. In each panel, shaded
regions comprise ≥50% of cases.
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Table 1. Efficiency data for the 24 optimal portfolios designated for sets of MinPatch portfolios
produced through applying Marxan + MinPatch to a simulated dataset with a target case percentage
of 50%.

With Simulated Whittling Without Simulated Whittling

BLM Radius %Min. Units
Targeted

Num. Target
Regions

%Min. Units
Targeted

Num. Target
Regions

0
2.25 10.75 2 14.75 2

3 11.25 2 16.25 2
5 10.75 1 23 1

0.001
2.25 10.75 2 14.75 2

3 11.25 2 16.25 2
5 10.75 1 23 1

0.002
2.25 10.75 2 14.75 2

3 11.25 2 16.25 2
5 10.75 1 23 1

0.005
2.25 11.5 2 12.75 2

3 11.75 2 13.75 2
5 16 2 18.5 1

Figure 8 shows the portfolios produced through applying the distance- and value-
weighted STAs with and without splitting (the distance-weighted STA: Figure 8a,b, respec-
tively; the value-weighted STA: Figure 8c,d, respectively). As expected, the TRs delineated
using the distance-weighted STA are relatively compact, while the TRs delineated using
the value-weighted STA are relatively tree-like. Targeting efficiency and number of TRs
values for the four STA portfolios are shown in Table 2. For example, for the distance-
weighted STA applied with splitting (Figure 8a), to reach the specified target of 50% of
cases, targeting of three discontiguous regions comprising 54 minimal units (i.e., 13.5% of
all units) was required (Table 2). By comparison, for the value-weighted STA, also applied
with splitting (Figure 8c), to reach 50% of cases, targeting of two discontiguous regions
comprising 32 minimal units (i.e., 8% of all units) was required (Table 2). These results
demonstrate the impact of imposing a progressively more stringent compactness constraint
within the STA: correspondingly reduced targeting efficiency.

Table 2. Exact efficiency data for portfolios produced through applying the distance- and value-
weighted STAs to a simulated dataset. Values shown correspond to a target case percentage of 50%.

With Splitting Without Splitting

STA %Min. Units Targeted Num. Target Regions %Min. Units Targeted Num. Target Regions

Distance-weighted 13.5 3 12 3
Value-weighted 8 2 8 2

The STA portfolio of maximally compact TRs was that produced using the distance-
weighted STA applied without splitting (Figure 8b), while the corresponding Marxan
+ MinPatch portfolio was that produced based on a BLM of 0.005, a radius of 2.25 and
no simulated whittling (Figure 6j). Between these portfolios, the STA portfolio had one
additional TR (three TRs as compared to two) but greater targeting efficiency (1.014 versus
0.98 cases per minimal unit). Across all ten datasets, the mean percentage increase in
efficiency attained through applying the STA as opposed to Marxan + MinPatch was 54.8%
(range: 14.8–95.5%).

The STA portfolios of maximally targeting efficiency were those produced using
the value-weighted STA applied either with or without splitting (Figure 8c,d), while the
corresponding Marxan + MinPatch portfolios were those produced based on BLMs of 0,
0.001 or 0.002, radii of either 2.25 or 5 and simulated whittling (Figure 7a,c,d,f,g,i). Between
these portfolios, the STA portfolios again had greater targeting efficiency (1.563 versus
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1.163 cases per minimal unit), while the number of TRs varied. Across all ten datasets, the
mean percentage increase in efficiency associated with applying the STA as opposed to
Marxan + MinPatch was 17.2% (range: 2.0–34.4%). 

6 

 

Figure 8. Sets of TRs delineated through applying the distance- and value-weighted STAs to a
simulated dataset, either (a,c) with splitting, or (b,d) without splitting. Black dots depict the locations
of simulated cases, and grid lines represent the set of minimal units. In each panel, shaded regions
comprise ≥50% of cases.

3.4. Extended STA Results

The following sections describe certain extended results of the STA.

3.4.1. Sensitivity to the Number of Polygons Created Per Minimal Unit within the STA

Theoretically, the creation of each new polygon within the STA will increase targeting
efficiency until the maximum possible efficiency is reached. However, this increase will
be offset by a corresponding increase in computation time. Therefore, as a rule of thumb,
when applying the STA, we suggest that additional polygons be created until the resulting
increase in efficiency is marginal. To illustrate, in Supplementary Material we show how
the targeting efficiency of the distance- and value-weighted STAs, applied to 100 datasets
simulated in the same manner as those described previously, increases only marginally, on
average, when creating more than approximately 15 and 10 polygons per minimal unit,
respectively.
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3.4.2. Exact Specification of a Desired Number of TRs

To this point, the number of TRs in portfolios produced using both the STA and
Marxan + MinPatch has been outside of the users’ control. In practice, however, specifica-
tion of this number might be desired, for example when funding was available to build a
specific number of new community health clinics. Therefore, below, we describe how, in
such cases, a variation of the STA can be applied to obtain appropriate solutions.

To illustrate, suppose that, for the simulated dataset described previously, it is desired
to delineate the maximally efficient set of two compact, non-overlapping TRs, each of size
16 minimal units. Theoretically, provided enough polygons were created, such a set could
be identified from among all possible pairs of polygons underlying the distance-weighted
STA, applied without splitting. However, if many polygons were created, it might be
computationally infeasible to identify that pair. Therefore, a greedy algorithm [16] might
be applied: select the polygon with the highest value, then the one with the next highest
value which does not overlap the first, and so on. However, this approach might identify a
sub-optimally efficient solution. Therefore, to avoid this, we propose the following steps:
order available polygons by their values, from highest to lowest, then iterate:

• Discard a constant, pre-specified percentage of polygons, beginning with those ranked
lowest (i.e., those with the lowest values);

• Select each remaining polygon in turn to form a new branch of the targeting algo-
rithm; and

• In each unique branch, discard any of the remaining polygons that overlap the one
selected. If the specified number of polygons is reached in all branches, or there are no
remaining polygons, end.

The above algorithm outputs a reduced number of polygon sets—pairs, in the example
above—from among which the one that is maximally efficient can more feasibly be selected.
Specifying a discard percentage of 80%, we applied the algorithm to the problem posed
above; Figure 9 shows the result. The two TRs shown together comprise 32 minimal units
and 39 cases; thus, their targeting efficiency can be expressed as 1.22 cases per minimal unit
(calculation: 39 cases/32 minimal units). 

7 

 

 

Figure 9. TRs delineated through applying a variation of the distance-weighted STA to a simulated
dataset. Here, a requirement to delineate two, possibly contiguous TRs of a certain size has been
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stipulated. Black dots depict the locations of simulated cases, grid lines represent the set of minimal
units specified for the STA and the red-shaded regions represent the TRs.

To investigate the impact of choosing different discard percentages, we re-applied the
algorithm to the same simulated dataset while varying the discard percentage between
0% and 95%. Interestingly, the same set of TRs was produced each time. Therefore, as a
rule of thumb, and in order to manage computation time, we suggest that the algorithm be
applied with a relatively high discard percentage, e.g., 80%, as we have done above.

3.4.3. Application of the STA to Modelled, or Smoothed, Risk Surfaces

In many situations, only modelled, or smoothed, risk surfaces are available to guide
intervention targeting. Examples include the maps of cholera and HIV risk found within
Lessler et al. (2018) [3] and Coburn et al. (2017) [8], respectively, cited previously, and
maps of malaria risk found within Weiss et al. (2019) [17]. The production and display
of such maps is ubiquitous both in the literature and in practice. Application of the
STA in such cases proceeds as described above, except that the set of minimal units is
automatically defined by the geographic resolution of the surface. An illustration of this
idea is provided in Supplementary Material, where we apply the STA to smoothed risk
surfaces created using a recently proposed smoothing technique—the Overlay Aggregation
Method (OAM; [7]).

3.5. Real-World Application: Stroke

Figure 10a maps the 4248 SA1s and 164 SA2s that defined the geography of Perth in
2016. Figure 10b maps Perth’s 2016 population density by SA2. These maps reproduce
Figure 6 in Tuson et al. (2020) [7]. Perth’s population, which in 2016 was 1.85 million,
straddles the Swan and Canning Rivers, and sprawls north-to-south along the coastline.
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Figure 11a,b map the sets of TRs delineated for stroke using Marxan + MinPatch and 
the STA, respectively. As expected, given (1) the inverse distance-based weighting func-
tion specified for the STA, and (2) that no simulated whittling was applied within Min-
Patch, the TRs delineated using both methods were relatively compact (while conforming 
to the somewhat variable shapes of the SA1 boundaries). For Marxan + MinPatch, eight 
TRs were delineated in total; these contained 15.02% of strokes and 7.58% of the popula-
tion; thus, their targeting efficiency can be expressed as 1.98% of strokes for every 1% of 
the population targeted (calculation: 15.02/7.58). By comparison, for the STA, 10 TRs were 
delineated in total; these contained 16.33% of strokes and 6.59% of the population; thus, 
their targeting efficiency can be expressed as 2.48% of strokes for every 1% of the popula-
tion targeted (calculation: 16.33/6.59). These results are consistent with those of the simu-
lation study: the targeting efficiency of the STA was greater than that of Marxan + Min-
Patch, while the number of TRs was similar. 

Figure 10. Administrative geography and population density of Perth in 2016. (a) SA1 and SA2
boundaries. (b) SA2-resolution population density.
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Figure 11a,b map the sets of TRs delineated for stroke using Marxan + MinPatch and
the STA, respectively. As expected, given (1) the inverse distance-based weighting function
specified for the STA, and (2) that no simulated whittling was applied within MinPatch,
the TRs delineated using both methods were relatively compact (while conforming to the
somewhat variable shapes of the SA1 boundaries). For Marxan + MinPatch, eight TRs were
delineated in total; these contained 15.02% of strokes and 7.58% of the population; thus,
their targeting efficiency can be expressed as 1.98% of strokes for every 1% of the population
targeted (calculation: 15.02/7.58). By comparison, for the STA, 10 TRs were delineated in
total; these contained 16.33% of strokes and 6.59% of the population; thus, their targeting
efficiency can be expressed as 2.48% of strokes for every 1% of the population targeted
(calculation: 16.33/6.59). These results are consistent with those of the simulation study:
the targeting efficiency of the STA was greater than that of Marxan + MinPatch, while the
number of TRs was similar.

 

7 

 

 

Figure 11. Sets of TRs comprising ≤ 15% of strokes in Perth in 2016. (a) TRs delineated using
Marxan + MinPatch applied with a BLM of zero, a radius of 0.011 and simulated whittling. (b) TRs
delineated using the distance-weighted STA applied without splitting. In each panel, grey lines
represent the boundaries of SA1s and the red-shaded regions represent delineated TRs.

4. Discussion

In this paper, we have described a limitation of currently available methods for delin-
eating sets of geographic TRs for healthcare interventions, namely the disproportionate
prioritisation by those methods of ‘targeting efficiency’, i.e., the return on intervention
investment, over important logistical factors such as the number of TRs, and aimed to ad-
dress this limitation through comparing the utility of a method found within conservation,
Marxan + MinPatch, to that of a new method we introduce, the STA. This comparison
showed favourable performance of the STA over Marxan + MinPatch, both with respect
to targeting efficiency and with respect to adequate consideration of logistical factors, the
latter primarily by design. These findings suggest that the STA might usefully be applied



Int. J. Environ. Res. Public Health 2022, 19, 14721 19 of 22

to guide geographically targeted resource allocation and other interventions in a range of
health contexts.

The superior performance of the STA over Marxan + MinPatch observed in this study
can be attributed to the limitations of the latter noted in the Introduction, namely: (1) the
incorporation within both Marxan and MinPatch of a global, rather than a local parameter
(the BLM) to control for the degree of fragmentation among TRs in their output portfolios;
(2) MinPatch’s reliance on a distance-based radius when defining new TRs; and (3) the
inherent potential of MinPatch to output sub-optimally targeting efficient portfolios due
to the ‘top-down’ nature of its algorithm. Regarding (1), it is clear that a global parameter
cannot be expected to optimise either the targeting efficiency or orientation/configuration
of individual TRs within a given portfolio. Similarly, regarding (2), it is not unexpected
that, in health-related research, where the geographic units being examined are usually
pre-defined and irregularly shaped, a distance-based radius would underachieve when
compared to one that is flexible in terms of the shapes it is able to build. And finally,
regarding (3), it is again not unexpected that an algorithm which builds flexible shapes
from the ground up would yield greater efficiency than one which builds ‘top-down’.
Nevertheless, it is worth reiterating the additional, unexpected result of this study: that
some of the TRs output by MinPatch were not maximally efficient, despite being delineated
using whittling. As we have written, this result bears further investigation.

In line with previous suggestions [7], the set of ten, compact TRs delineated using the
STA for stroke in Perth might represent suitable targets for interventions such as mobile
stroke units. However, it is outside of the scope of this paper to provide, in a given
scenario, detailed guidance regarding either: (1) what interventions might be appropriate,
or (2) how such interventions should be implemented. Rather, we simply provide the
STA as a flexible tool that can effectively be used to delineate sets of geographic TRs
for whatever intervention is deemed potentially most useful by planners. However, to
demonstrate the STA’s flexibility, we note that, in the context of stroke, weighting functions
based on distance to existing ambulance depots or stroke units might be specified in place
of, or in addition to, the Euclidean distance-based weighting function we have used here.
Furthermore, different choices of admissions targets might be used (here, following Tuson
et al., 2020 [7], we used 15%), and the sensitivity of the results to that value might be
investigated. Such an investigation represents an interesting avenue for future work.

In the context of health, our focus on efficiency as a means of comparing the output of
the STA to that of Marxan + MinPatch is relatively novel; while we have cited several papers
that explicitly evaluate targeting efficiency, such papers are, in fact, relatively rare. Instead,
studies examining the geographic distribution of disease and other health outcomes often
focus on the statistical classification of ‘hotspots’, often with the aim of characterising
inequity. By comparison, the efficiency approach simply describes where events are located.
However, it is worth noting that the polygons created within the STA could also be used
for hotspot classification, for example in a manner similar to that of the popular approach
SaTScan [18,19], which examines numerous spatial scan ‘windows’. An extensive literature
exists that is devoted to overcoming the limitations of such windows as related to their
shape (e.g., see Duczmal and Assuncao, 2017 [20]); given that the STA’s polygons are
inherently flexible with regards to shape, an analysis of their use in classifying hotspots
could usefully contribute to this literature.

Our findings expressly caution against the singular use of pre-defined administrative
areas/boundaries (e.g., suburbs, local government areas, postcodes, ZIP codes) when
delineating geographic TRs. Specifically, targeting limited intervention resources based
on relatively small administrative areas (e.g., SA1s in Australia) may not be appropriate,
since doing so might result in the delineation of numerous, discontiguous TRs, potentially
precluding effective targeting of interventions. This is a manifestation of the small number
problem. On the other hand, targeting resources based on relatively large administrative
areas (e.g., SA2s in Australia) should only be undertaken with caution, since, as noted
previously, the boundaries of such areas will not accurately reflect the spatial distribution
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of disease, except possibly by chance [7]. This is the impact of the MAUP. It is becoming
gradually more widely recognised that data aggregated by political or administrative
boundaries are unreliable for addressing many public health concerns, including the
mapping of disease, and in fact might serve to undermine public health interests. In the
US, for example, examination of blood lead levels in the population of Flint, Michigan, in
2015, using US ZIP codes (mean population size approximately 7500), delayed discovery
of elevated blood lead levels in children of that county [21]. Thus, while targeting of
interventions based on administrative boundaries is often expedient, for example due to
funding commonly being distributed based on those boundaries, this reality should not
preclude delineation of efficient TRs in the first place.

While we have developed the STA in the context of health, it could equally be ap-plied
to guide geographic resource allocation and other interventions elsewhere. In criminology,
for example, previous literature has recognised the importance of prioritising geographic
TRs for distribution of limited policing resources in order to address crime (e.g., see
Umar et al., 2020 [22]). In this context, the STA could be applied to datasets consisting
of administrative units and the spatial locations of crime events, to produce appropriate
TRs. Similarly, in transport planning, recent research has aimed to identify road section
lengths with the greatest density of truck crashes, in order to guide policymakers in the
allocation of highway patrol resources [23]. In this context, the STA could be applied to
datasets consisting of lengths of road sections and the spatial locations of traffic incidents.

Limitations

This study has several limitations. First, in developing the STA, we have not attempted
to: (1) emulate Marxan + MinPatch’s attractive ability to produce multiple, different port-
folios for a given dataset; (2) incorporate consideration of multiple different abundance
features (another attractive ability of Marxan + MinPatch); or (3) derive estimates of pre-
cision around a given portfolio’s efficiency. These omissions were intentional, since our
focus has been to demonstrate: (1) the use of both Marxan + MinPatch and the STA for
delineating geographic TRs for healthcare interventions, and (2) that, for single outcomes
(e.g., cases of disease or hospital admissions), such as are commonly examined in health,
greater efficiency and control over logistical features is attainable using the STA. However,
acknowledging that, in order to facilitate comparison and contrast of benefits and limita-
tions associated with intervening in different areas, the availability of multiple different
portfolios is often desirable in practice, including in health, we suggest that further work
be undertaken to incorporate that functionality into the STA. With this in mind, it is worth
noting that: (1) the STA’s unique separation of the process of polygon creation from the
subsequent targeting of those polygons uniquely facilitates such an extension, and (2) if
enough polygons were created, they could reasonably be sampled to produce precision
estimates.

Second, the logistical factors we have considered do not constitute all possible logistical
constraints that might impact upon the effectiveness of geographically targeted healthcare
interventions in a given situation. Other potentially relevant factors include: politics,
topography, military conflict, scarcity of resources and the availability of funding. Previous
studies have also acknowledged the importance of such factors (e.g., see Lessler et al.,
2018 [3]); however, it is outside of the scope of this study to incorporate them into the STA
at this time.

And third, both the STA and Marxan + MinPatch are limited in that they cannot take
into account any variation in the population density among geographic units in a region,
or indeed any variation in the population sizes of those units. In conservation, the units
used are typically geometric and uniform, e.g., raster cells or hexagons; however, in health,
administrative units of varying shapes and complexities are typically used. This limitation
is usually unavoidable. However, its impact can be mitigated by utilizing the smallest
possible administrative units available, for example SA1s in Australia, as we have done in
the stroke example.
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5. Conclusions

Geographic targeting of finite healthcare resources and other interventions should be
guided, in the first instance, or at least in conjunction with administrative boundaries, by
sets of TRs that maximise efficiency while considering associated logistical factors. The
boundaries of these TRs may or may not align with the boundaries of local administrative
units. With comparison to Marxan + MinPatch, a method we have repurposed from conser-
vation planning, we have shown how the STA, a new method we have introduced, can be
used to efficiently delineate such regions. Given these findings, we suggest that application
of the STA in both health and non-health contexts could help prevent inefficiencies arising
due to allocation of resources guided purely by pre-defined administrative units.
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