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Abstract: In China, studies on the regional risk assessment of hazardous chemicals have been
carried out for only a few years, and there are few studies on hazardous chemicals leaking into
seas. Previous regional-risk-assessment methods considered a single risk factor for most assessment
targets, and comprehensive considerations of risk sources and sensitive resources for a study area are
not sufficiently included. Based on previous work, this study established a regional-risk-assessment
method for hazardous chemicals leaking into seas. This method considered the hazards of hazardous
chemicals and the tolerance of the regional environment by means of a case study in Tianjin. The
results showed that the risk level of the enterprise was Grade I, classified as a high-risk source of
hazardous chemicals; the main reasons were the strong toxicity and large quantity of hazardous
chemicals. This method provides technical support for scientifically assessing marine-environmental-
risk levels for hazardous-chemical-leakage areas and for carrying out risk-prevention and restoration
assessments of hazardous chemicals leaking into seas.
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1. Introduction

The chemical industry has gradually become the leading industry in China. While the
use of many chemicals improves production quality and quality of life, their inherently dan-
gerous properties also pose a great threat to human health and the natural environment [1].
At the same time, the coastal layout of a large number of chemical parks, run by enterprises
who engage in large-scale hazardous chemical production, storage and transportation in
coastal zones, has also aggravated the risk of hazardous chemicals leaking into the sea.
The import and export routes of hazardous-chemical raw materials are mainly ports and
fairways [2], and with the expansion of port throughput and the increase in the frequency of
ship transportation, the probability of accidents such as the leakage of hazardous chemicals
at sea increases [3]. On 20 March 2018, the Central Committee of the Communist Party of
China issued the Plan for Deepening the Reform of Party and State Institutions [4], which
clarified that the main responsibilities of the newly formed Ministry of Natural Resources
are to “uniformly exercise the responsibilities of owners of all natural resource assets owned
by the whole people, and uniformly exercise the responsibilities of controlling the use of
all land and space and ecological protection and restoration”. Therefore, carrying out
risk assessments in areas where hazardous chemicals have spilled into the sea is of great
significance for improving responses to marine disasters, territorial spatial planning and
use control, and improving the ability to respond to marine environmental disasters and
protecting resources.

In the 1960s and 1970s, developed countries enacted laws on the management of
chemical substances, which prompted United Nations agencies to gradually establish and
implement relevant international conventions [5]. Initially, developed countries mainly
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identified the hazards of chemicals to achieve safety management [6]. In the 1990s, risk-
assessment techniques gradually developed, and chemical management in developed
countries began to shift to a form of risk management that comprehensively considered
the inherent hazards of chemicals and their exposures [7], that is, risk assessment using
scientific procedures, and then further analyzed the benefits of chemicals to society, their
impact on socioeconomic development, and alternative technologies with which to make
risk-management decisions. In the process of chemical-risk management, chemical-risk-
assessment technology is the core technical means of chemical management. To cooperate
with chemical management, international organizations and developed countries have
successively issued guidelines or norms to guide risk assessment [8].

Research outside China on the risk assessment and prediction of hazardous chemical
accidents began earlier, and it is more systematic in both theory and method. In terms of
policy, many developed countries have incorporated environmental risk assessment into the
scope of environmental management, with policies such as the guidelines on “Controlling
Accidents Affecting People inside and Outside Factories and Major Environmental Hazards”
issued by the Department of Environment and Science of the World Bank in 1985; the
European Union (EU) legislation from 1987, which stipulates that environmental risk
assessments must be carried out for factories that may be at risk of chemical accidents;
and the Appel Plan (APELL), developed in 1988 by the United Nations Environment
Programme (UNEP), which is used to deal with environmental pollution accidents that
are difficult to prevent and may cause serious harm to human health and the ecological
environment [9].

In 1996, the EU published the first edition of the Technical Guidelines for Risk Assess-
ment (TGRA), applicable to various chemicals [10], which detailed the technical elements
of chemical-risk assessment. Overall, the EU’s chemical-risk assessment focuses on the
integrated management of chemicals, and it is the world’s leading approach to chemical-
risk management. Chemical-management and risk-assessment technology in the United
States originated in the Pollution Prevention Act implemented by the U.S. Environmental
Protection Agency (EPA) Office of Pollution Prevention and Toxic Substances in 1976; the
relevant model tools for chemical-risk assessment in the U.S. are the evaluation of chemicals’
physicochemical properties and environmental mapping models, predictive hazard and
toxicity models, and emission, exposure, and risk models.

BP International, a well-known British multinational company, absorbed the method-
ology of major-accident-risk management used by multinational oil companies and formed
a set of major accident risk-management processes [11]. Marhavilas et al. [12] established
an assessment framework based on the traditional risk-assessment framework, applying
qualitative assessment and quantitative assessment by using deterministic methods and un-
certain methods, respectively. The National Environmental Exposure Laboratory of the U.S.
EPA proposed the Framework for Risk Analysis in Multimedia Environmental Systems–
Multimedia, Multipathway, and Multireceptor Risk Assessment (FRAMES–3MRA) [13].
Romer et al. [14] proposed the natural-accident-consequence-description method (cover-
ing contaminated coastal areas, the number of dead birds and fish, etc.) to establish a
corresponding risk-assessment model for hazardous-chemical-water-transport accidents
and innovatively improved the evaluation of the consequences for living organisms in the
model. Wessberg et al. [15] estimated risk by constructing activity and process models that
analyze the probability and consequences of an accident. Matthiessen et al. [16] studied
the environmental hazards of hazardous chemicals from a unique perspective, that is, by
measuring the environmental impact of hazardous chemicals by observing hormonal inter-
ference in living organisms, and used this as a basis for a corresponding risk assessment.
Zhang et al. [17] used GIS technology to assess the threat of chemical accidents to people
and the environment, established a risk-index model, and, with the support of chemical
characteristics and environmental-resource-information databases, studied the effects of
local pollution from chemical accidents on human health, groundwater, surface water, and
soil resources, and provided relevant decision-making support for managers.
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The research status of risk-assessment technology used for hazardous chemicals in
China can be divided into the following aspects:

(1) Theoretical research on risk assessment of hazardous chemicals. At present, risk-
assessment research on major sources of hazardous chemicals mainly focuses on four
aspects: multiobjective fuzzy theory [18], grey theory [19,20], the domino effect [21],
and variable fuzzy set theory [22].

(2) Qualitative-risk-assessment technology for hazardous chemicals. In March 2013,
the Ministry of Environmental Protection issued the Guidelines for the Preparation
of Environmental Risk Assessment Reports for Hazardous Chemicals under Key
Environmental Management (Trial Implementation) [23], and in April 2014, it issued
the Guidelines for Risk Assessment of Environmental Emergencies in Enterprises
(Trial Implementation) [24]. The two specifications took hazardous chemicals and
key enterprises as their respective starting points and established specific methods
for environmental-risk-level assessment, namely, environmental risk assessment of
hazardous chemicals and risk assessment of environmental emergencies. In addition,
Liu Zhiguo et al. [25], on the basis of the analysis of the risk characteristics of coastal-
chemical-risk sources, constructed a comprehensive assessment index system for the
environmental risk of chemical risk sources based on risk sources, control mechanisms,
and risk receptors, established a corresponding risk-evaluation model, and proposed
a three-level risk-management system. The risk-assessment method adopted by Wang
Shouyun [26] first determines the sea area where dangerous goods leakage accidents
may occur, assesses the frequency of accidents, and then manages the risks in different
geographical areas.

(3) Quantitative risk-assessment technology for hazardous chemicals. Li Qiujin et al. [27]
conducted a study on a series of accidents caused by chlorine leakage, analyzed the
possible accident scenarios according to the quantitative-risk-evaluation procedure
of the given accident situation, discussed and analyzed each accident situation sep-
arately, and finally focused on the highest-risk scenario. Zhao Wenfang and Wu
Zhifeng [28] determined the method of equipment unit selection and the statistical
scope of environmental information data, proposed the calculation method and imple-
mentation method of accident frequency, accident consequences, personal risk, social
risk, etc., and established a highly practical technical scheme for the quantitative risk
assessment of major sources of hazardous chemicals. Deng Qigen et al. [29] analyzed
the mathematical model of the accident probability of chemical enterprises on the
basis of the Markov accident-probability-hypothesis model. Chen Guohua et al. [30],
based on the basic principle of quantitative risk evaluation, proposed a regional risk-
assessment method, and the quantitative evaluation results describing the overall risk
status of the region were obtained by applying the superposition principle.

(4) The innovative application of computer technology in the risk assessment of major
sources of hazardous chemicals. In terms of the risk assessment of major hazards
in petrochemical enterprises, Liang Chenghao and Lü Dong [31] used the program-
ming language Visual Basic to establish a petrochemical-enterprise fire-and-explosion
risk-assessment system that can be used for the risk assessment of petrochemical
enterprises by calling and controlling the Oracle Database.

In summary, regional-risk-assessment research on hazardous chemicals in China
started late, and there has been less research on the methods for assessing the leakage of
hazardous chemicals into the sea. In the existing regional-risk-assessment methodology,
most of the assessment objects are single risk factors, and there is a deficiency in that the
comprehensive impact of other risk sources and sensitive resources in the study area is not
fully considered.

In this study, to carry out the risk assessment and zoning of hazardous chemicals
leaking into seas, we developed a regional-risk-assessment index system for hazardous
chemicals spilling into the sea, focusing on the whole coastal area of China.
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2. Methods

Due to the insufficient accumulation of risk data in the environmental field in China,
it is difficult to scientifically define the risk level of each evaluation index. Therefore,
by comprehensively drawing on the grading methods from previous research at home
and abroad, based on the responsibilities of the Ministry of Natural Resources, this study
initially established a risk-grading index system (Figure 1) that includes 8 specific indicators
of 2 criterion layers (hazard and regional risk tolerance of hazardous chemicals) and used
the scoring method to determine the risk level of each indicator through a literature review,
data collection, and expert consultation.
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2.1. Risk-Assessment Methodology

Considering that environmental risks may arise from defects in any link in the risk
system, the comprehensive evaluation of risk zoning adopts a combined algorithm of
weighted summation and weighted multiplication. In the calculation of the criterion layer
from specific indicators, different specific indicators represent different aspects of the same
risk factor, and the weighted summation method is used to calculate the criterion layer fol-
lowing Equation (1). In addition, the analytic hierarchy process (AHP) and Delphi method
(Delphi) are used to determine the weights, the weight coefficients between the criterion
layer and each specific indicator are then determined, and the sum of the coefficients is
maintained as 1 when determining the weights between specific indicators.

R =
n

∑
i=1

CiSi (1)

where R is the regional-risk-assessment score, Ci is the weight value of the specific indicator,
and Si is the score of the indicator.
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2.2. Indicator System
2.2.1. Hazardous Chemicals

The hazard assessment of hazardous chemicals should comprehensively consider the
types of risk sources involved in hazardous chemicals, the types of hazardous chemicals,
and the quantity of hazardous chemicals. The details are as follows:

H1. Risk-source type: The probability of environmental accidents in various industry
types is different, and we devided into three types: high-risk-industry types (H1. 1),
medium-risk-industry types (H1. 2) and low-risk industry types (H1. 3). High-risk-
industry types include chemical raw materials and chemical manufacturing, crude-oil
processing and petroleum-product manufacturing; medium-risk-industry types include
medicine, printing and dyeing, coatings, metal surface treatment and hot processing;
low-risk industry types include steelmaking and steel rolling.

H2. Hazardous chemical types: Different types of hazardous chemicals have differ-
ent degrees of impact on the environment, and internationally, the European Standard
Behaviour Classification System (SEBC code; Bonn Agreement, 1991) is generally used
to classify the physical behavior of chemicals after entering the sea [32]. According to
SEBC, once some hazardous chemicals leak into sea, there four situations occur: floating
(F), dissolution (D), sedimentation (S), and volatilization (E). Furthermore, since some haz-
ardous chemicals show multiple physical behaviors, SEBC classified hazardous chemicals
into 8 categories: floating volatilization (FE), rapid dissolution volatilization (DE), rapid
dissolution (D), floating (F), floating dissolution (FD), floating volatilization and dissolution
(FED), sedimentation (S), and sedimentation dissolution (SD). Volatile hazardous chemicals
(FE, DE, and FED) volatilize in the air, which causes relatively little harm to the marine
environment. Sedimentary hazardous chemicals (S and SD) are easy to salvage and dispose
of, which causes relatively moderate harm to the marine environment. Thus, considering
the different hazards of different types of hazardous chemicals after they leak into the sea,
they are divided into three levels: high (D, F, FD), medium (S, SD), and low (FE, DE, FED).

H3. Toxicity of hazardous chemicals: The Joint Group of Experts on the Scientific
Aspects of Marine Pollution (GESAMP) comprehensively considers the bioaccumulability,
stability, and aquatic biological toxicity of hazardous chemicals and divides the ecotoxicity
of hazardous chemicals into grades 1 to 6 [33–38] (Table 1). Drawing on this reference, to
improve the operability and applicability of the method, the grading scale was divided into
three levels: high (levels 5 to 6), medium (levels 3 to 4), and low (levels 1 to 2).

Table 1. Grading standard for ecological toxicities of dangerous chemicals of GESAMP.

Grading

Bioaccumulation

Stability

Aquatic Toxicity/(mg·L−1)

LogKow BCF Description
Acute Toxicity Chronic Toxicity

LC/EC50 Description NOEC Description

1 <1 Not available No Totally stable >1000 Nontoxic >1 No

2 1 ≤ - < 2 1 ≤ - < 10 Extremely low Stable 100 < - ≤ 1000 Generally
nontoxic 0.1 < - ≤ 1 Extremely low

3 2 ≤ - < 3 10≤ - < 100 Low Low instability 10 < - ≤ 100 Low toxicity 0.01 < - ≤ 0.1 Low

4 3 ≤ - < 4 100 ≤ - < 500 Moderate Moderate
instability 1 < - ≤ 10 Moderate

toxicity 0.001 < - ≤ 0.01 Moderate

5 4 ≤ - < 5 500 ≤ - < 4000 High High instability 0.01 < - ≤ 1 High toxicity ≤0.001 High

6 5≤ 4000≤ Extremely
high

Extreme
instability 0.01< Extremely

high toxicity
Extremely

high

Note: BCF refers to the bioconcentration factor.

H4. Quantity of hazardous chemicals: Refers to the number of hazardous chemicals
used, stored, and produced in the region. Based on the division of the “List of Hazardous
Substances and Critical Quantities of Environmental Emergencies” of the Ministry in
Environmental Protection’s “Guidelines for Risk Assessment of Environmental Emergencies
in Enterprises (Trial),” considering the critical amount of hazardous chemicals in the region,
it is divided into three levels: high, medium, and low.
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2.2.2. Regional Risk Tolerance

Regional risk tolerance is divided into two factors: disaster bearer and disaster-
mitigation capacity. Disaster bearer comprehensively considers the background values
of characteristic pollutants in the marine environment, the impact of topography and
geomorphology, the connection to the ocean, the category of sensitive resources, and the
distance from sensitive resources. Disaster-reduction capacities should take into account
regional-risk-control capacities. The specific instructions are as follows:

E1. Diffusion condition: Refers to the drift diffusion of hazardous chemicals after they
enter the sea; the wider the scope of the diffusion, the greater the degree of its impact on
the marine environment. The spread situation is divided into open sea, semi-enclosed bay,
and harbor pool, and its impact on the marine environment is open sea > semi-enclosed
bay > port pool.

E2. Sensitive-resources category: With reference to the marine-water-quality stan-
dard [34], sensitive resources are divided into four categories: the first category is marine
fishery waters, marine nature reserves and rare- and endangered-marine-life reserves;
the second category is aquaculture areas, beaches, and marine sports or recreation areas,
where the human body is in direct contact with seawater and industrial water areas di-
rectly related to human consumption; the third category is general industrial water areas
and coastal-scenic-tourism areas; and the fourth category is marine-port water areas and
marine-development-operation areas.

E3. Distance from sensitive resources: The distance from sensitive resources reflects
the degree of damage caused by environmental accidents. After a spatial analysis of
environmental risk sources and surrounding sensitive points through GIS, the distance
from the most direct leakage point to the nearest environmentally sensitive point according
to the risk source is divided into 3 levels: <3 km, 3 to 10 km, and ≥10 km.

E4. Enterprise safety-production-standardization level: According to the provisions of
the Administrative Measures for the Evaluation of Enterprise Safety Production Standard-
ization (Trial) [35], the safety-production standardization of hazardous chemical enterprises
is divided into first-level, second-level, and third-level. The first-level enterprises are
reviewed and announced by the State Administration of Work Safety; the second-level
enterprises are reviewed and announced by the safety-production supervision and man-
agement department of the province (autonomous region or municipality directly under
the Central Government) in which the enterprise is located and the Xinjiang Production
and Construction Corps; and third-level enterprises are reviewed and announced by the
safety-production supervision and management department of the district city (prefecture,
league) in which the enterprise is located.

2.3. Classification Values

To make the weights determined more representative and maximize the sample size,
the relevant experts of the First Institute of Oceanography of the State Oceanic Admin-
istration, Xiamen University, Beijing Normal University, Beijing University of Chemical
Technology, Dalian Maritime University, CNOOC Safety Technical Service Company, Beihai
Environmental Monitoring Center of the State Oceanic Administration, and other units
were invited to comprehensively construct a judgement matrix of expert scores to determine
the relative importance of weights of each layer of indicators (Table 2).
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Table 2. Classification values for risk assessment of hazardous chemicals leaking into the sea.

Criterion Level Index Level 1 Index Level 2 Index Refinement Values

Hazard of hazardous
chemicals

H (0.5)
Risk sources

Types of risk sources
H1 (0.25)

High environmental risk 3
Moderate environmental risk 2

Low environmental risk 1

Types of hazardous
chemicals
H2 (0.25)

High 5
Moderate 3

Low 1

Toxicity of hazardous
chemicals
H3 (0.25)

High 9
Moderate 6

Low 3

Quantity of hazardous
chemicals
H4 (0.25)

>80% 9
40~80% 6

<40% 3

Regional risk tolerance
E (0.5)

Disaster-carrying body
(0.75)

Diffusion condition
E1 (0.25)

Open sea area 3
Semi-enclosed bay area 2

Harbour basin 1

Sensitive resource
category
E2 (0.25)

Marine fishery waters, marine
nature reserves, and rare-and-

endangered-marine-life
reserves

9

Aquaculture areas, bathing
beaches, marine sports or

recreational areas where the
human body is in direct contact
with sea water, and industrial
water areas directly related to

human consumption

5

General industrial water area,
coastal-scenic-tourist area 3

Harbor basin, marine-
development-operation area 1

Distance from sensitive
resources
E3 (0.25)

<3 km 5
3~10 km 3
≥10 km 1

Disaster-reduction
capability

(0.25)

Safety-production-
standard level

E4 (0.25)

Poor 9
Ordinary 6

Good 3

2.3.1. Classification of Hazardous Chemicals

According to the hazard scores of hazardous chemicals, the hazards of hazardous
chemicals were divided into four levels (Table 3).

Table 3. Classification of hazardous chemicals.

Hazard Score of Hazardous Chemicals (H) Classification

21 ≤ H ≤ 26 I
16 ≤ H < 21 II
12 ≤ H < 16 III
8 ≤ H < 12 IV

2.3.2. Classification of Regional Risk Tolerance

According to the regional-risk-tolerance scores, the regional risk tolerance was divided
into four levels (Table 4).
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Table 4. Classification of regional risk tolerance.

Regional Risk Tolerance Score (E) Classification

21 ≤ E ≤ 26 I
16 ≤ E < 21 II
11 ≤ E < 16 III
6 ≤ E < 11 IV

2.4. Classification Method

According to China’s current administrative management system, with the county
(district) as the unit, a regional risk assessment was carried out, and the assessment scope
was 10 km on the seaward side of the coastline and, on the landward side, up to the
maximum-high-tide line, focusing on the risk sources for sources of dangerous chemical
leakage into the sea, such as hazardous-chemical enterprises located within 1 km of the
coastline on the landward side or adjacent to rivers entering the sea. The risk-assessment-
level relationship of dangerous chemicals leaking into the sea area is shown in Table 5.

Table 5. Risk-assessment-level relationship of dangerous chemicals leaking into the sea area.

Regional Risk Tolerance

Hazard of
hazardous
chemicals

Extremely low (IV) Low (III) High (II) Extremely high (I)
Extremely low (IV) Extremely low (IV) Extremely low (IV) Low (III) Low (III)

Low (III) Extremely low (IV) Low (III) High (II) High (II)
High (II) Low (III) High (II) High (II) Extremely high (I)

Extremely high (I) Low (III) High (II) Extremely high (I) Extremely high (I)

3. Case Application

To test the applicability of the risk-source-assessment-index system, a typical enter-
prise in Tianjin Binhai New Area was selected as a research case for risk-source-level
assessment. First, basic information, such as the geographical location coordinates, the
types and quantities of hazardous chemicals involved, and the level of the enterprise’s
safety-production standards, was collected and sorted. Second, according to the “Tian-
jin Marine Functional Zoning” (2011–2020), the conditions for the potential diffusion of
chemicals into the sea from the company, the types of sensitive resources nearby, and their
distance from sensitive resources were determined. Finally, the scores for each risk factor
were calculated according to the established risk-assessment method for the leakage of
hazardous chemicals into the sea (Table 6). The company’s hazardous-chemical score was
26 points (Level I) and the regional risk tolerance was 17 points (Level II). The results
showed that the risk level of the enterprise was Grade I, classified as a high-risk source
of hazardous chemicals; the main reasons were the strong toxicity and large quantity of
hazardous chemicals. Considering that this method is still under study, XX is used here
instead of the actual company name.

Table 6. Risk-assessment level of XX company in Tianjin.

Criterion Level Index Level 1 Index Level 2 Index Refinement Values

Hazard of hazardous
chemicals

H (0.5)

Risk sources

Types of risk sources
H1 (0.25) High environmental risk 3

Types of hazardous
chemicals
H2 (0.25)

High 5
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Table 6. Cont.

Criterion Level Index Level 1 Index Level 2 Index Refinement Values

Toxicity of hazardous
chemicals
H3 (0.25)

High 9

Quantity of hazardous
chemicals
H4 (0.25)

>80% 9

Total 26

Regional risk tolerance
E (0.5)

Disaster-carrying body
(0.25)

Diffusion condition
E1 (0.25) Semi-enclosed bay area 2

Sensitive resource category
E2 (0.25)

Harbor basin, marine
development operation

area
1

Distance from sensitive
resources
E3 (0.25)

<3 km 5

Disaster-reduction
capability

(0.25)

Safety-production-
standard level

E4 (0.25)
Poor 9

Total 17

Risk level I

4. Conclusions

By applying the recent research conducted at home and abroad to comprehensively
consider the hazard and regional risk tolerance of hazardous chemicals, this study es-
tablished a regional-risk-assessment-index system for hazardous chemicals spilling into
the sea, including the type of risk source, the types of hazardous chemicals, the quantity
of hazardous chemicals, the toxicity of hazardous chemicals, the diffusion conditions,
the types of sensitive resources, the distance from sensitive resources, and the level of
enterprise-safety-production standards. At the same time, a combination of the AHP and
the Delphi method was used to determine the weights of the indicators, and comprehensive
expert scores were assigned to the indicators. The index system not only takes into account
the scientific rationality of index-setting and weight assignment, but also considers the
applicability of the operationalization of risk assessment in the area in which hazardous
chemicals are leaked into the sea. Unquestionably, there are still deficiencies in the risk
assessment of hazardous chemicals leaking into the sea. The indicator system needs to
be further adjusted and screened, the weight assignment needs to be further optimized
and improved, and it is still difficult to obtain some indicators, such as the quantity of
hazardous chemicals and the level of enterprise-safety-production standards.

In the next step, we will select the Bohai Sea area, carry out the application of the
risk-assessment methods for hazardous chemicals leaking into the sea, further improve
the assessment method and indicator system, and provide good technical support for the
comprehensive management of the Bohai Sea.
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