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Abstract: Studies on the association of PM2.5 and its compositions with metabolic syndrome (MetS)
were limited, and it was unclear which was the most hazardous composition. In this study, we
aimed to investigate the association between PM2.5 and its compositions with MetS and identified
the most hazardous composition. In this study, we included 13,418 adults over 45 years across
446 communities from 150 counties of 28 provinces in nationwide China in 2015. MetS was defined
based on the five indicators of the Joint Interim Societies, including: blood pressure (SBP (systolic
blood pressure) and DBP (diastolic blood pressure)); fasting blood glucose (FBG); fasting triglyceride
(FTG); high density lipoprotein cholesterol (HDL-C); and waist circumference (WC). We used chemical
transport models to estimate the concentration of PM2.5 and its compositions, including black carbon,
ammonium, nitrate, organic matter, and sulfate. We used a generalized linear regression model to
examine the association of PM2.5 and its compositions with MetS. In this study, we observed that
the average age was 61.40 (standard deviation (SD): 9.59). Each IQR (29.76 µg/m3) increase in PM2.5

was associated with a 1.27 (95% CI: 1.17, 1.37) increase in the odds for MetS. We indicated that black
carbon showed stronger associations than other compositions. The higher associations were observed
among women, participants aged less than 60 years, who lived in urban areas and in the Northeast,
smokers, drinkers, and the obese populations. In conclusion, our findings identified the most harmful
composition and sensitive populations and regions that required attention, which would be helpful
for policymakers.

Keywords: particulate matter; metabolic syndrome; adults; composition; cross-sectional

1. Introduction

Metabolic syndrome (MetS) is an indicator combined with increased blood pressure,
high blood glucose and triglyceride, excess waist circumference (WC), and low levels of
cholesterol [1]. The prevalence of MetS is increasing globally, estimated to be 20–25% in the
adult population [2,3]. In China, there was 24.5% of the population suffering from MetS
in 2016 [4].

MetS is a global public health issue, which may lead to cardiovascular disease, diabetes,
stroke, asthma, cancer, and related mortality [5,6], leading to the heavy burden of disease.
The prevalence of MetS also increased with age due to the commonalities in biochemical
changes in aging process and MetS [7]. Therefore, it is urgent to identify the risk factors of
MetS, especially among the aging population. Previous studies indicated that MetS would
be attributable to genetic factors, unhealthy diet, unhealthy lifestyle (smoking, drinking,
and sedentary), and inadequate sleep [8].
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A growing number of epidemiological studies suggested air pollution was a risk
factor for MetS [9–11]. Some studies showed air pollutants might induce MetS risk [12,13].
However, the evidence that investigated the associations of air pollution with MetS was still
limited and inconsistent, especially among developed countries with higher air pollution.
Up to now, only several studies have examined the associations of air pollution with MetS
among Chinese adults [10,14,15].

The inconsistencies in results may be due to the difference in the study popula-
tion, region, sample, period, and level of air pollution. Another explanation was that
fine particulate matter (PM2.5) was a complex mixture including a series of components
with various toxicities [16,17], which may lead to inconsistent results across different re-
gions. However, most epidemiological studies only focused on the mass concentration of
PM2.5 [9–11,18].

In recent years, some researchers have started to focus on the compositions of PM2.5
and explore the health outcomes attributed to various compositions, such as mortality,
birth weight, and respiratory health [19–21]. To our knowledge, there were only a few
studies that explored the association of PM2.5 compositions with indicators of MetS, such as
blood pressure [22], blood glucose [23], and blood lipids [24]. However, there has been no
study to explore the associations of PM2.5 compositions with MetS up to now. Hence, it is
essential to examine the association between compositions of PM2.5 and MetS, and identify
the most harmful composition, which would be helpful to policy-makers in carrying out
the control of air pollution.

This study provided the first chance to explore the association of PM2.5 and its com-
positions with MetS among middle-aged and older adults based on the China Health and
Retirement Longitudinal Study (CHARLS). We also aimed to identify the most hazardous
components across regions and determine the most vulnerable region which should be
focused on.

2. Materials and Methods
2.1. Study Participants

The dataset was taken from wave 3 of the China Health and Retirement Longitudi-
nal Study (CHARLS) in 2015, which covered 150 counties/districts, 450 villages/urban
communities across the country, involving 13,418 middle-aged and older adults above
45 years old in nationwide China by a multistage probability sampling strategy. The previ-
ous study described the details of the study population selection [25]. CHARLS collected
the sociodemographic variables, health status, and household information using trained
interviewers according to a standard protocol. The data of CHARLS can be obtained at
http://opendata.pku.edu.cn publicly (accessed on 8 June 2022). All participants signed the
written informed consent. The Ethical Review Committee of Peking University approved
the study (IRB00001052-11015).

2.2. Estimation of PM2.5 and Its Composition

We estimated the concentration of PM2.5 and its compositions using aerosol optical
depth (AOD) and conversion factors derived from the chemical transport models and
evaluated against the ground observations [26]. In this study, the compositions included
black carbon (BC), ammonium (NH4

+), nitrate (NO3
−), organic matter (OM), and sulfate

(SO4
2−). The data of PM2.5 and its composition were publicly available from the Tracking

Air Pollution in China (TAP) (http://tapdata.org/, last access: 20 May 2022). The spatial
resolution of PM2.5 and its composition were at 0.1◦ × 0.1◦ grid. The concentration of each
composition was calculated as follows (Equation (1)):

Compositionk
satellite = AODsatellite ×

Compositionk
CTM

AODCTM
(1)

http://opendata.pku.edu.cn
http://tapdata.org/
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In Equation (1), “satellite” and “CTM” refer to the data from the satellite and model,
respectively; k refers to the different compositions of PM2.5; the conversion factors between
PM2.5 compositions and AOD were estimated from the emission inventory over China [27].

In this study, the concentration of air pollutants was available at the city level because
of confidentiality. We estimated the concentrations of PM2.5 and its compositions according
to the spatiotemporal coordinates and the date of the interview on the monthly average.
We calculated the average concentration of PM2.5 and its composition during the 1-year
preceding the survey month as a surrogate for the long-term exposure concentration (Lag 1).
We also simultaneously estimated the annual concentrations of PM2.5 and its components
at different exposure windows (from Lag 2 to Lag 5).

2.3. Definition of MetS

Metabolic syndrome (MetS) was jointly defined by five indicators, including blood
pressure (SBP (systolic blood pressure) and DBP (diastolic blood pressure)); fasting blood
glucose (FBG); fasting triglyceride (FTG); high density lipoprotein cholesterol (HDL-C);
and waist circumference (WC). We determined that participants had MetS if they presented
with three or more of the abovementioned factors. In this study, we chose the definition of
MetS according to the joint definitions from different organizations and used the cut-off
points of WC from China [28]. Specifically, (1) SBP ≥ 130 mmHg or DBP ≥ 85 mmHg;
(2) WC > 85 cm for men and 80 cm for women, respectively; (3) FBG > 100 mg/dL;
(4) FTG > 150 mg/dL; (5) HDL-C < 40 mg/dL for men and 50 mg/dL for women, respec-
tively. Different organizations define MetS differently, and the detailed criteria for these
definitions are shown in Table S1 (Supplementary Materials).

2.4. Covariates

Potential confounders were collected via a questionnaire by well-trained technicians.
We obtained covariates including socioeconomic variables sex, age, urbanicity, marital
status, educational level, the status of drinking and smoking, and the fuel type of household
cooking/heating. The specific classification of each variable was presented in previous
studies [29]. The fuel was classified into clean fuel (marsh gas, solar energy, natural gas,
natural gas, liquefied petroleum gas, electricity, or municipal heating) and solid fuel (crop
residue, coal, wood, or solid charcoal).

2.5. Statistical Analysis

The generalized linear model was used to explore the association of PM2.5 and its
compositions with MetS adjusted for age, sex, urbanicity, educational level, marriage status,
smoking, drinking, fuel type of cooking and heating, and physical activity. We described
the results as odds ratios (OR) of MetS per IQR increment of PM2.5 and its compositions.
We also conducted region-stratified analyses. We divided the whole of China into four
districts: East; Middle; West; and Northeast.

We conducted a series of sensitivity analyses: (1) First, we investigated the associ-
ation at different exposure windows (Lag 2, Lag 3, Lag 4, and Lag 5); (2) Second, we
developed the analyses in different model-adjusted confounders; (3) We conducted the
stratified analyses by sex, age group, urbanicity, smoking status, drinking status, and obese
or not; (4) We also repeated the analyses to explore the association using the different defi-
nition of MetS from other organizations. All data processes were performed using R 4.1.1
(R Foundation for Statistical Computing, Vienna, Austria). The two-tailed p value < 0.05
was seen as statistical significance.

3. Results
3.1. The Basic Description

The characteristics of participants are depicted in Table 1. There were 4044 (30.14%)
participants who had MetS in the population of 13,418. Participants were 61.40 (standard
deviation (SD): 9.59) years old. We compared the differences in characteristics between
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participants with or without MetS and found a significant difference between the two
groups. We also observed that the participants with MetS had a higher body mass index
(BMI), undertook less physical activity, were more likely to be women, living in a rural area,
married, and to be from the population with a lower educational level.

Table 1. Characteristic of the participants.

Non-MetS
(n = 9374)

MetS
(n = 4044) p Value

Age, mean (SD), year 61.6 (9.79) 60.8 (9.07) <0.001
Height, mean (SD), cm 158 (8.35) 158 (8.56) 0.392
Weight, mean (SD), kg 57.5 (10.5) 65.8 (11.3) <0.001
Physical activity amount,
mean (SD), MET min/week 119 (113) 95.5 (101) <0.001

Sex (No. (%)) <0.001
Men 4681 (49.9%) 1492 (36.9%)
Women 4691 (50.0%) 2552 (63.1%)
Missing 2 (0.0%) 0 (0%)

Urban or rural (No. (%)) <0.001
Urban 3227 (34.4%) 1869 (46.2%)
Rural 6147 (65.6%) 2175 (53.8%)

Marriage or not (No. (%)) 0.28
Single 1217 (13.0%) 497 (12.3%)
Married 8155 (87.0%) 3547 (87.7%)
Missing 2 (0.0%) 0 (0%)

Educational level (No. (%)) 0.002
Primary or below 3952 (42.2%) 1609 (39.8%)
Middle school 1721 (18.4%) 815 (20.2%)
High school 705 (7.5%) 348 (8.6%)
Collage or above 134 (1.4%) 72 (1.8%)
Missing 2862 (30.5%) 1200 (29.7%)

Heating fuel 1 (No. (%)) <0.001
Solid 5445 (58.1%) 2139 (52.9%)
Clean 1516 (16.2%) 732 (18.1%)
Missing 2413 (25.7%) 1173 (29.0%)

Cooking fuel 1 (No. (%)) <0.001
Solid 4277 (45.6%) 1514 (37.4%)
Clean 5081 (54.2%) 2520 (62.3%)
Missing 16 (0.2%) 10 (0.2%)

Smoke or not (No. (%)) <0.001
Smoke 2635 (28.1%) 767 (19.0%)
No-smoke 5336 (56.9%) 2708 (67.0%)
Missing 1403 (15.0%) 569 (14.1%)

Drinking or not (No. (%)) <0.001
Drink 3480 (37.1%) 1184 (29.3%)
Ever-drink 1015 (10.8%) 442 (10.9%)
No-drink 4860 (51.8%) 2411 (59.6%)
Missing 19 (0.2%) 7 (0.2%)

Abbreviations: MetS, metabolic syndrome; SD, standard deviation. Notes: 1 Cooking fuel was classified into clean
fuel (marsh gas, natural gas, liquefied petroleum gas, or electricity) and solid fuel (crop residue, coal, wood, or
solid charcoal). Heating fuel was categorized as solid fuel (coal, crop residue, wood, or solid charcoal) and clean
fuel (natural gas, solar energy, liquefied petroleum gas, electric, or municipal heating).

Table 2 shows the description of PM2.5 and its compositions. The mean ± SD
concentration was 49.31 ± 19.63 µg/m3, 2.36 ± 0.70 µg/m3, 7.45 ± 3.11 µg/m3,
10.74 ± 5.11 µg/m3, 11.93 ± 4.23 µg/m3, 9.24 ± 3.34 µg/m3 for PM2.5, BC, NH4

+, NO3
−,

OM, and SO4
2−, respectively. The concentration of PM2.5 and its compositions at different

exposure windows did not differ significantly (Table S2). Table S3 shows the concen-
trations of PM2.5 and its compositions in different regions. Most compositions had the
highest concentration in the East, while the lowest concentration was observed in the West
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(Table S3). We also observed that the concentrations of all constituents in the East and
middle regions exceeded the national average, while the concentrations in the West and
Northeast regions were lower than the national average.

Table 2. The 1-year average concentration of the PM2.5 and its chemical constituent.

Air Pollutants Mean SD Min P5 P25 Median P75 P95 Max

PM2.5 49.31 19.63 19.84 22.14 32.25 45.87 61.89 84.98 93.27
BC 2.36 0.70 0.98 1.37 1.82 2.21 2.88 3.63 3.99

NH4
+ 7.45 3.11 2.76 3.04 4.83 7.43 9.57 12.92 14.03

NO3
− 10.74 5.11 3.07 3.56 6.27 10.28 14.26 19.56 21.38

OM 11.93 4.23 4.95 6.00 8.56 11.46 14.77 20.12 21.70
SO4

2− 9.24 3.34 3.07 4.78 6.35 8.64 11.77 15.27 16.61

Abbreviations: BC: Black Carbon; NH4
+: Ammonium; NO3

−: Nitrate; OM: organic matter; SO4
2−: Sulfate.

3.2. Association between PM2.5 and Its Compositions on MetS

Our study indicated significant positive associations of PM2.5 and its compositions
with the risk of MetS (Figure 1). The adjusted OR of MetS was 1.27 (95% CI: 1.17, 1.37) with
an IQR (29.76 µg/m3) increment in PM2.5. In this study, we observed that BC was the most
harmful composition because BC showed the strongest associations among all compositions.
In the main model, per IQR (1.06 µg/m3) the increment in BC was associated with a 1.25
(95% CI: 1.16, 1.36) increase in the risk of MetS. To identify the most vulnerable regions,
we conducted region-stratified analyses and found that associations varied significantly
in different regions. We also observed that PM2.5 and all the compositions showed the
greatest effects on MetS in the Northeast region, while the weakest effects were observed
in the Western region. Take BC as an example, in the fully adjusted models, an IQR
(1.06 µg/m3) increase in BC was associated with a 65% (95% CI: 1.39, 1.96) and 19% (95%
CI: 1.06, 1.34) increase in the risk of MetS in the Northeast and Western region, respectively.
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Figure 1. The association of metabolic syndrome (MetS) with an IQR incremental change in 1-year
average PM2.5 and its constitution, stratified by different regions. The bars show main effect estimates
and 95% confidence intervals. The model was adjusted for age, sex, urbanicity, educational level,
marriage status, smoking, drinking, cooking fuel type, heating fuel type, and physical activity.
Abbreviations: BC: Black Carbon; NH4

+: Ammonium; NO3
−: Nitrate; OM: organic matter; SO4

2−:
Sulfate. p value refers to the difference of the estimations between different regions.
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We also conducted a set of sensitivity analyses. We explored the association of PM2.5
and its compositions with MetS by different models after adjustments for various covari-
ates (Table S4). We found that PM2.5 and its compositions retained significant positive
associations across different models. We also repeated the analyses using the concentration
at different exposure windows, and observed that the positive associations of PM2.5 and its
chemical compositions with MetS remained stable (Table S5). Finally, the repeated analyses
using the different definition of MetS also showed the positive associations (Figure S1). The
above-mentioned series of sensitivity analyses indicated the robustness of our findings.

3.3. Stratified Analyses by Subgroups

Stratified analyses were performed on sex, age group, urbanicity, smoking status,
drinking status, and obese or not (Figure 2). Although there were no significant differences
in different subgroups, we still observed a consistent trend. It was noted that a greater asso-
ciation of PM2.5 and its compositions with MetS was observed among women, participants
aged less than 60 years, who lived in urban areas, were smokers, drinkers, and obese.
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1-year average PM2.5 and its constitution, classified by different subgroups. The bars show main
effect estimates and 95% confidence intervals. The model was the fully adjusted model adjusted for
age, sex, urbanicity, educational level, marriage status, smoking, drinking, cooking fuel type, heating
fuel type, and physical activity. Abbreviations: BC: Black Carbon; NH4

+: Ammonium; NO3
−: Nitrate;

OM: organic matter; SO4
2−: Sulfate. p value refers to the difference of the estimations between

different subgroups.

4. Discussion

In this large nationwide epidemiology study, we observed PM2.5 and its chemical
composition associated with the increase in the risk of MetS for the first time. BC showed
the strongest associations. The population living in the Northeast region showed the
greatest effects. Generally, stronger associations were observed in women, participants
aged less than 60 years, who lived in urban areas, were smokers, drinkers, and obese. This
study provided further evidence on the association between PM2.5 and MetS, and filled
the gap on the topic of the association between PM2.5 compositions and MetS. This study
provided the first chance to identify the most harmful composition, vulnerable region, and
population that required attention, which would help influence policy-making decisions.

Some studies have investigated the association of PM2.5 with MetS, which was in
line with our findings. The Normative Aging Study conducted in Boston found that each
1-µg/m3 increment in PM2.5 increased by 27% (95% CI: 6%, 52%) the risk of MetS. Another
study in Korea indicated that each 10-µg/m3 increment in PM2.5 increased by 7% the risk
of MetS [30]. However, most existing studies were found among developed countries,
and limited studies were performed in the highly polluted areas. Up to now, only several
studies were conducted among Chinese adults [10,14,15]. All the studies conducted in
China found that PM2.5 increased the risk of MetS, which was in line with our findings.

In this study, BC showed the strongest associations of PM2.5 and its chemical composi-
tions with MetS. BC was mainly derived from the incomplete burning of fossil fuels and
biomass, and may play the most hazardous effect due to its tiny size [31,32]. Moreover,
incomplete combustion may generate organic pollutants with greater toxicity carried on
BC [33]. For other compositions, we also found a significant positive association with
MetS. The OM was primarily from burning unclean fuel (biomass or coal), which may
induce lipid metabolic disturbances [34,35]. The acidification and oxidation processes of
sulfate dioxide (SO2) or nitrogen oxides (NOx) may generate inorganic water ions, such as
NH4

+, SO4
2−, and NO3

- [36,37]. Lipid metabolism was a possible mechanism by which the
inorganic water ions affect MetS [38,39].

It is essential to identify the vulnerable population attributed to air pollution. In
the stratified analyses, we observed stronger associations among women, subjects aged
less than 60 years, who lived in urban areas, who were smokers, drinkers, and obese.
We observed a greater association in women, which could be attributed to their smaller
airways [40]. Prior evidence had reported greater associations in the elderly. However,
we observed stronger associations among the younger population, consistent with some
other studies [10,41]. A possible explanation is that the older population have a reduced
response to nervous system stimuli, which may be more resistant than the younger popula-
tion [10,42]. The participants who lived in urban areas were more sensitive and showed
greater associations due to higher level of air pollution [43]. Our study also found that smok-
ers, drinkers, and the obese population may have greater associations, which suggested
unhealthy lifestyles may aggravate the harmful effects of air pollutants. The potential
explanation is that unhealthy lifestyles can induce insulin resistance, leading to systemic
inflammation and oxidative stress [44,45]. This study found the greatest associations of
PM2.5 and all the compositions on MetS in the Northeast region. The level of PM2.5 and its
compositions were higher in the northeast area due to more emissions from the burning of
fossil fuels [46,47]. Meanwhile, the Western region showed the weakest associations due to
the low population density and low level of air pollution [48].

Although the underlining mechanisms between air pollution and MetS were still
unclear, some studies suggested several potential biological pathways. First, air pollutants
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would enter the human body and induce oxidative stress and inflammation, which would
contribute to developing MetS [49,50]. Second, air pollution might disrupt insulin signaling
and cause insulin resistance via inducing the production of endogenous pro-inflammatory
mediators and vasoactive molecules [51,52]. Third, air pollution might activate the path-
ways of development of MetS by interfering with DNA methylation levels [12,53].

The present study has notable strengths. First, this is the first epidemiological study to
investigate the association of PM2.5 chemical compositions with MetS among adults. This
study also provided new evidence on the association between PM2.5 and MetS based on
the nationwide sample. Second, this study collected a set of potential confounders using
the standard questionnaire. Third, this study covered national spatial data and included a
large sample, which provided a chance to obtain the results across the nation.

This study has several limitations that require attention. First, the characteristics
of the cross-sectional study design did not allow us to obtain causal inferences. Second,
considering participants’ confidentiality, the geographic information was only available
at the city level, which may induce the misclassification of exposure. Third, although we
have investigated many confounders, there were still unmeasured factors, including genes
and other gaseous pollutants. Last, we did not include the gaseous components of PM2.5
because of the lack of data. Further studies are needed to confirm our findings and add
more evidence on the association of PM2.5 and its compositions with MetS.

5. Conclusions

In this national sample of Chinese adults above 45 years old, 30.14% had MetS. This
is the first study that observed that the PM2.5 chemical compositions increased the risk
of MetS among Chinese adults. We also found that BC showed the most hazard effects
on the risk of MetS, which revealed that reducing BC emissions is an effective measure
to reduce the risk of obesity. Women, participants aged less than 60 years, who lived in
an urban area and the Northeast region, smokers, drinkers, and the obese population
were more susceptible to PM2.5 and its compositions, and needed more attention. More
epidemiological and toxicological studies were required to confirm our findings further
and add new evidence.
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