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Abstract: Understanding the impact of urban economic growth on ecologically functional land (EFL)
change and the relevant mechanisms is necessary for adaptive ecological management and regional
policy. The present study aims to explore the relationship between EFL change, urban economic
growth and transportation construction based on reliable land survey data from 2000 and 2015, as
well as natural and socio-economic data for over 2600 counties in China. We use the Two-Stage Least
Squares (2SLS) technique to empirically analyze the temporal changes in their relationships and
alleviate endogenous bias and use the Geographically Weighted Regression (GWR) model to explore
the spatial heterogeneity across the country. The results indicate that the secondary and tertiary
industries’ development had a significantly negative effect on EFL changes, and transportation
construction is a major driver of urban economic growth in China, especially in the central region.
From 2000 to 2015, the negative impact of urban economic growth on EFL changes decreased, and the
contribution of transportation construction to urban economic growth increased. The regions (such as
the central region) where transportation construction contributes more to the secondary and tertiary
industries had a proportionally greater reduction in EFL. It appears that excessive dependence on
transportation to drive the development of secondary and tertiary industries is the underlying reason
for EFL reduction. The findings of this study can assist in formulating regional policies and advancing
the coordination of urban economic development and ecosystem protection.

Keywords: ecologically functional land; urban economic growth; transportation construction;
spatiotemporal relationship; China

1. Introduction

As a basic natural resource, humans have utilized land in numerous ways for sur-
vival and development [1,2]. According to their major functions, land use types can be
categorized into urban, agricultural, and ecological functional land (EFL) [3,4]. Along with
an increasing population and rapid economic development, humans have continuously
increased demands for natural resources, leading to land use changes [5,6]. Over the past
few decades, China has experienced rapid industrialization and urbanization at the cost of
encroachment on EFL and arable land [7]. Under the amplified effects of anthropogenic
disturbance and environmental change, the destruction of EFL and degradation of ecosys-
tems have increased over the past several decades [8]. The conflicts between ecosystem
protection and economic development are getting worse [9–11]. Focusing on and quantify-
ing the impacts of anthropogenic factors on environmental health is imperative to achieve
sustainable regional and urban development.

Human well-being and sustainable development require ecological security, i.e., a
stable and sustainable ecological environment [12]. To reverse the land degradation trend
and promote ecological security, the Chinese government has implemented an array of
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ecosystem conservation and restoration projects [13]. In 2011, the Ecological Conservation
Redline strategy was proposed to create an ecological protection pattern where the regions
within the “red line” are strictly managed, and development is prohibited [14]. In the same
year, the Chinese central government issued the National Main Functional Area Planning
document, which designated key ecologically functional zones, major agricultural produc-
tion zones, and optimized and prioritized development zones, according to their major
function [15]. The optimized and prioritized development zones mainly referred to the
urban agglomeration regions and metropolitan areas that support economic development.
The major agricultural production zones primarily consist of agricultural land that has
the primary function of food production. The key ecologically functional zones include
various EFL types, such as forests, grasslands, wetlands, and water bodies, which have the
main function of improving the environment and reducing ecosystem degradation [16].
The designation of these main functional areas is a significant step towards achieving
sustainable development in China. In this context, understanding the response of EFL
changes to the rapid development of the urban economy is important for coordinating the
human–land relationship.

Many studies have emphasized that distinct combinations of natural, political, and
cultural drivers have a decisive influence on the landscape and land use changes [3,17,18].
Changes in EFL and ecosystem degradation in China have close relationships with socio-
economic development [19–21]. The explanatory impact of socio-economic factors on EFL
changes has gradually increased with economic development [22]. Some studies have
explored the causes of changes in forest areas from the perspective of economic growth [23],
management policies [24], environmental conditions, and armed conflicts [25]. Recent
research has addressed the urbanization effects on ecosystem services [21,26]. These studies
were mainly concerned with regional issues, and could have implications for cities, urban
agglomerations, and parts of the country. Few studies have focused on EFL change and its
response to economic growth on a national scale over time. This study aims to address this
gap in the literature by exploring the relationship between EFL change and urban economic
growth across the whole of China based on reliable and accurate land survey data from
2000 and 2015.

The problem of endogeneity is a widely discussed issue in the management literature,
which may affect causal inferences and lead to spurious findings [27]. The ordinary least
squares (OLS) estimation assumes that the independent variables are exogenous, i.e.,
not correlated with the error term [28]. Endogeneity bias occurs when an independent
variable is correlated with the error term in the model [29]. The omission of variables,
simultaneous causality, and errors in variables are the sources of endogeneity [30]. The
instrumental variable (IV) method, especially the two-stage least squares (2SLS) technique,
is a common and adaptable method to alleviate endogeneity problems [31]. One of the
advantages of the 2SLS is that there is no restriction on variable distribution, but its
disadvantage is that it requires a large sample size. The IV, a variable correlated with
the endogenous independent variable but uncorrelated with the error term, affects the
dependent variable indirectly through the endogenous independent variable [32]. The IV
method decomposes the variations in the endogenous explanatory (independent) variable
by using a valid IV to disregard the variations that bias the estimation, thus alleviating the
endogeneity problem [33]. There is still a gap in knowledge regarding the consideration of
the endogeneity problem in analyzing the relationship between EFL changes and urban
economic growth.

China is experiencing rapid development of its economy and transportation facilities.
Economic development is not only reflected in the optimization of the industrial structure,
but also the improvement of public services and transportation systems [34]. In 2004, the
state council launched the ‘mid-to-long-term railway development plan of China’, which
was revised in 2008 and 2016, aiming to develop a high-speed rail network with a total
length of 38,000 km by 2025 [35]. In 2022, the Ministry of Transport of the PRC announced
the ‘outline of the mid-to-long-term development plan for scientific and technological inno-



Int. J. Environ. Res. Public Health 2022, 19, 14510 3 of 17

vation in the transportation sector (2021–2035)’ [36]. Transport infrastructure is considered
a major driver of regional economic development, and any policy regarding transportation
construction is an important regional and economic policy tool [37]. The transportation
industry has an increasingly vital role in regional socio-economic development [38,39].
Land transportation, including highway, railway, and high-speed rail, has been the most sig-
nificant sector in the transportation industry and has facilitated economic development [40].
From a small scale outlook (i.e., county and city), transportation construction may directly
encroach on EFL and affect the ecological environment of the local area. From a long-term
and macro perspective (i.e., national level), the coverture, operation and improvement
of transport promote industrial and economic development by advancing interregional
accessibility and reducing transaction time [41]. The development of transport, especially
high-speed rail, tends to promote the increase of land use supply for logistics and ware-
houses and commercial and business use [42], thus affecting changes in non-urban land.
Further economic growth has a feedback effect on transportation, increasing the demand
for transportation and providing financial support to infrastructure construction [43]. With
the continuous advancement of the transport policy, the driving effect of transport on the
economy, especially the secondary and tertiary industries, is expected to increase. There-
fore, when analyzing the relationship between EFL changes and urban economic growth,
transportation construction satisfies the conditions for a suitable IV. The Geographically
Weighted Regression (GWR) model is a spatial regression technique which can characterize
spatial non-stationarity and obtain different regional regression coefficients by incorpo-
rating spatial dimensions into OLS regression [44,45]. We also used the GWR models to
conduct the two stages of 2SLS regression to make the EFL change–urban economic growth
relationship spatially explicit and the urban economic growth–transportation construction
relationship clear.

An in-depth analysis of the response of EFL changes to urban economic growth and
tackling the endogeneity problem empirically was needed to enrich the current literature
and to provide proposals for improving the quality of the environment and life. Therefore,
this study aimed to achieve three objectives: (1) to quantify the impact of urban economic
growth on EFL changes over time, using correlation analysis and the OLS method; (2) to
explore the influencing mechanism of urban economic growth on EFL changes using
2SLS, choosing transportation construction as the IV for urban economic growth (3) to
identify and compare the spatial patterns of the EFL change–urban economic growth
relationship and the urban economic growth–transportation construction relationship
using the GWR method. Robust findings from this study can provide scientific evidence
for formulating regional policies and promoting ecological security in China and fills a
gap in the literature on interactions between environmental systems and human activities,
specifically ecologically functional land and urban economic growth relationship research.

This paper proposed the following hypotheses to advance our investigation:

Hypothesis 1. Urban economic growth will reduce ecologically functional land, and the
effects will have spatial heterogeneity across different regions of China.

Hypothesis 2. Transport’s contribution to urban economic growth will significantly in-
crease from 2000 to 2015 and will show regional heterogeneity.

Hypothesis 3. Reliance on transport to drive urban economic growth may harm ecologi-
cally functional land.



Int. J. Environ. Res. Public Health 2022, 19, 14510 4 of 17

2. Materials and Methods
2.1. Data and Variables
2.1.1. Explained Variables

The land-use data was sourced from the series of national land surveys and annual
land-use change surveys, which are the most legally effective and comprehensive surveys
in China. Based on digital ortho-photo maps, the land and land use change survey database
was aided by available maps and field surveys covering nearly 3000 counties [3,46]. The
third national land survey was concluded in 2021, and the national dataset has not yet
been made public. The latest available data is from 2015, thus, the national land-use data at
the county level in 2000 and 2015 was chosen and processed to carry out our study. These
two years of land use classification were unified into 12 first class and 56 s class (the land
classification of the second national land survey GBT21010-2007). In the National Main
Functional Area Planning document in 2011, the territory of China was designated into
different functional areas according to their dominant functions, such as ecological and
food production functions [15]. Ecologically functional land (EFL) refers to the spatial land
units with the dominant function of providing ecological services and maintaining key
ecological processes. Thus, the EFL includes water bodies, wetlands, glaciers and snow,
saline land, forest land, shrubland, natural grassland and other grasslands. [3,47]. The
proportion of EFL to total territorial space was calculated as the dependent variable of
this study. Figure 1 shows the spatial distribution of the EFL proportion in 2000 and 2015.
The overall distribution of EFL was high in the west and low in the east and showed no
significant change from 2000 to 2015. The central and central-east regions, such as the
provinces of Henan, Shandong, Shaanxi, Shanxi, Sichuan, Jiangsu, and Hebei, are typical
low-value regions. The proportion of EFL in the Shanxi and Shaanxi Provinces increased
from 2000 to 2015.
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2.1.2. Core Explanatory Variables

Urban economic growth is the core explanatory variable. According to most of the
current studies, economic density, i.e., regional Gross Domestic Product (GDP) per square
kilometer, was chosen as the proxy variable of economic growth. The secondary and
tertiary industries are the main sectors of the urban economy [35]. Data on the secondary
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and tertiary industries’ GDP in 2000 and 2015 was used to calculate the urban economic
density (ED), collected from the “China Statistics Yearbook”.

In many countries, economic growth is anchored to transportation. In the short term,
transport infrastructure increases construction enterprise numbers and job opportunities in
construction [48]. In the long term, investment in transportation can increase the size of
the agglomeration and the magnitude of external economies [49] and positively affects eco-
nomic growth and the corresponding regions’ development [50]. Transport improvements
could serve as a better household amenity and lure in migrants [51], as well as foster the
movement of goods and services considerably [42]. In China, transport infrastructure has
an important role in regional economic growth and has clear spatial spillovers [52]. Land
transport is the dominant mode in China and has a greater impact on regional economic
growth than other transport modes [53]. Driving economic growth through transporta-
tion is one of China’s important strategies since transportation is a pivotal element in the
selection of industrial locations [44]. As the Chinese government vigorously promotes
transportation construction, its role in promoting economic development and economic
coordination in the eastern, central and western regions is expected to become more promi-
nent. Therefore, we considered land transport as an IV for urban economic growth to
control endogeneity. Road density (RD), which generally reflects the level of traffic line
development [54], was chosen as a proxy variable of transportation construction. The data
on roads, collected from the annual Chinese national survey on land-use change, include
railways and highways data, for calculating the road density.

2.1.3. Control Variables

To control for the omitted variable bias, we also used several control variables. El-
evation and slope are the general natural factors that limit the distribution of EFL [55].
Areas with flatter and lower elevations are more susceptible to development into cultivated
and built-up land. Climate factors, such as precipitation and temperature, also strongly
correlate with vegetation coverage, land ecosystems, and wetland [56–58]. Therefore, DEM
(Digital Elevation Model) data, average annual precipitation, and annual temperature data
in 2000 and 2015 were chosen as geographical control variables, which were collected from
the Resources and environment data cloud platform (http://www.gscloud.cn (accessed on
23 May 2022)). Under the joint effects of geographical characteristics and human activities,
there is no doubt that industrial use and agricultural expansion have greatly impacted envi-
ronmental conservation and ecological land space [55,59], and population density has been
proven to be the main driver of EFL evolution [60]. Regions with dense populations are
likely to meet the demands for agricultural production and economic benefits by occupying
a larger amount of EFL [19]. Considering the difficulty of obtaining data on industrial use
and agricultural expansion for more than 2600 counties, we chose population density as a
proxy variable for human activities. Data on the urban population was used to calculate
the urban population density in 2000 and 2015 and was cited from the “China Statistics
Yearbook”.

Table 1 shows the descriptive statistics of all variables. The values of the standard
deviation showed that precipitation, temperature, and elevation registered significant
volatility, indicating the huge differences in geographic characteristics across China. The
Jarque–Bera test indicated that all the chosen variables were non-normally distributed.

http://www.gscloud.cn
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Table 1. Descriptive statistics of all the variables.

Variable Sources or Methods Abbr. Year Mean Max Min Std. Dev. Skewness Kurtosis Jarque–Bera Test Probability

The proportion of
ecologically functional
land (EFL) (n = 2607)

Percentage of EFL in all land use EL
2000 0.418 0.999 0 0.29 0.178 1.735 187.6 0.001

2015 0.506 0.998 0 0.29 −0.093 1.762 170.3 0.001

Urban economic density
(n = 2607)

Regional GDP of the secondary and
tertiary industries per km2

(10 × 107 yuan /km2)
ED

2000 0.045 2.15 0 0.12 7.742 88.06 810,165 0.00

2015 0.449 25.18 0 1.47 9.202 118.80 1,500,046 0.00

Road density
(n = 2607)

Length of the traffic line per square
kilometer (km/km2) RD

2000 0.013 0.202 0 0.013 2.775 25.531 58,004 0.00
2015 0.022 0.259 0 0.018 2.375 17.240 24,004 0.00

Urban population
density

(n = 2607)

Regional urban population density
(100 persons/ km2) PD

2000 44.08 461 0 34.73 2.357 19.104 31,434 0.00

2015 50.49 547.49 0 40.58 2.897 24.098 52,064 0.00

Elevation
(n = 2607) Digital Elevation Model data (m) DEM

2000 761.91 5146.59 0 1039.29 2.241 8.235 5159 0.00

2015 761.91 5146.59 0 1039.29 2.241 8.234 5159 0.00

Precipitation
(n = 2607) Average annual precipitation (0.1 mm) PR

2000 9191.65 30,027.14 0 5576.48 0.369 2.471 89.55 0.001

2015 9237.62 25789.8 0 6324.17 0.586 2.356 194.5 0.004

Temperature
(n = 2607) Average annual temperature (0.1 ◦C) TE

2000 121.49 253.66 −64.21 65.14 −0.534 2.393 163.8 0.002

2015 123.57 264.28 −43.20 64.55 −0.567 2.351 185.4 0.00
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2.2. Model Settings

We transformed all the variables in our models with natural logarithms to get a more
stable data series and eliminate the heteroscedasticity and multicollinearity of the models.
As a reference for the 2SLS model and GWR model, the following benchmark regression
was constructed by the OLS model first:

ln ELi= α0+α1ln EDi+a2ln Xi+ui+εi (1)

where i indicates the county; EL is the proportion of EFL, ED denotes urban economic
density; X represents other independent variables, including urban population density,
elevation, and control variables, including temperature and precipitation; α0 is a constant
term; α1 denotes the impact coefficient of urban economic development on the proportion
of EFL; ui is the fixed effects of the county, and εi is the error term.

To investigate the relationship between EFL, urban economic growth, and transporta-
tion construction, the 2SLS model was set as Equations (2) and (3). This can confirm the
robustness of the empirical results better. The variables used in the 2SLS model were the
same as in the OLS model.

ln EDi= β0+β1ln RDi+β2ln Xi+δi+τi (2)

ln ELi = γ0+γ1ln EDi+γ2ln Xi+ui+εi (3)

where road density is defined as RD, which is the instrumental variable of urban economic
density; ED denotes urban economic density; EL represents the proportion of EFL; X
represents other independent variables and control variables; β0 and γ0 are constants; and
β1, β2, γ1 and γ2 are estimated coefficients. δi and ui represent the fixed effects of the
county. τi and εi are the disturbance terms. The evaluations of the OLS and 2SLS models
were completed in STATA 17.

The unbalanced distribution of natural and socio-economic factors in different regions
creates interregional spatial heterogeneity. Therefore, global parameters cannot explain spa-
tial heterogeneity. The GWR model, an improved traditional linear regression model, is an
effective method for exploring spatial heterogeneity. It considers spatial heterogeneity and
utilizes geographic coordinates and core functions to perform local regression estimations
on adjacent individuals in each group [61]. The GWR model is expressed as follows:

Yi= β0(ui, vi) +
p

∑
k=1

βk(ui, vi)Xik+εi (4)

where i represents the individual sample, Y denotes the dependent variables, X is the
normalized affect factors, k is the total number of grid cells, and εi is the random error.
(ui, vi) denotes the spatial location of the sample i, β0(ui, vi) denotes the intercept constant
of sample i; and βk(ui, vi) denotes the coefficient of the kth spatial variable of sample i. They
were estimated by the local weighted least squares method. The estimations of the GWR
models were completed in ArcGIS 10.2. The optimal bandwidth was set by the minimum
Akaike Information Criterion (AIC).

3. Results
3.1. Correlation Analysis

Correlation analysis is fundamental before running an econometric estimation [62,63].
We conducted correlation analysis and computed Pearson coefficients to check for potential
multicollinearity issues regarding the independent variables in 2000 and 2015. Figure 2
shows the r values among different variables. Urban economic growth had a negative
correlation with ecologically functional land in 2000 and 2015, with coefficients of −0.54
(p < 0.01) and −0.59 (p < 0.01), respectively. Figure 3 gives a spatial correlation between EFL
proportion and economic density using the bivariate spatial autocorrelation tool in GeoDa.
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Their spatial correlation showed High(EFL)–Low(ED) in the west part and Low(EFL)–
High(ED) in the east part, indicating a significant trade-off relationship. Only very few
counties in the east and south regions had a High(EFL)–Low(ED) relationship. The variance
inflation factor (VIF) tests were performed to verify multicollinearity. The results (Table 2)
showed the VIF values of all variables in 2000 and 2015 were below 5, indicating a low risk
of multicollinearity.
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Table 2. Results of the variance inflation factor (VIF).

Variable lnED lnPD lnDEM lnTE lnPR

VIF (2000) 2.43 2.41 2.16 4.14 4.32
VIF (2015) 2.98 2.59 2.37 3.47 3.93

Note: ED = Economic density; PD = Population Density; DEM = Elevation; TE = Temperature; PR = Precipitation.
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3.2. Impacts of Urban Economic Growth on Changes in EFL in China

For reference, the OLS regression results from 2000 and 2015 are listed in Table 3. From
model (1) to model (3), the control variables were included one by one. The estimated
coefficients of urban economic density (lnED) showed no significant change, indicating
that urban economic density had a negative impact on the proportion of EFL (lnEL), and
the results were robust. Specifically, according to the coefficients of model (3), raising
urban economic density by 1% would lead to a reduced EFL proportion of 0.239% in 2000
and 0.16% in 2015. These results supported hypothesis 1. Compared to the coefficients
of other variables, urban economic density had the largest impact on the EFL in 2000.
By 2015, the impact of urban economic density on the EFL was slightly lower than that
of elevation. Additionally, the estimated coefficients of the control variables also had
practical significance. Urban population density (lnPD) had a positive impact on EFL in
2000, but this turned into a negative effect in 2015. The increasing population density led to
a large amount of ecologically functional land being occupied to satisfy demands for living
and production space. For natural factors, there was a clear positive correlation between
elevation (lnDEM) and the proportion of EFL. The results were consistent with the finding
that topography plays a significant role in ecological land [64]. The impact of temperature
and precipitation on the proportion of EFL was relatively small.

Table 3. Parameter estimation of OLS regression in 2000 and 2015.

Variable
(1) (2) (3)

2000 2015 2000 2015 2000 2015

lnED −0.255 ***
(0.013)

−0.169 ***
(0.01)

−0.239 ***
(0.015)

−0.157 ***
(0.011)

−0.239 ***
(0.015)

−0.160 ***
(0.011)

lnPD 0.087 ***
(0.026)

−0.106 ***
(0.02)

0.107 ***
(0.027)

−0.086 ***
(0.0212)

0.105 ***
(0.027)

−0.096 ***
(0.021)

lnDEM 0.139 ***
(0.011)

0.141 ***
(0.008)

0.159 ***
(0.014)

0.156 ***
(0.01)

0.164 ***
(0.015)

0.172 ***
(0.012)

lnTE −0.043 **
(0.017)

−0.035 **
(0.0129)

−0.028
(0.025)

0.034 *
(0.021)

lnPR −0.014
(0.017)

−0.058 ***
(0.014)

Observations 2582 2602 2582 2602 2582 2602

R2 0.333 0.427 0.335 0.429 0.335 0.433

Note: The standard errors are in parentheses; *, **, and *** denote significance at 10%, 5% and 1%, respectively.
ED = Economic density; PD = Population Density; DEM = Elevation; TE = Temperature; PR = Precipitation.

3.3. Relationship among Transportation Construction, Urban Economic Growth and Changes
in EFL

The 2SLS regression was used to alleviate endogeneity problems in our models, as well
as to analyze the relationship between transportation construction, urban economic growth,
and the proportion of EFL. Table 4 reports the regression results of the 2SLS. Column (1)
and column (2) are the second-stage regression results and the first-stage regression results,
respectively. The results of the Durbin–Wu–Hausman test supported our models’ decision
to treat variables as endogenous. The first-stage regression results demonstrated that the
coefficients of road density (lnRD) were positive at the 1% significance level, combined with
the F value, which revealed that the chosen instrumental variable had a strong explanatory
power for urban economic density. The road density increased by 1%, leading to a 0.694%
increase in urban economic density in 2000 and a 1.4431% increase by 2015.

For the second-stage regression results, the estimated coefficients of urban economic
density (lnED) were negative at the 1% significance level. The negative impact of urban
economic growth on the proportion of EFL in 2015 decreased compared to 2000. The urban
economic density increased every 1%, leading to a 0.315% reduction in EFL proportion
in 2000, and a 0.193% reduction by 2015. The absolute value of this was greater than the
OLS regression results, indicating that endogenous problems may lead to underestimating
the impact of urban economic growth. The coefficients of other control variables were
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consistent with the OLS regression results, which verified that the instrumental variable
regression was robust. The first stage and second-stage regression results of the 2SLS
implied that transportation construction has played an increasingly important role in urban
economic growth. The results supported hypothesis 2. In the following section, we will
use the GWR models to analyze their spatial distribution patterns and further explore the
spatiotemporal relationship among those three variables.

Table 4. Parameter estimation of the 2SLS regression in 2000 and 2015.

Variable
(1) lnEL (2) lnED

2000 2015 2000 2015

lnED −0.315 ***
(0.021)

−0.193 ***
(0.024)

lnRD 0.694 ***
(0.026)

1.443 ***
(0.024)

lnPD 0.507 **
(0.160)

0.494
(0.061)

0.165 ***
(0.033)

0.063 ***
(0.03)

lnDEM 0.14 ***
(0.049)

0.107 ***
(0.02)

−0.409 ***
(0.016)

−0.141 ***
(0.01)

lnTE −0.117
(0.028)

0.033 ***
(0.029)

0.033 **
(0.018)

0.081 **
(0.02)

lnPR 0.03
(0.023)

−0.035 **
(0.019)

0.043 ***
(0.013)

0.038 ***
(0.014)

R2 0.372 0.3818 0.674 0.763

Observations 2582 2582 2602 2602

Wu-Hausman F 19.2306 14.5684

p-value 0.012 0.007

F value 1069.81 1677.36
Note: The standard errors are in parentheses; ** and *** denote significance at 5% and 1%, respectively.
ED = Economic density; PD = Population Density; DEM = Elevation; TE = Temperature; PR = Precipitation.

3.4. Spatial and Temporal Variation Analysis of the Response of Changes in EFL to Urban
Economic Growth and Transportation Construction

The diagnosability of the OLS and 2SLS models indicated that the urban economic
density, population density, and elevation were the main factors influencing the proportion
of EFL. The GWR model was used to analyze the spatial variation of EFL, and urban
economic density based on the consideration of those key influencing factors. Another
GWR model based on Equation (2) was also applied to analyze the spatial variation of the
impact of transportation construction on urban economic growth. By comparing the EFL–
ED relationship and ED–RD relationship, we tried to analyze their spatial consistency and
differences. Considering that the explanatory variables followed an approximately normal
distribution in the GWR, normality tests were performed before building the GWR models.
The final results denoted that the variables, including the proportion of EFL, elevation,
urban economic density, population density and road density, followed an approximately
normal distribution using the histogram with a normal fit line in STATA 17.

Table 5 lists the parameters in the two GWR models, showing that the goodness-of-fit
values of the models were all above 0.5, and higher than that in the OLS and 2SLS models.
Figures 4 and 5 show the spatial heterogeneity of the two GWR models in terms of county-
level fitting degree, which was reflected in the spatial variation of local R2 in 2000 and 2015.
Both the local R2 in the model with the proportion of EFL (lnEL) as the dependent variable
and the model with urban economic density (lnED) as the dependent variable were greater
than the corresponding global R2. This suggested that the GWR models were superior
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to global regression models in terms of interpreting changes in EFL and urban economic
growth in China at both the global and local levels.

Table 5. Estimation parameters of GWR models.

Variables Year

Parameters

Adjusted R2 Residual
Squares

Effective
Number Sigma AICc

The proportion of ecologically
functional land (lnEL)

2000 0.565 1049.606 173.428 0.623 5540.953

2015 0.695 770.208 177.856 0.534 4657.103

Urban economic
density (lnED)

2000 0.751 3100.486 154.284 1.066 8631.551

2015 0.845 3333.34 149.34 1.105 8832.623
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As shown in Figure 6, the local coefficients of lnED were negative in 2000 and 2015 and
demonstrated significant regional heterogeneity. In 2000, a third of counties had coefficients
between −0.32 and −0.13. By 2015, more than 65% of the counties had coefficients between
−0.32 and −0.13. Counties with a coefficient lower than −0.32 (absolute value higher
than 0.32) decreased significantly from 2000 to 2015. Looking into the different regions,
the negative impact of urban economic growth on EFL proportion in the undeveloped
western region was smaller than that in the central and eastern regions. The central
provinces, dominated by secondary industries, including the provinces of Shanxi, Henan,
and Hebei, showed the largest negative effect in 2000. Along with the implementation
of a series of ecosystem protection programs, especially the Grain for Green program
aimed at transforming croplands with steep slopes into forests and grasslands from 1999,
the counties with coefficients lower than −0.89 were reduced by 2015; they were only
distributed in a small part of Henan and Hebei provinces. The response degrees of the
proportion of EFL to economic growth in Xinjiang and Inner Mongolia Autonomous Region
also clearly declined from 2000 to 2015. The response degrees increased in a small part
of some provinces, such as the Tibetan Autonomous Region and Guangdong province,
from 2000 to 2015, which was directly related to the anabatic ecosystem degradation in
these areas [4]. Although the negative effect decreased from 2000 to 2015, urban economic
growth still had a more significant negative impact on the proportion of EFL in the central
region. The results further confirmed our hypothesis 1.
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As displayed in Figure 7, the spatial distribution of local coefficients for road density
(lnRD) showed significant spatial variation in 2000 and 2015. The contribution of trans-
portation construction to regional economic growth varied across regions and depended on
the economic development level. Over 45% of the counties had coefficients above 0.45 in
2000, which reached over 75% by 2015, indicating the increasing impact of transportation
construction on urban economic growth in China. The central and southwest regions
exhibited significant spatial aggregation in 2000; for every unit (1%) of the increase in road
density, the average economic density increased by over 0.75%. By 2015, the counties with
coefficients above 0.75 had expanded significantly around the central southwest regions.
The study of Chen [65] indicated that investment in transport in the southwest region
had a more significant effect on economic growth than that in developed eastern regions.
By comparing Figures 3 and 4, the higher coefficients for lnRD partially overlapped with
the distribution of the areas where EFL was greatly affected by urban economic growth,
especially in Inner Mongolia, Heilongjiang, Henan, and Shaanxi provinces. In addition, in
provinces such as Jiangsu, Guangdong, and Guangxi, the contribution of transportation
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construction to economic growth increased, and the negative effect of economic growth on
EFL changes also increased. The areas where transportation contributed more to economic
growth had a more significant negative impact on EFL changes. The results supported
hypothesis 3.
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4. Discussion

Since the economic reforms in 1978, China has undergone a tremendous change inland-
use and economic development. The secondary and tertiary industries were the main sec-
tors driving urban economic development, which brought about GDP growth, but reduced
the proportion of EFL. According to the Kuznets curve [66], when the socio-economic level
is low, slow economic growth will not have a significant effect on ecosystems; when eco-
nomic development reaches a high level, the negative effect will weaken. Only a medium
level of economic development dramatically affects ecosystems [67]. Correspondingly,
we observed the largest negative impact of urban economic growth on EFL proportion
in the central region, the development level of which is between that of the west and the
east, and the lowest negative impact was observed in the undeveloped western region.
The effect of economic growth on EFL and ecosystem services is dynamic, depending on
changing socio-economic levels and development phases [68]. Consistent with the gradient
transfer theory [69], in the period studied, central China was in a period of accelerating
industrialization, had high proportions of the primary and secondary sectors, and had
low economic resilience [70]. A development mode that emphasizes industrial structure
optimization and development quality is needed for ecosystem protection and sustainable
development.

Driving economic growth through transportation is one of China’s most important
strategies. As the Chinese government has launched a series of transport planning and
policies, the transport network has been rapidly extended [71]. Provinces such as Shaanxi
and Shanxi, located in the central Longhai–Lanxin Economic Belt, were key areas of the
“Western Development” strategy. The transportation infrastructure of those regions was
conducive to the development of local secondary and tertiary industries and the economies
in the western and central regions [39]. However, relying on transport to drive economic
growth and narrow the gap between the east and the west might harm ecological land
space and ecosystems. In addition, the goal of establishing the transportation development
strategy was mainly to promote social and economic development and rarely involved
protecting environmental benefits [72]. The suitability and effectiveness of transport should
be highlighted in planning and practice.

In this study, we used the 2SLS and GWR models to assess the impact of urban eco-
nomic growth on the proportion of ecologically functional land (EFL) in 2000 and 2015. The
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results of different regression models identified the temporal and spatial differences in the
effects and the robustness of our results. Although this study provides a perspective by
which to analyze the response of changes in EFL to economic growth and transportation
construction, the interactions among them may be more complicated than our results
indicate. This study analyzed the effect of road density, including highways and railways,
on economic growth, but the impacts of transportation on industrial development and
economic growth vary with different types of industries [73]. The impact of the specific
transportation mode, including high-speed rail, should be considered in future studies.
Given that the transportation construction of China is still in the process of rapid devel-
opment, it would be more valuable to explore this using multiple years of data in the
regressions to provide a more comprehensive analysis over a longer time horizon.

5. Conclusions

This study explored the response of EFL changes to urban economic growth in over
2600 counties in China. The spatiotemporal relationship among EFL changes, urban
economic growth, and transportation construction was explored using the 2SLS and GWR
models. The overall negative impact of secondary and tertiary industry development on
EFL declined from 2000 to 2015. Urban economic growth in the central region, which
has a development level between the undeveloped western region and the developed
eastern region, had the largest impact on the reduction in EFL. Transportation construction
was very useful in promoting industrial and urban economic development, especially in
the central region, including the provinces of Shaanxi, Shanxi and Hebei. The impact of
urban economic growth may change as economic development reaches different stages
and through industrial structure optimization. The development mode relies on transport,
and regional policies emphasize the priority of transportation construction; however, this
should be improved. This study advances our understanding of the mechanism of urban
economic growth affecting EFL changes and provides evidence for policymaking and
science-based transportation development planning.
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