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Abstract: The reduction in locational traffic accident risks through appropriate traffic safety manage-
ment is important to support, maintain, and improve children’s safe and independent mobility. This
study proposes and verifies a method to evaluate the risk of elementary school students-vehicle acci-
dents (ESSVAs) at individual intersections on residential roads in Toyohashi city, Japan, considering
the difference in travel purposes (i.e., school commuting purpose; SCP or non-school commuting
purpose: NSCP), based on a statistical regression model and Empirical Bayes (EB) estimation. The
results showed that the ESSVA risk of children’s travel in SCP is lower than that in NSCP, and not
only ESSVAs in SCP but also most ESSVAs in NSCP occurred on or near the designated school routes.
Therefore, it would make sense to implement traffic safety management and measures focusing on
school routes. It was also found that the locational ESSVA risk structure is different depending on
whether the purpose of the children’s travels is SCP or NSCP in the statistical model. Finally, it was
suggested that evaluation of locational ESSVA risks based on the EB estimation is useful for efficiently
extracting locations where traffic safety measures should be implemented compared to that only
based on the number of accidents in the past.

Keywords: elementary school students; locational accident risk; travel purpose; Empirical Bayes
estimation

1. Introduction

Road traffic accidents are one of the major causes of death and disability among
children over the world [1]. The threat of being involved in a traffic accident contains
not only the risk of direct physical damage but also the long-term impact on children’s
lifestyles. Namely, the greater the concern parents/guardians feel about traffic accidents
involving their children, the less likely they are to allow their children to play freely
outside or to go out independently without adults [2–6]. In fact, it has been reported
that children’s opportunities to walk and cycle, and play outside, as well as children’s
independent mobility (CIM), have decreased in the 21st century in some countries [7–12].
The decrease in daily walking and cycling opportunities leads to children’s lack of physical
activity [7]. Children’s opportunities for physical activity are important for their physical
maturation and the form of normal bone and behavior, and physical inactivity is widely
recognized as one of the major risk factors in human health [8,13]. It has been argued that
CIM is also important in fostering children’s autonomy and in curbing car-independent
transportation style which reduces time lost by parents taking their children as well as
traffic congestion [10]. Therefore, the reduction in traffic accident risks and threats through
appropriate traffic safety management is very important in urban planning to support,
maintain, and improve children’s safe and independent mobility (CSIM).

In traffic safety management, it is important to properly assess the risk of traffic
accidents at each area or location, especially for identifying areas/locations where counter-
measures should be implemented and verifying the effectiveness of those countermeasures.
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In previous studies on the evaluation of accident risk by areas/locations, statistical model
analyses (so-called safety performance functions: SPF) have often been used to clarify the
effects of various explanatory variables on the number of accidents [14]. Table 1 lists the
main previous studies using a statistical modeling approach for the assessment of accident
risk involving children by areas/locations [15–20]. The aggregation units for accident
risk assessment are diverse, ranging from the microscopic level such as intersections and
road segments to the macroscopic level such as prefectures. While these previous studies
have made important contributions to the methodology for assessments of accident risks
involving children by areas/locations, there have been issues to be dealt with.

Table 1. Main previous studies using a statistical modeling approach for the assessment of accident
risk involving children by areas/locations.

Study Unit of Analysis
and Sample Size Dependent Variable Exposure Other Factors Method/Model Country

[15]
Households
te 79 cases/
te 110 controls

Presence/absence of
crashes
PMVCs 1

5–17 age children
2008–2012

Number of trips/tours
by questionnaire
Walking time by
questionnaire

Travel (daily activity)
pattern
Residential
neighborhood type
Age/Gender
Parents’
work/Income

Case–control
study
Logistic
regression model

Israel

[16]

Road segments
te 92 cases/
te 368 controls
Intersections
te 107 cases/
te 428 controls

Presence/absence of
crashes
PMVCs 1

Weekdays, September to
June, 7 a.m.–5 p.m.
5–14 age children
2002–2011

Child activity estimated
by journey allocation
model based on
te shortest route/
te preferred route/
te population

Intersection control
type
Crossing guard
Average traffic flow
Speed limit/One-way
Land use
Within 150 m of
schools
Road structures

Case–control
study
Logistic
regression model

Canada

[17] 546 intersections

Number of perceived
crash risk
te10–12 age children
te2015
Number of crashes
te PMVCs 1

te 2007–2014

Children crossing
estimated by
questionnaire

Population density
Street density
Park
Student facility
Road structures
Traffic calming
Building
Land use

Negative
binomial
regression model
Zero-inflated
negative binomial
regression model

Korea

[18] 5703 road
segments

Presence/absence of
crashes
PMVCs 1

Within 0.25 mile from
schools
5–19 age children
2010–2014

Child population
density

Bus stop
Road class
Road structures
Land use
Race

Logistic
regression model USA

[19]

School attendance
boundaries
te 50 case/
te 50 control

Highest/lowest quartile
of crashes rate
PMVCs 1

School travel time crashes
4–12 age children
2000–2013

Proportion of children
walking to school by
observation at schools

One-way
Crossing guard
Traffic light
Traffic calming
Land use
Higher school
disadvantage
Inner
suburbs/downtown

Case–control
study
Logistic
regression model

Canada

[20] 47 prefectures

Killed or seriously injured
children (KSI) rate
teElementary
text Pedestrian
text 6–12 years
Junior high
bicycle and pedestrian
12–15 years

Child population
Travel purpose
Proportion of
population in DID 3

Multiple linear
regression model Japan
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Table 1. Cont.

Study Unit of Analysis
and Sample Size Dependent Variable Exposure Other Factors Method/Model Country

This
study 7719 intersections

Number of crashes
te ESSVAs 2

te 2007–2014”

Number of students on
the surrounding school
routes/gathering points
Distance to the nearest
school route

Travel purpose
Road structures
Traffic light
Park
Land use
DID 3

Negative
binomial
regression model
Empirical Bayes
estimation

Japan

1 Pedestrian-motor vehicle crashes. 2 Elementary school students-vehicle accidents. 3 Densely inhabited district.

The first is the consideration of the children’s travel purposes. The risk of children
walking and cycling being involved in accidents may be different between traveling for
school commuting purposes (SCP) and traveling for non-school commuting purposes
(NSCP). In Japan, children are expected to be safer on the road in SCP than in NSCP,
because many elementary schools have adopted a group walking system, called “Shudan-
togeko”, to and from schools, and parents/guardians and district communities provide
generous safety support [21,22]. In recent years, several countries, including the United
Kingdom, also have begun to implement group walking initiatives, called “Walking bus”, to
school [21]. Thus, accident risk assessments that take into account the differences between
children’s travel in SCP and in NSCP are internationally important. Inada et al. [20]
analyzed traffic accidents involving elementary school students and junior high school
students by prefecture in Japan, dividing the accidents into those involving the students
in SCP and NSCP, and found that the number of killed or seriously injured (KSI) cases
during travels in SCP was approximately 30–40% lower than that during travels in NSCP.
However, the study was conducted only at the macro level (i.e., prefecture-level), and,
to the best of the author’s knowledge, there have been no studies in which whether the
children’s purpose was SCP or NCSP was taken into account in a micro level (such as
intersections or road segments level) analysis.

As the second issue, the accident risk of each location may be affected by a great variety
of factors specific to the location. It is difficult to incorporate all of the factors as explanatory
variables in a statistical model, and the effects of factors other than the explanatory variables
are represented as the error term with a probability distribution. Therefore, in assessing
accident risks at different locations, it is necessary to properly consider the balance between
the average effects of explanatory variables and the effect of location-specific characteristics.
While the Empirical Bayesian (EB) estimation method has been proposed and used in
the context of a before–after study on the evaluation of traffic safety measures [23–30], it
is also applicable to the purpose of extracting locations where countermeasures should
be implemented by properly evaluating the accident risks at individual locations [31–37].
Although there have been some previous studies applying the EB method to evaluate the
locational risks of accidents involving general pedestrian [30,33], no studies applying the
EB method to assess the locational risks of accidents involving children have been seen.

Therefore, this study proposes and verifies a method to evaluate the risk of vehicle–
children accidents at individual intersections on residential roads in Toyohashi city, Japan,
considering the difference in travel purposes (i.e., SCP or NSCP), based on a statistical
regression model and EB estimation.

2. Materials and Methods
2.1. Target Area

The target area was the entire Toyohashi City, Aichi Prefecture, Japan. There are
52 elementary schools in the city (see Figure 1), and the number of elementary school
students is approximately 20,000 as of 2018. Almost all the students walk to school, except
for about 10 students who cycle to school.
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2.2. Data
2.2.1. Traffic Accident Data

The accident data used in this study were police-reported elementary school student-
vehicle accidents (ESSVAs: injury accidents in which the first or second party was an
elementary school student while walking or cycling) that occurred in Toyohashi City over a
12-year period from 2009 to 2020 (totally 638 ESSVAs). The individual accident data include
the children’s travel purpose (i.e., SCP or NSCP). Figure 1 shows the distribution of the
locations of the ESSVAs by the children’s travel purpose.

The ESSVAs which occurred within a radius of 50 m from the center of each community
street intersection were extracted as “intersection ESSVAs”, which were 360 ESSVAs (56.4%
of all the ESSVAs). The community street intersections were defined as intersections with
three or more legs of community streets other than “national expressways”, “general
national highways”, “major regional roads”, “general prefectural roads”, and “major
general roads” in the road network data of Zmap-Area II (ZENRIN corp.). Of the 7719 target
intersections, one ESSVA occurred at 296 (3.8%) intersections, two ESSVAs at 24 (0.31%)
intersections, three ESSVAs at four (0.052%) intersections, and four ESSVAs at one (0.013%)
intersection, during the 12-year period.

We used the 299 ESSVAs in the first nine years as the “risk estimation period” to
estimate the ESSVA risk at each intersection, and the 61 ESSVAs in the last three years as
the “evaluation period” to evaluate the results of the estimation.

2.2.2. Risk Exposure Data

Accident risk exposure is an important factor for the statistical model analysis of
locational accident risks, and some studies have made efforts to measure exposure for
evaluating the locational risk of accidents involving pedestrians [38–41]. In this study, the
exposure should be the number of passings or activities of elementary school students at
each intersection. However, it is difficult to measure these data over the wide city area.
As shown in Table 1, the previous studies have tried to estimate exposure by children
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population [18,20], by questionnaire surveys asking about travel routes [16,17], by an
observation survey of travel mode to schools [19], and by a journey allocation model based
on shortest routes [16].

On the other hand, the author and the Toyohashi City Board of Education have
collaboratively georeferenced the designated school route data (see Figure 1) and the
gathering point data, with the number of elementary school students for each school
commuting group in the city. In this study, based on the designated school route data
(2018 version), we calculated the following indices as surrogate variables for ESSVA risk
exposure at the intersections [42]:

• Number of elementary school students on the surrounding school routes (NSSR15,
50, 100): the number of elementary school students on the designated school route
that passes within a radius of 15 m, 50 m, or 100 m from the center of each target
intersection;

• Number of elementary school students at the surrounding gathering points (NSGP15,
50, 100): the number of elementary school students at the gathering points located
within a radius of 15 m, 50 m, or 100 m from the center of each target intersection;

• Distance to the nearest school route (DSR): the distance from the center of each inter-
section to the nearest designated school route.

Note that there are no major differences in the designated school route data in recent
years.

2.2.3. Other Data

The ESSVA risk at an intersection is also may be greatly affected by the vehicle traffic
volume [16,43,44]. Therefore, in order to take into account the effect of vehicle traffic volume
at each target intersection, this study used probe vehicle data corrected by Pioneer Corp.
for the years 2016–2019. The validity of the probe vehicle data has been confirmed in our
previous studies [30]. The probe vehicle traffic volumes of all legs in the direction of inflow
to the intersection were summed up to obtain the probe vehicle traffic volume for each
target intersection, which was used as a variable to represent the vehicle traffic volume.

As other explanatory variables for road traffic environment conditions, we used the
number of legs for each intersection, the presence or absence of traffic signals, the urban
area land use type by 1/10 mesh (100 m mesh) of the National Land Information, whether
each intersection is within the densely inhabited district (DID), and the distance to the
nearest park.

2.3. Statistical Model

In this study, the locational accident risk is defined as the expected value of the number
of ESSVAs by intersections in a specific period. Therefore, a count data model is used
as the statistical model. The Poisson regression model is the simplest count data model.
However, because the error structure (i.e., Poisson distribution) has a strong limitation
that the variance equals the expected value, the negative binomial (NB) regression model,
which is one of the extensions of the Poisson regression model, is commonly applied in
recent accident count data modeling [14]. Additionally, in this study, the NB regression
model is used.

To the best of the author’s knowledge, the EB estimation has been found in the field of
traffic accident risk assessment since Gipps [23], Abbess et al. [24], and Jarrett et al. [31] in
the early 1980s, and later it was well-organized by Hauer [25] in the context of before/after
study of traffic safety measures. In order to summarize the method for assessing accident
risk considering location-specific factors using the EB estimation, it is first explained that
the Poisson regression model can be extended to the NB regression model by assuming the
property that the expected value in the Poisson regression model itself varies stochastically
according to the gamma distribution. Then, the EB method is presented for the evaluation
of the risk of accidents at each location, taking into account the location-specific effects
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that cannot be explained by the average effects (fixed effects) of the explanatory variables
considered in the model.

2.3.1. Poisson Regression Model

Suppose that the number of accidents Yi at location i during a certain period of time
follows a Poisson distribution with an expected value µi that is a function of the explanatory
variable vector xi and the corresponding parameter vector b:

Yi ∼ Poisson(µi) = Poisson(xi, b). (1)

Thus, the probability that Yi accidents occur at location i during the period is

PPoi(Yi = yi| µi) =
µ

yi
i

yi!
exp(−µi), (2)

and the expected value and variance of Yi are

E(Yi| µi) = V(Yi| µi) = µi, (3)

where

µi = exp(xib) = exp

(
b0 + ∑

k
bkxik

)
. (4)

2.3.2. Accident Risk Evaluation That Considers Location-Specific Factors

Assuming that the expected value of the Poisson regression model described above is
not completely determined only by the function of explanatory variables and parameters,
but is also affected by factors specific to location i, and then assuming as an alternative to
the expected value µi the random variable λi which follows a gamma distribution with the
shape parameter α = φ and the rate parameter β = φµ−1

i :

λi ∼ Gamma
(

α = φ, β = φµ−1
i

)
. (5)

The probability that λi be a certain value ri is

PGam

(
λi = ri

∣∣∣ α = φ, β = φµ−1
i

)
=

φφµ
−φ
i

Γ(φ)
rφ−1

i · exp
(
−φµ−1

i ri

)
, (6)

and the expected value and variance of λi are

E(λi) =
φ

φµ−1
i

= µi = exp(xib), (7)

V(λi) =
φ

φ2µ−2
i

=
µ2

i
φ

. (8)

The structure that the expected value of the number of accidents λi is determined following
the gamma distribution, and the realization yi of the number of accidents Yi occurs follow-
ing the Poisson distribution with λi as the parameter can be interpreted as a hierarchical
model. Therefore, under the information that yi accidents actually occurred at location i,
the probability that λi is a certain value ri can be obtained by Bayes’ theorem:
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P(λi = ri| Yi = yi; µi, φ) =
PPoi(Yi = yi| µi)PGam

(
λi = ri

∣∣∣ φ, φµ−1
i

)
P(Yi = yi| µi, φ)

. (9)

Here, µi and φ are the prior parameters. Furthermore, the gamma distribution is the natural
conjugate distribution of the Poisson distribution, thus it is known that the posterior
distribution is also gamma, so that:

P(λi = ri| Yi = yi; µi, φ) = PGam

(
λi = ri

∣∣∣ φ + yi, φλµ−1
i + 1

)
, (10)

and its expected value is

E
(

λi

∣∣∣φ + yi, φµ−1
i + 1

)
=

φ + yi

φµ−1
i + 1

. (11)

The expected value of λi can be used as an accident risk evaluation index that takes into
account location-specific factors.

2.3.3. EB Estimation through an NB Regression Model

The accident risk evaluation index in Equation (11) depends on the prior parameters
µi and φ. Therefore, in this study, these prior parameters are estimated by the EB method.
That is, we use µi and φ which maximize the marginal likelihood:

P(Yi = yi| µi, φ) =
∫ ∞

−∞
PPoi(yi| ri)PGam

(
ri

∣∣∣ φ, φµ−1
i

)
dri. (12)

Expanding Equation (12) further and setting pi =
φ

φ+µi
, we obtain:

P(Yi = yi| µi, φ) =

(
yi + φ + 1

φ− 1

)
(pi)

φ(1− pi)
yi , (13)

indicating that Yi follows an NB distribution with parameters µi and φ:

Yi ∼ NB(µi, φ) = NB(xi, b, φ). (14)

The expected value and variance of Yi are

E(Yi|µi, φ) =
1− pi

pi
φ = µi = exp(xib). (15)

V(Yi | µi, φ) =
1− pi

p2
i

φ = µi +
µ2

i
φ

. (16)

Here, φ is called the dispersion parameter. The larger φ, the smaller the variance (residual
deviation) of Yi. When φ = ∞, the variance is equal to the expected value, which means
that the NB distribution is consistent with the Poisson distribution.

From the above, the EB estimation of λi is possible by estimating the NB regression
model using the actual number of accidents yi by locations and the explanatory variable
vector xi, and then by using the variance parameter φNB and the expected number of
accidents by location µNB

i obtained from the estimated NB regression model as prior
parameters. Denoting the EB estimator of λi as λEB

i , it can be shown that,
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λEB
i =

φNB + yi

φNB
(
µNB

i
)−1

+ 1
=

 1

1 + µNB
i

φNB

µNB
i +

1 +
1

1 + µNB
i

φNB

yi. (17)

Therefore, it can be found that this EB estimator is a weighted average of the two variables:
(1) the expected number of accidents µNB

i , which is calculated based on the average effects
of the explanatory variables in the estimated NB regression model; and (2) the number
of accidents yi that actually occurred. It can be also found that the larger the dispersion
parameter φNB of the NB regression model is (i.e., the smaller the residual deviation by
the NB regression model is), the greater the weight is given to µNB

i . According to Ghosh
and Meeden [45], “one of the main features of EB analysis is to borrow strength from the
ensemble; that is, use information from similar sources in constructing estimators and
predictors in addition to the most directly available source of information.”

Therefore, this study first estimated the parameter bk and the dispersion parameter
φNB of the NB regression model shown in Equations (4) and (14), using the actual number
of ESSVAs at each intersection i (explained in Section 2.2.1) as the objective variable yi and
the risk exposure indices (explained in Section 2.2.2) and other road traffic environment
conditions (explained in Section 2.2.3) as explanatory variables xik. Next, using the explana-
tory variables xik and the estimated model parameter bk, the NB estimate of the expected
number of ESSVAs at each intersection, µNB

i , was calculated by Equation (4). Then, using
the NB estimate of the expected number of ESSVAs, the actual number of ESSVAs yi, and
the parameter φNB, the EB estimate of the expected number of ESSVAs at each intersection,
λEB

i , was calculated by Equation (17). This EB estimate of the expected number of ESSVAs
was the risk evaluation value for each intersection.

2.4. Evaluation of Efficiency to Extract Risky Locations

To evaluate the usefulness of the EB estimation from the view of efficient extraction
of high ESSVA risk locations, we calculated efficiency criteria by the following procedure.
The concept of efficiency here is that “the higher the number of ESSVAs in the evaluation
period per one extracted ESSVA risk intersection, the higher the efficiency”.

1. Each location was ranked in order of riskiness based on the three criteria, respectively:

a. Actual number criterion, i.e., the higher the actual number of ESSVAs yi in the
risk estimation period (the first nine years), the higher the risk is;

b. NB estimate criterion, i.e., the higher the expected number of ESSVAs µNB
i calcu-

lated by the NB regression model, the higher the risk is;
c. EB estimate criterion, i.e., the higher the expected number of ESSVAs λEB

i cor-
rected by the EB estimation method, the higher the risk is.

2. Based on the rankings of the three criteria, the cumulative sums of the actual num-
ber of ESSVAs in the evaluation period (the last three years) up to the rank were,
respectively calculated.

3. The cumulative sums of the actual number of ESSVAs in the evaluation period for the
three criteria were, respectively divided by the number of intersections up to the rank,
which is the efficiency in this study.

Figure 2 illustrates the flow of this study described so far.
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Figure 2. The flow of this study.

3. Results
3.1. Aggregation Analyses

Figure 3 shows the distribution of the occurrence time of ESSVAs by the children’s
travel purposes, indicating that many of the ESSVAs occurred in the time period of
4:00–5:00 p.m. in NSCP. The high number of ESSVAs occurring in NSCP at this time means
that elementary school students are mostly involved in an accident when being out to play
or go somewhere (e.g., friends’ houses or shops) after returning home on weekdays or
on holidays.
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Figure 4 shows the distribution of the occurrence of ESSVAs regarding the distance
from the nearest school route by the children’s travel purposes. As expected, most (roughly
80%) of the ESSVAs in SCP occurred on the school routes since children basically walk to
school and walk back home along the designated school routes. On the other hand, it is a
surprise that most ESSVAs in NSCP also occurred on or close to (roughly within 100 m of)
the school routes. This could be an important fact and will be discussed, along with the
statistical model estimation results below, in detail in Section 4.
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3.2. Estimation Results of the NB Regression Model

Table 2 shows the estimation results of two types of final NB regression models
using the numbers of ESSVAs in SCP and the numbers of ESSVAs in NSCP, at the target
intersections in the risk estimation period as the objective variable. They indicated that the
statistically significant explanatory variables were different between the SCP model and
the NSCP model.

Table 2. Estimation results of the NB regression models for the ESSVAs.

Explanatory Variable
SCP Model NCSP Model

Parameter bk exp (bk) Parameter bk exp (bk)

Constant term −9.77 *** 0.00006 −4.78 *** 0.00840
Children’s risk exposure:

NSSR15 1 0.0129 *** 1.013
DSR 2 −0.00771 *** 0.992

Natural logarithm of probe vehicle pass count 0.342 * 1.035 0.198 *** 1.22
Number of intersection legs (reference to
three legs):

four legs 0.717 *** 2.05
five or more legs 0.399 1.50

Distance to the nearest park ≤ 200 m
(reference to more than 200 m) −0.976 # 0.377

Area land use (reference to other land uses):
high-rise buildings 3.87 ** 47.9 0.461 1.59
low-density low-rise buildings 1.91 # 6.75 0.594 ** 1.81
high-density low-rise buildings 3.75 ** 42.5 0.291 1.34

DID areas (reference to non−DID areas): −1.32 # 0.267
Sample size (number of intersections) 7719 7719
McFadden’s likelihood ratio 0.27 0.12

1 number of elementary school students on school routes within 15 m of the intersection. 2 distance to the nearest
school route from the intersection. ***: p < 0.001; **: p < 0.01; *: p < 0.05; #: p < 0.1.
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The parameter of the constant term in the SCP model was strongly lesser than those in
the other models, indicating that children’s risk to be involved in an accident during school
commuting is very lower than during other travels.

Regarding the surrogate variables for the ESSVA risk exposure, the more the number of
elementary school students on the designated school route passing within the intersections
(NSSR15), the higher the ESSVA risk was in the SCP model. In the NSCP model, on the
other hand, the nearer the distance from the intersections to the nearest designated school
route, the higher the ESSVA risk was. These results suggest that the designated school
route data could be useful as surrogate variables for ESSVA risk exposure indicators.

As for the other explanatory variables, the main findings were as follows:

• ESSVA risk increased with vehicle traffic volume in both models, but the impact was
less in the SCP model than in the NSCP model;

• ESSVA risk was higher at four-leg intersections than at three-leg intersections in the
NCSP model, but there was no such effect of road structure in the SCP model;

• The SCP model showed a lower ESSVA risk at intersections near parks, but the NCSP
model did not show such an effect;

• ESSVA risk was higher in areas with building use in both models, but was particularly
strong in the SCP model;

• Intersections within the DID had lower ESSVA risk in the SCP model, but the effect is
not shown in the NSCP model.

3.3. Results of the EB Estimation

Figure 5 shows the scatter charts plotting the ESSVA risks calculated by the NB
regression model (µNB

i ) on the horizontal axes and those corrected by the EB estimation
(λEB

i ) on the vertical axes, according to the number of ESSVAs actually occurred during
the risk estimation period shown at the top of the charts (0–3). The 45-degree line is also
plotted. It can be seen that in the chart for the intersections where the actual numbers of
ESSVAs were zero (the leftmost chart in Figure 5), all points were below the 45-degree line.
This means that the expected numbers of ESSVAs were adjusted downward through the
EB estimation because the actual numbers of ESSVAs had been smaller than the expected
numbers estimated by the NB model. On the other hand, in the chart for the intersections
where the actual numbers of ESSVAs were two or three (the right two charts in Figure 5),
all points were above the 45-degree line. This means that the expected numbers of ESSVAs
were adjusted upward through the EB estimation because the actual numbers of ESSVAs
had been greater than the expected numbers estimated by the NB model. Additionally, in
the chart for the intersections where the actual numbers of ESSVAs were one (the second
left chart in Figure 5), the downward and upward adjustments described above were mixed.
It can also be seen that even for the intersections with the same actual numbers of ESSVAs,
the further to the right, the greater the difference between each point and the 45-degree line
tended to be. This means that the higher the ESSVA risks calculated by the NB regression
model were, the larger the magnitude of the adjustment by the EB estimation was.

Figure 6 shows the efficiencies calculated by the procedure explained in Section 2.4
based on the three criteria. It can be seen that the actual number criterion had the highest
efficiency up to the 6th ESSVA risk rank, whereas the EB estimate criterion had the highest
efficiency from the 7th up to about the 60th risk rank. This means that, in this study
case, while using the actual number of ESSVAs was more efficient in extracting the top six
risky locations, using the EB estimation was more efficient in extracting the risky locations
beyond these six locations.
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4. Discussion and Conclusions

The results of the aggregation analyses and the statistical model analysis showed that
ESSVAs in SCP are less frequent than those in NSCP. This tendency is similar throughout
Japan [20], and this may be due in large part to the effect of the cultural safety systems
such as group school commuting (called “shudan-togeko”) and the safety supports such as
crossing guard by district communities when traveling in SCP, as suggested by Waygood
et al. [21] and Matsuo et al. [22] in macroscopic levels. Rothman et al. [19] showed a
different result that intersections with school crossing guards had higher collision risk.
However, there is a possibility that the locations where school crossing guards are located
reflect the areas where many children walk, namely the risk exposure is higher resulting in
higher accident frequencies. The result in this study is considered reasonable because the
amount of risk exposure in SCP used in this is valid as described below.
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The results of the aggregation analysis revealed that not only ESSVAs in SCP but also
most ESSVAs in NSCP occurred on or near the designated school routes. The statistical
model analysis showed that the number of elementary students commuting to school on
each designated school route passing within a radius of 15 m from the center of each target
intersection (NSSR15) was significant in the SCP model. This can be interpreted as the
number of children passing through the designated school routes functioning as a risk
exposure variable for ESSVAs in SCP. This is precisely because the number of children
commuting to school on the school route itself is appropriate as exposure for ESSVA risk
in SCP. Lee et al. [17] showed similar results using the number of children on the route to
school based on a questionnaire survey as an exposure variable. On the other hand, in the
NSCP model, the distance from each intersection to the nearest school route (DSR) was
significant, indicating that the structure regarding ESSVA risk exposure differs depending
on the children’s travel purposes. This result suggests that elementary school students
tend to use the designated school routes even for NSCP because they are familiar with
the school routes due to daily use in SCP, resulting that the number of ESSVAs on or near
school routes would be higher. Therefore, even though the fact described above is that the
majority of the ESSVAs occurred while walking and cycling for NSCP, it would make sense
to implement traffic safety management and measures focusing on school routes as the
Japanese national and regional government currently makes efforts [46].

As Bennet and Yiannakoulias [16] showed, ESSVA risk increased with vehicle traffic
volume. However, the impact was less in the SCP model than in the NSCP model. This may
be because there is a cultural system that contributes to the safety of children traveling to
and from school in Japan, as mentioned above, and also because crossing guards are present
especially in locations with heavy vehicle traffic. On the other hand, it suggests that traffic
calming is more important for the safety of children traveling in NCSP. Many previous
studies showed the safety effect of traffic calming devices on residential roads [47,48].

Although some previous studies used the number of legs of intersections but could
not find a significant effect [17,18], this study found that ESSVA risk was higher at four-
leg intersections than at three-leg intersections for NCSP travels. While the result that
ESSVA risk was higher in areas with building use in both models is similar to the previous
studies [15–17,19], this study additionally found that the effect was particularly strong for
SCP travels. Inada et al. [20] showed that locations of DID have the effect of an increase
in children’s accident risk through the prefectural level macroscopic analyses; however,
this study revealed that the intersections within the DID have lower ESSVA risk for SCP
travels. This may be because the size of group commuting and safety support by district
communities, as described above, are more extensive in densely populated areas. As
mentioned so far, the locational ESSVA risk structure, including the exposure, varies
depending on whether the purpose of the children’s travels is SCP or NSCP, which is
considered an important finding of this study.

Regarding the EB estimation results, it was shown that in this study case, using the EB
estimate criterion was more efficient when extracting more than six risky locations. This
suggested that the evaluation of locational accident risks based on the EB estimation is
useful also for efficiently extracting locations where traffic safety measures for ESSVAs
should be implemented compared to that only based on the number of accidents in the past,
as argued in the previous studies applying EB method for other types of accidents [33–37].
In practice, it would be better to use both the number of accidents and the EB estimation
method to identify risky locations.

Finally, this study has some limitations and further issues. The first is that the exposure
data for locational ESSVA risks in NSCP were insufficient. While we used designated school
route data as a surrogate variable for exposure in this study, the spatial distribution of
children’s travels and activities in NSCP should be measured and used in some way (e.g.,
questionnaire/diary survey [15,17], observation survey [19], GPS logger survey [49], etc.).

The second is to be able to assess in detail the safety effects of group commuting
and safety support by district communities. For this purpose, it is necessary to make
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comparisons between districts with different approaches to safety support, and between
elementary school districts with and without group commuting.

Thirdly, although the same statistical modeling and predicting approach (i.e., NB re-
gression model and EB estimation method) can be used for other regions and countries, the
road traffic environment conditions and data availability differ among regions or countries.
Therefore, it is necessary to consider an objective variable and a variety of explanatory
variables including risk exposure indicators by tailoring them to those conditions.
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