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Abstract: Environmental regulation (ER) plays an important role in urban low-carbon development
(ULCD). First of all, we evaluate the ULCD level of 282 cities in China from 2005 to 2020 by construct-
ing an index group and entropy method. Two panel models are then used to test the spillover effects
and threshold effects of ER and industrial structure on ULCD. The results show that the ULCD level
of most cities is still in grade III (0.27–0.38) or IV (0.38–0.49), and the level of central-western cities
is generally lower than that of eastern cities. Furthermore, the spillover effect of ER and industrial
structure upgrading (UIS) on ULCD is positive in eastern cities (0.038) but opposite in central or
western cities (−0.024). Further results show that the positive effects of optimization of industrial
structure (OIS) and UIS are gradually increasing with the improvement of ER. However, the positive
effects are more beneficial to the eastern cities. Therefore, the conclusions of this study can provide a
decision-making reference for local government to comprehensively formulate environmental and
industrial policies to enhance the low-carbon development of cities.

Keywords: urban low-carbon development; environmental regulation; industrial structure;
optimization; upgrading; spatial panel Durbin model; panel threshold model

1. Introduction

Domestic carbon dioxide emissions should peak by around 2030, and achieving carbon
neutrality by 2060 is one ambitious goal officially put forward by China in 2020. Due to
excessive emphasis on economic growth, in recent decades the economic development
led by the Chinese government has led to serious eco-environmental problems and large
emissions of CO2 [1,2]. China has been vigorously promoting green development, actively
participating in carbon emission reduction actions, and unswervingly following the path
of low-carbon development [3]. Though there is no unified standard for the concept of
urban low-carbon development (ULCD) in the world, many scholars agree that low-carbon
development requires not only carbon emission reduction but also healthy economic
development [4]. The city is the main space carrier of human activities and is a complex
system composed of economy, society, resources, environment, and other subsystems.
The ULCD is a complex process involving economic and social development, technology
accumulation, energy consumption, and environmental protection [5,6]. The core of it is to
reduce carbon emissions while considering the stable operation of the social and economic
system. From the perspective of measures to reduce carbon emissions, environmental
regulation (ER) is a relatively common and proven effective administrative intervention
adopted by governments [7,8].

From the content of the existing research, more and more scholars have set out from
the whole urban system to build a multi-dimensional index group to measure the compre-
hensive level of ULCD [4,9]. However, direct research on ER and ULCD is rare, and many
studies mainly focus on limited aspects [7,10,11]. Some of the relevant conclusions are
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not completely consistent. Liu and Xie used the industry panel data model to prove that
ER will restrain the independent innovation ability of enterprises and chose technology
introduction under the influence of cost effect [11,12]. However, some scholars have also
found that ER can promote technological innovation, further promote industrial upgrading,
improve energy efficiency, and reduce pollutant emissions [7,13]. Nevertheless, this incen-
tive effect has significant characteristics of spatio-temporal heterogeneity, which is more
beneficial to developed areas [14]. Due to the non-synchronization of social and economic
development stage, the pressure of ER is significantly different in space. This difference
makes polluting enterprises transfer to areas with backward economic development and
weak environmental regulation [11,15]. Although the weak environmental regulation in
the backward areas will attract polluting enterprises at a certain stage, the transfer of such
enterprises has brought economic growth and enhanced comprehensive development
capacity to underdeveloped areas. It ultimately provides a driving force for the birth of
stronger environmental regulation [16]. Many studies have discussed the role of ER as a
certain aspect of low-carbon development, and limited studies have analyzed the spillover
or non-linear effects of ER. The work of studying the effect of ER from the comprehensive
perspective of low-carbon development is not rich, which may blur the understanding of
the law of ULCD.

The most important premise of all is to evaluate the level of ULCD scientifically. Based
on existing research, we construct the evaluation index group of ULCD and use the entropy
method to calculate the level of 282 cities from 2005 to 2020. Furthermore, we use the panel
regression method to briefly examine the relationships between variables. Considering
the impact of ER on the production behavior of polluting enterprises, on the one hand, ER
may lead to the spatial transfer of industry, technology, and labor, and ultimately affect the
ULCD [17,18]. On the other hand, the impact of ER on the social economy may depend on
the intensity of ER adopted by local governments and show a non-linear relationship [16,19].
Therefore, we tend to utilize the spatial panel model to investigate the spillover effects of ER
and industrial structure on ULCD. Finally, the panel threshold model tests the non-linear
relationship between ER, IS, and ULCD. The conclusion of this study is expected to provide
references for local governments to comprehensively formulate environmental regulation
and low-carbon development policies.

2. Literature Review

The early studies on the evaluation of ULCD mostly focus on the absolute reduction
of CO2 emissions, and the relevant assessments are usually reflected by one or more
indicators. With the in-depth study of low-carbon development, scholars realize that the
research conclusions and policy recommendations based on a small number of indicators
to characterize ULCD cannot meet the actual needs of managers and believe that ULCD is
an orderly, coordinated, and sustainable way of development [4,9]. On this basis, a wealth
of scholars have devoted themselves to the construction of an index group to measure the
ULCD from the perspective of a social–economic–ecological integrated system [20,21]. As
for research scale, some scholars mainly estimate the differences in low-carbon development
level in regions on a national scale or provincial scale, and there are few studies on the
urban scale, but the research on the urban scale have been gradually enriched in recent
years [7,12,13]. As for the research methods, they are mainly divided into single-index and
multi-index evaluation methods. The single-index method mainly uses CO2 emissions
to characterize ULCD, which is relatively simple. Multi-index evaluation methods are
diverse due to the differences in the treatment of indicators, such as the TOPSIS method,
the Analytic hierarchy process, entropy weight method, and so on [11,16,22]. Generally
speaking, current research on low-carbon development assessment is very rich, and the
evaluation methods and index systems are relatively mature, but the research regarding
long-time series of ULCD across the country is rare.

In recent decades, people have gradually realized that greenhouse gas emissions such
as CO2 will seriously impact the global climate. Therefore, many environmental regula-
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tions have been formulated and adopted to reduce the global emission of pollutants [23].
Academia has carried out a wealth of theoretical and empirical research on environmental
regulation. The present research results show that there are three hot spots of universal
concern, one of which is the environmental Kuznets curve. Grossman and Krueger found
an inverse U-shaped curve between pollution emission levels and income, which is called
the environmental Kuznets curve [24]. Since then, many scholars have empirically tested
the existence and inflexion point of the environmental Kuznets curve [25,26]. Secondly, the
Porter hypothesis is another topic of common concern. Porter and Van der Linde believe
that strict ER will lead to technological innovation, which will enhance productivity and
market competitiveness [27]. However, some studies believe that industries with more
stringent ER may have a decline in competitiveness [10,28]. The last one is the “pollution
paradise hypothesis”. Its core view is that when a country strengthens environmental regu-
lation policies, the polluting enterprises of this country will move to other countries with
weak environmental regulation policies, and those countries provide refuge for polluting
enterprises [29]. With the research’s deepening, the attention of scholars has gradually
shifted from enterprises between countries to enterprises between different regions of
a country. Although these theories have been questioned, the environmental Kuznets
curve, the Porter hypothesis, and the pollution paradise hypothesis still provide important
theoretical references for the follow-up research on environmental regulation.

As for China, under the tremendous pressure of global climate change and carbon
emission reduction targets, the intensity of environmental regulation is increasing yearly.
China tries to guide cities to achieve low-carbon and green development by employing ER,
but how does ER promote ULCD? According to theoretical and empirical studies, ER will
impact the industrial behavior of enterprises. With the increase in the degree of ER, it will
first increase the production cost of polluting enterprises. As stated in the Porter hypoth-
esis, ER can promote enterprises’ technological development and reduce environmental
pollution’s negative externalities by imposing emission reduction constraints. Furthermore,
polluting enterprises in developed cities are transferred to less developed cities. Environ-
mental regulation causes the cross-regional and inter-city transfer of polluting enterprises
and industries. For the impact of central or western cities, according to the environmental
Kuznets curve hypothesis, before reaching the “inflection point”, the economic benefits
brought by polluting enterprises are greater than the environmental costs, thus promoting
regional development. Overall, ER has a non-linear effect on the low-carbon development
of social, economic, and ecological environments in different regions and cities and finally
shapes the differentiated urban low-carbon development pattern.

3. Materials and Methods
3.1. Variable Setting and Calculation
3.1.1. Dependent Variable

Urban low carbon development (ULCD): As this paper mainly studies the develop-
ment level of an urban low-carbon economy, ULCD indicators mainly consider the content
closely related to the city; drawing lessons from previous studies, we have found that urban
economy, society, and the ecological environment are inevitable aspects to be considered. In
addition, the use of energy resources is directly related to the level of ULCD, and the level
of urban resource utilization must be taken into account in assessing the level of ULCD.
The differences in the development of different cities are closely related to government-led
urban development planning, so the evaluation of ULCD also takes into account the factors
of urban planning. Finally, based on the connotations of ULCD, we construct an evaluation
index group from five dimensions, including low-carbon economy, low-carbon society,
resource utilization, urban planning, and low-carbon environments, to evaluate the ULCD
level of each city [4].

To avoid subjectivity, the weights of indexes are obtained by the entropy method, and
the results are shown in Table 1. Formula (A1)–(A7) shows the specific steps.
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Table 1. The index group and weight.

Target Layer Criterion Layer Index Layer Attribute Weight

Low-carbon
development

Low carbon economy
Energy consumption per unit GDP (ton

standard coal/10,000 yuan) × 1 Negative 0.1114

Per capita GDP (10,000 yuan) × 2 Positive 0.1569

Low-carbon society Urbanization level (%)× 3 Positive 0.1406
Ratio of residential land to construction

land (%)× 4 Negative 0.0624

Resource utilization
Water consumption per unit GDP

(ton/10,000 yuan) × 5 Negative 0.0745

Electricity consumption per unit GDP
(kilowatt-hour/10,000 yuan) × 6 Negative 0.1307

Urban planning Road area per capita (m2) × 7 Negative 0.1008
Number of buses (per 10,000 people) × 8 Positive 0.0970

Low carbon
environment

Per capita green area (m2) × 9 Positive 0.1004
Forest coverage (%)× 10 Positive 0.0253

3.1.2. Independent Variables

Environmental regulation (ER): Referring to Du et al., we comprehensively evaluate
the degree of ER by using industrial dust removal rate, industrial SO2 removal rate, the
comprehensive utilization rate of general industrial solid waste, harmless treatment rate of
domestic waste, and centralized sewage treatment rate [14]. The reason for this is that, com-
pared with environmental regulation policies, environmental supervision frequency and
other environmental regulation indicators, they are statistically universal and easy to obtain.
Secondly, these indicators can better reflect the effect of urban environmental regulation
and can meet the needs of this study. Similar to the calculation of the explanatory variable,
the index of environmental regulation is also obtained by the entropy method. The greater
the environmental regulation index, the greater the pressure on polluting enterprises.

Industrial structure: Referring to Zhao et al., in this paper the industrial structure is
divided into industrial structure optimization (OIS) and industrial structure upgrading
(UIS) [30]. The UIS is represented by the ratio of the tertiary industry output value to the
secondary industry output value. The OIS is represented by the Theil index, which is a
negative indicator [30]. The Theil index is calculated as Formula (1).

OIS =
n

∑
i=1

(
Yi
Y
) ln(

Yi
Li

/
Y
L
) (1)

where, i is the ith industry; n is the number of industries, with a maximum of 3; Y is the
total output value; L represents the total employment; Yi depicts the output value of the ith
industry; and Li is the number of employees in ith industry.

3.1.3. Control Variables

The control variables include education level (edu), investment level (ifa), science and
technology level (tec), and economic openness (eol), with reference to the relevant research
in this paper [4,14,30]. Among them, the indicator of education level is the number of senior
high school graduates and above. The index of investment level is the amount of investment
in fixed assets. The index of the level of science and technology is the expenditure on science
and technology development of government. The index of economic openness is the foreign
capital utilized by the city.

3.2. Methods
3.2.1. Benchmark

The panel regression model is selected as the benchmark model due to the characteris-
tics of the data. Because of the heteroscedasticity of the data, the variables are processed
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in the form of a natural logarithm. The general panel regression model of this study is
constructed as follows:

ulcdit = ai + λt + β1er + β2ois + β3uis + β4edu
+β5i f a + β6tec + β7eol + εit

(2)

where ulcdit is the urban low-carbon development level of the ith city in the t year; αi
represents the individual effect; λt represents the time effect; εit is the error term; β is the
parameter to be estimated; er depicts environmental regulation; ois is the optimization of
industrial structure; uis is the upgrading of industrial structure; edu represents the level
of education; ifa represents the level of investment; tec indicates the level of science and
technology; and eol indicates the degree of openness of the economy.

3.2.2. Spatial Panel Durbin Model (SPDM)

The results of the benchmark regression model can preliminarily reveal the relationship
between the ER, industrial structure, and ULCD of each city, but the ability to analyze the
effect of ER in neighboring cities on the level of ULCD is insufficient. Thus, we further
use the spatial panel model to analyze the spatial impact of ER and industrial structure on
ULCD. As for model selection, starting with the Durbin model provides a better choice [31].
The SPDM includes the spatial lag item and the spatial error item shown in Formula (3).

ulcdit = ρW ∗ lcdit + βn Mit + γWMit + θWεit + eit + µi + λit (3)

where ρ and θ represent the spatial effect coefficient; βn indicates the coefficients of k
explanatory variables; W denotes the spatial weight matrix, which is obtained by anti-
geographical distance; M is a group of explanatory variables, including ER, OIS, UIS, and
other control variables; M is a matrix of independent variables; WMit reflects the values
of spatial lag explanatory variables in adjacent regions; γ is used to measure the marginal
influence of the explanatory variables in the adjacent regions on the explained variables;
ε represents the spatial autocorrelation error term; eit is a random disturbance term; µi
represents the spatial fixed effect; and λt denotes the time fixed effect.

3.2.3. Panel Threshold Model (PTM)

The intensity of ER is dynamic, and its impact on ULCD may have significant phased
differences and finally show non-linear characteristics. As for the non-linear characteristics
of the influence effect, this study uses the PTM to verify it, as per Cui et al. [32]. The panel
threshold model of this study is set as Formula (4).

yit = δ1xit I(qit ≤ γ) + δ2xit I(qit > γ) + µi + εit (4)

where yit is the interpreted variable; δ is the coefficient of the explanatory variable xit to
the explained variable when the threshold variable, qit, is greater than or less than the
threshold γ; and I represents the indicator variable. When qit ≤ γ, I = 1; Otherwise, I = 0. µi
is the individual effect of the region and εit is the error term. After derivation, the single
threshold model (5) and double threshold model (6) can be obtained.

ulcdit = δ0 + δ1xit I(erit ≤ γ1) + δ2xit I(erit > γ) + βnNit + µi + εit (5)

ulcdit = δ0 + δ1xit I(erit ≤ γ1) + δ2xit I(γ1 < erit ≤ γ2)
+δ3xit I(erit > γ3) + βnNit + µi + εit

(6)

where erit is the threshold variable; xit is the core explanatory variable, including ois and
uis; and βn is the coefficient of the control variables.
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3.3. Data

The main data of 282 cities from 2005 to 2020 include low-carbon development eval-
uation data, environmental regulation data, industrial structure data, and other control
variables’ data. These data come from China Urban Statistical Yearbooks (2006–2021)
and provincial statistical yearbooks (2006–2021). The indexes of ULCD are shown in
Table 1 [4,15,30]. Before the evaluation, the indexes are standardized. In addition, to further
improve the accuracy and comparability, the value indicators are measured by the deflator
method up to 2005. Furthermore, in this paper the 282 cities are divided into 86 eastern
cities and 196 central-western cities. The eastern region includes Beijing, Tianjin, Hebei,
Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, and Hainan. Other provinces
and cities belong to the central-western region. It should be noted that, due to lack of data,
Xinjiang, Tibet, Hong Kong, Macao, Taiwan, and parts of cities are not within the scope in
this study.

4. Results
4.1. Urban Low-Carbon Development Level

According to the evaluation index group and entropy weight method, the ULCD
level of 282 cities from 2005 to 2020 is obtained, and the results are shown in Figure 1.
For convenience, this paper uses the results of 2005, 2008, 2011, 2014, 2017, and 2020 as
examples and uses the map display and grading color tool of ArcGIS10.3 software to divide
the results of ULCD level into six grades. The higher the grade, the higher the level of
ULCD. As can be seen from Figure 1, the ULCD level of the observed sample cities shows
an overall upward trend over time, but even in 2020, the ULCD level of most cities is still in
grade III or IV, indicating that the comprehensive level of ULCD is not high. In an east-west
direction, the ULCD level in the eastern region is the highest, followed by the central
region and the western region. The reason for this situation may be that the input level
of labor, capital, and technology in the eastern region is significantly higher than that in
other areas since the Reform and Opening up, resulting in industrial structure adjustment
and technological progress significantly raising the level of urban ULCD. As the central
region is closer to the eastern region, the development of the eastern region gives priority
to the industrial and technological development of the central region. In the north-south
direction, the level of ULCD in the north is significantly higher than that in the south, which
may be due to the fact that cities in the north have convenient topographical conditions and
rich natural resources compared with those in the south, resulting in more rapid economic
development and more convenient industrial adjustment and technological exchanges. In
addition, Beijing, Shanghai, and Chongqing have become high-value regional low-carbon
development centers.

4.2. Benchmark Result

After the evaluation of ULCD, we further use the panel regression model to analyze
the impact of ER and industrial structure on ULCD. In order to draw a more accurate
conclusion, LM test and Hausman test are used to select the ideal panel model. The final
results are shown in Table 2.

From the results of the LM test and the Hausman test in Table 2, we can see that we
should adopt the “fixed effect model”. For convenience and simplicity, only the results
of the fixed effect model are shown in Table 1. The benchmark results show that the
coefficients of ER (“ln er”) in different models are significant, and they are 0.4795, 0.516,
and 0.205, respectively, which shows that ER has a significant positive effect on ULCD. In
addition, education level (“ln edu”), economic development level (“ln pdgp”), and economic
openness (“ln eol”) are all statistically significant in the three models, and their coefficients
are all positive. The difference is that the coefficient of OIS (“ln ois”) only passed the test in
the eastern cities, and it is −0.221, but the coefficient of UIS (“ln uis”) only passed the test
in the central-western cities, and the coefficient is −0.541. We can see that the unbalanced
industrial structure limits the ULCD in eastern cities, and the OIS of central or western
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cities suppresses the ULCD during the research period. In addition, the level of scientific
and technological development (“ln tec”) only promotes the ULCD in eastern cities.
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Table 2. Results of the benchmark model.

Variable All Cities (282) Eastern Cities (86) Central-Western Cities (196)

ln er 0.4795 *** (17.260) 0.516 *** (10.790) 0.205 *** (13.483)
ln ois −0.2079 −0.221 ** (−2.120) 0.582
ln uis −0.3068 0.108 −0.541 *** (−3.941)
ln edu 0.2173 *** (6.443) 0.107 *** (3.312) 0.227 *** (7.312)
ln pgdp 0.2683 *** (6.100) 0.921 ** (2.330) 0.518 *** (9.865)
ln tec 0.0659 ** (2.112) 0.114 ** (2.317) 0.156
ln eol 0.5099 *** (8.040) 0.432 *** (0.010) 0.244 *** (6.627)
_cons 0.2044 *** (35.210) 0.236 *** (14.440) 0.1982 *** (34.474)
LM test (p) 4798.27 (0.000) 5038.81 (0.000) 4873.23 (0.000)
Hausman test (p) 188.32 (0.000) 149.37 (0.000) 109.18 (0.000)
Model selection individual-fixed effect individual-fixed effect individual-fixed effect

Note: **, and *** uniformly indicate significant differences at 5%, and 1% levels, respectively.

4.3. Spatial Spillover Effect

In this paper, the global Moran’ I is used to detect the existence of the spatial effects of
the main factors based on the inverse distance weight. The results of global Moran’ I in
typical years are shown in Table 3, where there are significant spatial correlation features of
the level of the main variables.
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Table 3. Global Moran’ I of main variables from 2005 to 2020.

Variable
Global Moran’ I

2005 2008 2011 2014 2017 2020

ulcd 0.3634 ***
(14.77)

0.3752 ***
(15.24)

0.3522 ***
(14.31)

0.3227 ***
(13.13)

0.3125 ***
(12.94)

0.3112 ***
(12.84)

er 0.1221 ***
(5.05)

0.2017 ***
(15.24)

0.1199 ***
(4.98)

0.2124 ***
(8.77)

0.1432 ***
(6.03)

0.1415 ***
(6.04)

ois 0.2892 ***
(11.82)

0.2557 ***
(10.51)

0.2443 ***
(10.11)

0.2385 ***
(9.75)

0.1890 ***
(7.75)

0.2372 ***
(9.69)

uis 0.1075 ***
(5.65)

0.1357 ***
(5.69)

0.3522 ***
(8.59)

0.2535 ***
(10.64)

0.2416 ***
(10.07)

0.2341 ***
(9.70)

Note: *** indicate significant differences at 1% levels.

Furthermore, based on the samples of eastern cities and central-western cities, we
carried out LM-lag, Robust LM-lag, LM-error, and Robust LM-error tests on the model (3),
and all items passed the 5% significance test, indicating that there are lag terms and error
terms in the spatial dependence of ULCD, and SPDM should be selected. Secondly, both
Wald and LR tests pass the significance test of 1%, indicating that they highly reject the
hypothesis that SPDM can be simplified to PSEM or PSLM. Finally, the fixed effect model
is selected by the Hausmann test. Through the SPDM analysis of different fixed effects, it
is found that the values of R2 and logarithmic likelihood functions in the individual fixed
effect model are relatively larger, which shows that the ideal model is the individual fixed
one. The results of the individual fixed model are shown in Table 4.

Table 4. The spillover effects of ER, OIS, and UIS on Urban low-carbon Development.

Variable
Eastern Cities (86) Central-Western Cities (196)

SPDM Direct Indirect Total SPDM Direct Indirect Total

ln er 0.508 *** 0.066 *** 0.038 ** 0.104 *** 0.270 *** 0.087 ** −0.024 ** 0.0634 ***
ln ois −0.306 *** −0.021 ** −0.072 ** −0.093 0.152 0.055 −0.232 −0.177 *
ln uis 0.417 0.056 0.063 ** 0.119 ** −0.629 *** −0.136 *** −0.042 ** −0.178

Control
variables YES YES YES YES YES YES YES YES

W×ln er 0.301 ** 0.191 **
W×ln ois 0.222 *** −0.312
W×ln uis 1.211 ** −0.371 ***

W×Control
variables YES YES YES YES YES YES YES YES

ρ 0.235 *** 0.548 ***
R2 0.337 0.394
log-

likelihood 1272.313 1339.138

Note: *, **, and *** uniformly indicate significant differences at 10%, 5% and 1% levels, respectively. (SPDM:
Spatial panel Durbin model; Direct: Direct effect; Indirect: Indirect effect; Total: Total effect).

According to SPDM results of eastern cities and central-western cities in Table 4, except
for the lag items of OIS (W×n ois) in central-western cities, the lag coefficients of other
variables are significantly not equal to zero, which confirms that ER, OIS, and UIS have
spatial spillover effects on ULCD. The direct, indirect, and total effects are then further
decomposed by the method introduced by Lesage and Pace. The indirect effect corresponds
to the spillover effect, and the results can be seen in the Indirect column in Table 4.

The results of spillover effects show that the spillover effect coefficients of ER in the
eastern and central-western cities are 0.038 and −0.024, respectively, both of which are
significant at a 95% confidence interval. It is shown that the ER has a positive spillover
effect on the ULCD of eastern cities, but has the opposite effect for central-western cities.
The spillover effect of OIS is only significant in the eastern cities, and it hurts the ULCD.
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The spillover effect coefficients of UIS in the eastern and central-western cities are 0.063
and −0.042, respectively, indicating that, in the eastern region, the UIS of the city has a
positive impact on its ULCD and the ULCD of neighboring cities. However, it is harmful to
the ULCD of the surrounding cities in the central-western region.

4.4. Threshold Effect

Taking the ULCD level as the explained variable, we estimate whether there is no
threshold, one threshold, or two thresholds for ER in eastern and central-western cities.
Referring to the bootstrap method, we use State15 statistical software to obtain the cor-
responding p value through repeated sampling 1000 times to judge whether there is a
threshold effect. The results are shown in Table 5.

Table 5. Test of the threshold effect.

Model Number of
Thresholds F Value p Value 10% Threshold

Level
5% Threshold

Level
1% Threshold

Level

Eastern cities
(86)

1 316.29 0.000 87.779 97.015 113.550
2 103.29 0.000 44.302 50.652 88.390
3 19.82 0.960 76.833 88.096 111.203

Central-
Western cities

(196)

1 616.23 0.000 92.965 116.541 135.959
2 114.79 0.000 43.985 53.844 67.958
3 61.34 0.893 136.972 158.408 197.960

As seen from Table 5 above, when ER is a threshold variable, F statistics fail to
assume that there are three thresholds in the two models. Therefore, both models have
two threshold values, and the estimated results of threshold values are given in Table 6.
Furthermore, the authenticity of the threshold can be reflected by likelihood ratio statistics.
Due to the space limitation, the likelihood ratio statistics diagrams are shown in Figure A1.

Table 6. Estimated results of the environmental regulation threshold.

Model Threshold Value 95% Confidence
Interval Model Threshold Value 95% Confidence

Interval

Eastern cities (86)
0.5361 (0.5303, 0.5500) Central-western

cities (196)
0.2200 (0.2107, 0.2252)

0.8110 (0.8090, 0.8120) 0.5834 (0.5802, 0.5876)

After verifying the authenticity of the threshold, we can further analyze the threshold
effect. According to the results of the eastern cities in Table 7, when er ≤ 0.5361, the
coefficient of OIS is −0.3912 and passes the significance test, while the coefficient of UIS
does not pass the significance test. When 0.5361 < er ≤ 0.8110, the coefficient of UIS is
−0.0135, while the coefficient of UIS is 0.1739, and both have passed the significance test.
When 0.8110 < er, the coefficient of OIS is very small and does not pass the significance
test, while the coefficient of UIS passes the significance test and is 0.1938. The above results
show that under an increasing state of ER, the bondage effect of OIS gradually disappears,
but the promotion effect of UIS is gradually enhanced.

From the perspective of central-western cities, when er ≤ 0.2200, the coefficient
of OIS is −0.4309, and that of UIS is −0.1147, both of which are significant. When
0.2200 < er ≤ 0.5834, the coefficient of OIS is −0.0740, while that of UIS is −0.0831, and
both have passed the significance test. When 0.5834 < er, the coefficient of OIS is 0.1362 and
passes the significance test, while the coefficient of UIS is contrary. The results show that
when the intensity of ER in central-western cities is weak, the impact of OIS on ULCD is
negative. However, with the increase of the intensity of ER, the negative impact gradually
weakens. Finally, the negative impact gradually turns into a positive impact. In addition,
similar to the results of OIS, with the improvement of the intensity of ER, the negative
impact of UIS gradually weakens, but it does not reverse to positive in the end.
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Table 7. Estimation results of the panel threshold effect.

Variable Eastern Cities (86) Variable Central-Western Cities (196)

ln ois (er ≤ 0.5361) −0.3912 *** (−5.400) ln ois (er ≤ 0.2200) −0.4309 *** (−8.365)
ln ois (0.5361 < er ≤0.8110) −0.0135 *** (−7.180) ln ois (0.2200 < er ≤0.5834) −0.0740 *** (−6.511)

ln ois (0.8110 < er) −0.0246 ln ois (0.5834 < er) 0.1362 *** (4.967)
ln uis (er ≤ 0.5361) −0.0633 ln uis (er ≤ 0.2200) −0.1147 *** (−8.689)

ln uis (0.5361 < er ≤0.8110) 0.1739 *** (7.770) ln uis (0.2200 < er ≤0.5834) −0.0831 *** (−6.512)
ln uis (0.8110 < er) 0.1938 *** (7.521) ln uis (0.5834 < er) −0.0111

control variables YES control variables YES
_cons 0.2723 *** (35.497) _cons 0.2208 *** (80.273)

individual-fixed effect YES individual-fixed effect YES
F 243.436 (0.000) F test 245.077 (0.000)

Note: *** indicate significant differences at 1% levels.

4.5. Robust Test

Per capita CO2 emissions in urban economic growth are generally regarded as an
important symbol of low-carbon development level. Therefore, we replace the explained
variables with CO2 emissions per unit of GDP (ln pgCO2) into the benchmark model to
further verify the robustness of the results. It should be noted that CO2 emissions are
obtained based on the energy consumption of coal, coke, crude oil, fuel oil, gasoline, diesel,
natural gas, and their respective CO2 emission coefficients. The energy consumption
data come from the 2006–2021 Provincial Statistical Yearbooks and the Urban Statistical
Yearbooks. The CO2 emission coefficients come from the IPCC report [33]. In order to be
consistent with the above model, only the individual fixed effect model is discussed here.
Due to the replacement of the explained variables, we have carried out the necessary tests,
and the process is shown in Tables A1–A3 in Appendix A. The final results of robust test
models are shown in Table 8.

Table 8. Estimation results of the robustness test model.

Explanatory Variable:
ln pgCO2

Eastern Cities (86) Central-Western Cities (196)

BM SPDM PTM BM SPDM PTM

ln er −0.134 *** −0.392 *** −0.223 *** −0.172 **
ln ois 0.219 *** 0.121 ** 0.152 0.138 ***
ln uis 0.037 * 0.176 0.409 *** 0.253 ***
Control variables YES YES YES YES YES YES
W*ln er −0.061 *** 0.085 **
W*ln ois 0.318 ** 0.025 *
W*ln uis −0.115 ** −0.191 ***
W*Control variables YES YES
ln ois (er ≤ 0.4086)
ln ois (0.4086 < er ≤0.7335)
ln ois (0.7335 < er)

0.2558 ***
0.1152 ***
0.0076 **

ln uis (er ≤ 0.4086)
ln uis (0.4086 < er ≤0.7335)
ln uis (0.7335 < er)

0.1745 *
−0.2208 ***

0.0994
ln ois (er ≤ 0.3427)
ln ois (0.3427 < er ≤0.8834)
ln ois (0.8834 < er)

0.3933 ***
0.2702 ***

0.0820
ln uis (er ≤ 0.3427)
ln uis (0.3427 < er ≤0.8834)
ln uis (0.8834 < er)

0.4005 ***
0.1118 ***
−0.2322 **

F 203.343 348.118 289.528 356.718 449.103 395.276
p 0.000 0.000 0.000 0.000 0.000 0.000

Note: *, **, and *** uniformly indicate significant differences at 10%, 5%, and 1% levels, respectively.



Int. J. Environ. Res. Public Health 2022, 19, 12837 11 of 15

According to the benchmark model (BM) results in Table 8, the coefficients of ER in
eastern cities or central-western cities are negative. That is, with the increase in ER intensity,
CO2 emissions per unit of GDP show a downward trend, reflecting the improvement of
ULCD. The impact of OIS and UIS on CO2 emissions per unit of GDP of eastern or central-
western cities are similar to the initial results. That is, OIS increases the CO2 emissions of
eastern cities, which is not conducive to the ULCD. The impact of UIS on CO2 emissions per
unit of GDP in central-western cities is also similar to the initial result. From the perspective
of spillover effects, due to the space limitation, the robustness analysis only discusses the
existence of spillover effects. According to the SPDM results of eastern and central-western
cities, the spatial lag coefficients of the variables in the two models are significantly not
equal to zero, which proves that the spillover effect does exist.

As regards the threshold effect (PTM), the two threshold values of eastern cities in
Table 8 are smaller than those of the original model. In comparison, the two threshold
values of central-western cities are larger than those of the original model. With the increase
in the intensity of ER, the impact of OIS on CO2 emissions per unit of GDP in eastern and
central-western cities is positive but gradually decreases. When the level of ER changes
from low to medium, the impact of UIS on CO2 emissions per unit of GDP in eastern cities
changes from positive to negative, but when the ER level is high, the impact is insignificant.
When the ER level is medium or below, the impact of UIS on CO2 emissions per unit of GDP
in central-western cities has always been positive, but when at the high ER level, the UIS in
central-western cities will significantly reduce CO2 emissions per unit of GDP. Generally
speaking, the results of the threshold effect in Table 8 are consistent with those of the
original model. Part of the difference lies in the size of the threshold and the significance of
the impact of OIS and UIS under high-intensity ER. The reason for this may be the research
errors caused by the acquisition of the two explained variables and the differences in data
sources, but the robustness of the research results and conclusions cannot be denied.

5. Discussion

This paper mainly focuses on the impact of ER, OIS, and UIS on ULCD in different
cities in China. Although the ULCD level of Chinese cities is increasing, the overall level
is still in the middle state, and there are obvious spatially unbalanced characteristics. It is
consistent with the conclusion of Wang et al. that the quality of low-carbon development in
the eastern region is better than that in the central and western regions [4]. However, the
difference is that we found the level of urban low-carbon development has a significant
spatial correlation, and Beijing, Shanghai, and Chongqing have become the leaders of the
surrounding cities. In addition, Wang et al. believe that the transformation and upgrading
of industries can improve the level of ULCD, but we found in this study that OIS or
UIS shows a significant negative impact on ULCD during the period. Therefore, the
heterogeneous impacts of ER, OIS, and UIS are worthy of in-depth analysis.

Further research found that no matter which explanatory variable is used, all the
evidence supports that ER is conducive to ULCD, which is close to the conclusions of
Pei et al. [34]. The reason is that increasing environmental regulation intensity can eliminate
backward industries, improve technical efficiency, and reduce CO2 emissions. However,
from the perspective of the spillover effect, we find that the impact of ER in eastern cities
is positive, while that in central-western cities is negative. The explanation may be found
from the study of Zhao et al., that is, the comprehensive level of development and the
intensity of ER in the eastern region are higher than those in the central and western regions,
resulting in greater restrictions on carbon-intensive industries in the eastern region, while
the opposite is true in the central and western region [35]. This study also provides some
support for such an explanation; that is, the UIS has a positive spillover effect on the ULCD
of eastern cities, while it has a negative spillover effect on the ULCD of central or western
cities. The difference is that we find the OIS’s spillover effect negatively impacts the ULCD
of eastern cities.
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The threshold results show that with the continuous improvement of the ER level,
the inhibitory effect of OIS on urban low-carbon development in eastern cities gradually
disappears, but the UIS promotes the ULCD level gradually. However, the impacts of
OIS and UIS on the ULCD in central-western cities are always negative, but the negative
influences become weaker and weaker. The reason for this may be that the government
tended to give priority to economic development rather than ecological environment
protection in the early stage, which led to the non-exclusion of carbon-intensive industries
in the process of OIS. Due to the location advantage, the secondary and tertiary industries in
the eastern cities developed rapidly. With the steady growth of the economy, the problem of
the urban ecological environment in the eastern region has become increasingly prominent.
The eastern region forces the transformation of industrial structure and the transfer of
carbon-intensive industries through more stringent environmental regulations, which
comprehensively leads to the impact of OIS and UIS on ULCD. Because the development
of the central and western regions lags behind that of the eastern regions, the central and
western regions are forced to undertake the industrial transfer of the cities in the eastern
region, which comprehensively leads to the change of industrial structure, but increases
the social and economic carbon dioxide emissions of the central or western cities.

Finally, there are some shortcomings in this paper. First of all, although this paper’s
relevant results and conclusions have been tested for robustness, there are some missing
samples in the central-western cities due to the difficulties in obtaining data. As a result,
the results and conclusions about the central-western cities can only partially reflect their
regular characteristics. Secondly, some studies believe there may be a time lag in the impact
of ER, OIS, and UIS on the social economy. Therefore, in further research, we should
strengthen the ability to obtain data and consider improving the model to analyze the time
lag of the impact of the main variables.

6. Conclusions

This study comprehensively evaluates the low-carbon development level of 282 cities
in China by using economic, social, resource, planning, and ecological indicators. Econo-
metric panel models are then used to analyze the linear, non-linear, and spatial spillover
effects of ER, OIS, and UIS on ULCD. The conclusions are as follows.

From 2005 to 2020, most Chinese cities have been committed to improving the level
of ULCD and achieved remarkable results, but the overall level of ULCD is still not high
and is characterized by spatial imbalance. The linear effect concludes that ER shows
a significant positive impact on ULCD. At the same time, government-led industrial
structure optimization and upgrading have little influence on the improvement of ULCD
during the period. Thus, the eastern and central-western cities should adopt diversified
policies and measures to improve the overall level of ER. Furthermore, when promoting the
transformation of industrial structure, the government should strengthen the identification
and selection of industries, raise the entry threshold for carbon-intensive industries, and
prioritize introducing high-tech industries.

The result of the spatial spillover effect reveals that strengthening the ER and UIS
of cities in the eastern region can improve the ULCD levels of other neighboring cities,
while the central-western cities are the contrary. The OIS of a city in the eastern region may
limit the ULCD of surrounding cities, but it is not significant in the central and western
regions. The results of the threshold effect show that with the intensity of ER from small
to large, the negative impact of OIS on the ULCD of eastern and central-western cities
gradually weakens and even changes to positive. However, the UIS of eastern cities plays a
more and more important role in promoting the ULCD, and the negative impact of UIS
on the ULCD of central-western cities gradually weakens. From a comprehensive point
of view, the influence of ER on ULCD must be a long-term and non-linear process. The
municipal governments of the eastern and central-western cities should issue long-term
effective environmental policies and measures and carry out a periodic evaluation of the
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performance of these regulation instruments to adjust the intensity of ER in time, which
ensures that environmental policies can always have a positive impact on ULCD.
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Appendix A

Formula (A1)–(A7): Steps of the Entropy weight method;
Assuming that there are n regions and k indicators, then the evaluation index matrix

X can be shown in Formula (1).

X =

x11 . . . x1k
...

. . .
...

xn1 · · · xnk

, i = (1, 2, . . . , n), j = (1, 2, . . . , k) (A1)

In order to eliminate the influence of dimensions and units, range standardization
can be used to deal with each index, in which the treatment of positive index and negative
index is shown in Formula (2) and (3) respectively. Finally, the standardized evaluation
index matrix X’ is obtained.

x′
ij
= (x′

ij
− xmin)/(xmax − xmin) (A2)

x′
ij
= (xmax − x′

ij
)/(xmax − xmin) (A3)

The entropy of jth variable is calculated in (4) and (5).

pij = x′ij/∑ n
i=1 x′ij (A4)

ej = − ln (n)−1∑ n
i=1 pij ln pij (A5)

In Formula (5), when pij = 0, lim
pi j→0

ln pij = 0, the information utility value of the index

jth is gj = 1 − ej. On this basis, the weight wj of each index is calculated according to
Formula (6), and the results are shown in Table 1.

wj = gj/∑
j

gj (A6)

Finally, the comprehensive level of low-carbon development (lcdi) of each city can be
calculated according to Formula (7).

lcdi = ∑
j

wjx′ij (A7)
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Table A1. The Global Moran’ I of per capita GDP carbon dioxide emissions.

Global
Moran’ I 2005 2008 2011 2014 2017 2020

pgco2 0.2116 ***
(8.97)

0.2559 ***
(11.33)

0.2742 ***
(12.13)

0.2954 ***
(12.51)

0.2978 ***
(13.15)

0.3309 ***
(11.48)

Note: *** uniformly indicate significant differences at 1% levels.

Table A2. The results of panel threshold effect of robust test model.

Model Number of
Threshold F Value p Value 10% Threshold

Level
5% Threshold

Level
1% Threshold

Level

Eastern
cities (86)

1 151.27 0.000 90.986 100.138 122.158
2 134.02 0.000 56.651 62.730 79.060
3 51.27 0.153 51.744 59.597 80.229

Central-
Western

cities (196)

1 194.52 0.000 86.141 99.181 122.472
2 147.39 0.000 52.211 59.563 72.983
3 37.11 0.253 48.187 55.211 68.132

Table A3. The results of threshold effect of ER based on robust test model.

Model Threshold
Value

95% Confidence
Interval Model Threshold

Value
95% Confidence

Interval

Eastern
cities (86)

0.4086 (0.3512, 0.4543) Central-Western
cities (196)

0.3427 (0.2907, 0.3711)
0.7335 (0.7078, 0.8139) 0.8834 (0.8002, 0.9276)
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