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Abstract: The vertical distribution of the tropospheric ozone column concentration (OCC) in China
from 2005 to 2020 was analysed based on the ozone profile product of the ozone monitoring in-
strument (OMI). The annual average OCC in the lower troposphere (OCCLT) showed an increasing
trend, with an average annual increase of 0.143 DU. The OCC in the middle troposphere showed
a downward trend, with an average annual decrease of 0.091 DU. There was a significant negative
correlation between the ozone changes in the two layers. The monthly average results show that the
peak values of OCCLT occur in May or June, the middle troposphere is significantly influenced by
topographic conditions, and the upper troposphere is mainly affected by latitude. Analysis based
on multi-source data shows that the reduction in nitrogen oxides (NOx) and the increase in volatile
organic compounds (VOCs) weakened the titration of ozone generation, resulting in the increase
in OCCLT. The increase in vegetation is closely related to the increase in OCCLT, with a correlation
coefficient of up to 0.875. The near-surface temperature increased significantly, which strengthened
the photochemical reaction of ozone. In addition, the increase in boundary layer height also plays a
positive role in the increase in OCCLT.

Keywords: tropospheric ozone; OMI; remote sensing vertical monitoring; spatiotemporal change;
cause analysis

1. Introduction

Ozone is a trace gas in the Earth’s atmosphere, accounting for only 0.0012% of the
atmospheric composition [1]. Ozone is a strong absorber of ultraviolet solar radiation and
most of the ozone concentrated in the stratosphere protects the Earth’s flora and fauna
from UV damage [2,3]. However, if the concentration of ozone in the lower troposphere is
too high, it can have serious effects on plants and animals. For example, high ozone con-
centrations can also inhibit chlorophyll synthesis, reducing the intensity of photosynthesis
and reducing crop yields, among other effects [4,5]. Prolonged human exposure to ozone
exceedances can also cause damage to the heart and other organs, cause acute respiratory
infections, or lead to a reduction in human life expectancy and increased mortality [6].
Some projections suggest that if convective ozone pollution continues to increase, global
ozone pollution could cause a total loss of USD 12–21 billion per year in cash crop yields
and pose an increasing threat to global food security [7]. Consequently, tropospheric ozone
has become a hot topic of research in various fields.

Photochemical smog was first discovered in the late 1970s in the Xigu petrochemical
area of Lanzhou [8], Photochemical smog was also detected in Beijing in 1986, so in the
1980s, the China Meteorological Administration (CMA) established atmospheric back-
ground benchmark monitoring stations in the areas of Beijing-Tianjin-Hebei (BTH), Yangtze
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River Delta (YRD), and the Northeast Plain to continuously monitor atmospheric ozone
concentrations over a long period of time. Since then, scholars have carried out integrated
studies on atmospheric physics and chemistry using stations to monitor ozone pollution
in cities such as Beijing, Guangzhou, Hong Kong, and Lin’an [9,10]. Xu et al. found that
the maximum monthly average ozone concentration at background sites increased at a
rate of 1.8 ppbv per year from 1991 to 2006 in Eastern China, and the increase in nitrogen
oxides (NOx) led to an increase in ozone concentration [11]. Tang et al. found that the
maximum 1 h daily concentration of ozone in urban areas increased by 1.3% per year
from 2001 to 2006 in Beijing, while the maximum 8 h daily concentration of ozone in
suburban areas increased by 1.1 ppbv per year from 2003 to 2015, and it was also found
that reductions in NOx emissions and increases in non-methane hydrocarbons emissions
lead to increased ozone concentrations [12]. Chao He et al. investigated the meteorological
causes of ozone pollution in China using data from environmental monitoring sites, and
showed that near-ground ozone concentrations in China increased year-by-year and that
temperature was the main meteorological driver of warm season changes in China, with
its influence on concentrations in northern, north-western, and north-eastern China being
significantly higher than in other regions [13]. NOx has a significant titration effect on
ozone, and ozone concentration decreases exponentially with increasing NOx concentra-
tion. High temperature and low humidity favour the formation of ozone. Similar to NOx,
ozone concentration increases and decreases exponentially with increasing temperature
and relative humidity [14].

With the development of satellite technology, the technique of monitoring the spatial
and temporal distribution of ozone in the atmosphere by satellite remote sensing has
gradually matured, and the characteristics of remote sensing technology, such as high
efficiency, long duration, and holistic surface monitoring, have well compensated for the
lack of spatial and temporal range of station monitoring, allowing it to be widely used in
atmospheric environmental monitoring. Noreen et al. used ozone monitoring instrument
(OMI) and microwave limb sounder (MLS) data to study the spatial distribution and
temporal evolution of the total organic carbon (TOC) over Pakistan from 2004 to 2014;
the results show that TOC increased by 3.2 ± 1.1 DU over Pakistan. Ozone concentration
exhibits a significant positive correlation with the seasonality of UV-B flux, NOx, and
volatile organic compounds (VOCs), and VOCs emitted by organisms with temperature
dependence [15]. The analysis of Chen et al. using tropospheric ozone from the OMI/MLS
shows a consistent increase in tropospheric ozone from 2005 to 2017, strongly related to
meteorological factors such as precipitation, surface temperature, planetary boundary layer
height (PBLH), and horizontal winds [16]. Li et al. used OMI to analyse the ozone change
in BTH and its surrounding areas during 2005–2018, and found that the surface ozone
concentration showed an increasing trend, with an average growth rate of 3.4 µg m−3y−1,
and with a greater increase in the second half of each year than the first. This is mainly due
to the stronger photochemical reactions caused by a sustained increase in HCHO and a
rapid decrease in NO, resulting in a weakening of the titration effect [17]. Hung et al. used
Nimbus-4 data in combination with sounding data to analyse the relationship between the
spatial distribution of ozone and PBLH in the Canadian region, and showed that PBLH
affects tropospheric ozone distribution [18]. Zhao et al. studied ozone pollution events in
industrial cities in Xuzhou, Nanjing, Shanghai, and Hangzhou, where increases in ozone
concentrations were often accompanied by higher temperatures, while the response to
humidity was not significant [19]. Du et al. used OMI to analyse the characteristics of
total ozone column concentration (OCC) in China, and found that the spatial distribution
characteristics of total ozone in China are high in the north and low in the south, high in the
east and low in the west, and low in summer and autumn and high in winter and spring.
In the Qinghai-Tibet Plateau (QTP), there is a trough of ozone in summer and autumn [20].
Zhu et al. used OMI data to extract and analyse the tropospheric OCC in China from
2005 to 2019, and the results show that the ozone concentration in China decreased from
the northeast to the southeast, and decreased sequentially in spring, winter, summer,
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and autumn. The tropospheric OCC in southwest China was significantly positively
correlated with temperature, wind field, and vegetation coverage; NOx and VOCs were
significantly positively correlated; and precipitation was significantly negatively correlated.
Temperature, wind field, NOx, and VOCs emissions are key factors [21].

As shown above, more studies on tropospheric ozone in China have been conducted
based on ground-based monitoring stations and satellite remote sensing, and some scholars
have also analysed the relationship between changes in tropospheric ozone content and
meteorological elements and ozone precursors, gaining a preliminary understanding of
the current status of tropospheric ozone pollution in China. However, ground-based
monitoring stations are limited by their spatial coverage, making it difficult to monitor
ozone with continuous spatial coverage, which poses certain limitations to the in-depth
understanding of the spatial and temporal distribution of regional ozone. The vertical
variation of ozone in the troposphere is not known, and there is no way to know whether
the upper troposphere affects the ozone concentration in the near-Earth layer. Most of the
existing remote-sensing-based studies of tropospheric ozone investigated the spatial and
temporal variability of ozone in the troposphere as a whole, but no studies of the vertical
stratification of tropospheric ozone have been carried out. There is no way of knowing the
vertical variation in ozone within the troposphere, let alone whether the upper troposphere
affects ozone concentrations in the near-Earth layer. To fill the gaps in the existing literature,
this study used OMI ozone profile products to analyse the spatiotemporal variation of the
tropospheric OCC in China, and multi-source data were used to analyse the causes of the
OCC changes. We hope that this study will deepen the current understanding of ozone
problems in China.

2. Data and Methods
2.1. Overview of the Study Area

In this paper, eight major urban agglomerations in China were selected as the study
area, including BTH, YRD, QTP, Urumqi-Changji-Shihezi (UCS), Pearl River Delta (PRD),
Sichuan Basin (SCB), Centre of China (COC), and Mid-Southern Liaoning (MSL). The
specific division and the corresponding spatial ranges of these regions are shown in Table 1
and Figure 1. For ease of presentation, the abbreviations are used to indicate each region in
the following text.

Table 1. Spatial ranges of the study area.

Urban Agglomerations Spatial Range

Beijing-Tianjin-Hebei 114–119.5◦ E, 37–42◦ N
Yangtze River Delta 116.5–122◦ E, 27.5–34◦ N

Urumqi-Changji-Shihezi 86.5–89◦ E, 42.5–45◦ N
Qinghai-Tibet Plateau 73–105◦ E, 36–40◦ N

Pearl River Delta 111–115◦ E, 22–25◦ N
Sichuan Basin 103.5–109◦ E, 28.5–32◦ N

Centre of China 111–116◦ E, 32–37◦ N
Mid-Southern Liaoning 121–125◦ E, 38.5–42.5◦ N
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Figure 1. Elevation map of the study area.

2.2. Data Introduction

The ozone profile data come from OMI and can be obtained from the Earthdata website
(https://search.earthdata.nasa.gov/, accessed on 2 October 2022). The sensor is mounted
on Arua, NASA’s third new-generation Earth observation system satellite. It is mainly used
to observe the global atmospheric composition and belongs to a Hyperspectral meter. The
OMI ozone profile data (OMO3PR) used in this study, which divide the atmosphere into
18 layers according to atmospheric pressure, represent the observations of OCC from
the near-surface to 0.3 hPa at different altitudes, given in Dobson units (DU) [22]. A
10-micron-thick ozone layer in standard atmospheric conditions is represented by 1 DU.
Research shows that OMI’s measurement error in the global troposphere is between
2.4 and 3.1 DU [23]. Ozone retrieval accuracy ranges from 1% in the middle stratosphere to
10% in the lower stratosphere and lower troposphere. The error is between 1 and 6% in the
middle of the stratosphere and is 6–35% in the troposphere, mainly due to smoothing errors.
In China, the results regarding OMI tropospheric ozone have strong consistency with
the results in the north and south regions of the near-surface and surface stations, which
indicates that the use of OMI data can well represent the characteristics of tropospheric
OCC [24]. This paper mainly uses the tropospheric data of the 15th to 18th layers from 2005
to 2020. The corresponding height information of each layer is shown in Table 2, which,
respectively, represents the OCC of the four altitude layers from the near-surface (0 km) to
12.4 km.

Table 2. Altitude layer of OMI ozone profile and the corresponding atmospheric pressure.

High Level Altitude (km) Atmospheric Pressure (hPa)

Layer-15 9.6–12.8 300
Layer-16 5.8–9.6 500
Layer-17 3–5.8 700
Layer-18 0–3 1000

In this study, multi-source data such as ozone precursor satellite remote sensing
products, vegetation cover satellite remote sensing products, and meteorological reanalysis
data were used to analyse the causes of changes in tropospheric ozone. The time period of
the multi-source data is from 2005 to 2020, which is consistent with the time of the OMI
ozone profile product. The remote sensing product data of ozone precursors are NO2
and HCHO. The tropospheric NO2 data are the OMI tropospheric column concentration

https://search.earthdata.nasa.gov/
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product data provided by Goddard Earth Sciences Data and Information Services Center
(GES DISC) with a resolution of 0.25◦ × 0.25◦. The tropospheric HCHO data with a
resolution of 0.1◦ × 0.1◦ are the data released by ESA’s TEMIS project. It adopts DOAS
technology combined with radiation transfer for calculation, and uses the results of the
IMAGES chemical transfer model as prior information. Its data quality is significantly
improved compared with the accuracy of OMI’s HCHO products, between 2010 and 2016.
The meteorological reanalysis data comes from the ERA-5 global reanalysis data provided
by the European Centre for Medium-Range Weather Forecasts. This paper uses the air
temperature and PBLH data set at the heights of 1000, 950, 900, 850, 800, and 750 hPa.
In order to ensure the scientific nature of the analysis results, the ERA-5 data at a time
similar to the OMO3PR data set was used, that is, the data at 6:00 UTC time, with a spatial
resolution of 0.25◦ × 0.25◦. This study shows that, compared with the ground observation
data, the ERA-5 results are more consistent in mainland China [25]. In addition, this paper
uses the MYD13Q1 vegetation index product of MODIS to explore the effect of vegetation
growth on ozone generation. The data are derived from GES DISC with a spatial resolution
of 1 km × 1 km.

2.3. Research Methodology
2.3.1. Data Pre-Processing

For the ozone profile data set, the daily results of OCC in different height layers
were reprojected to the latitude–longitude grids with a spatial resolution of 0.3◦ × 0.3◦.
After that, the daily data were averaged to form monthly, quarterly, and annual data sets
for statistical analysis, and the 0 values and invalid values were not included during the
calculation of the average values (same below). Because the NO2, HCHO, and ERA-5
data are results in the form of latitude–longitude grids, the mean value statistics can be
performed directly. For the MODIS vegetation index product, the “VI Quality” data set in
the product is mainly used to remove the outliers due to the influence of snow and clouds,
and the results after removing the outliers are converted from sinusoidal projection to the
form of latitude–longitude grids for mean statistics. To ensure a consistent data range, the
above multi-source data were clipped using the China administrative region vector, and
the results over mainland China were retained. All the above processes were implemented
through Interactive Data Language (IDL).

2.3.2. Statistical Analysis

In this study, the mean year-on-year change (MYC) was used to characterise the
changes in OCC in different height layers of eight major urban groups to clarify the
absolute changes in their OCCs over a 16-year period. It is calculated as follows:

MYC =
∑n

i=2(Si − Si−1)

n
(1)

where Si denotes the data in year i and n denotes the duration of the data.
This study mainly uses the slope trend analysis to characterise the spatial and temporal

trends of various types of data. It is calculated as follows:

Slope =
n ∑n

i=1(i × Si)− ∑n
i=1 i × ∑n

i=1 Si

n ∑n
i=1 i2 − (∑n

i=1 i)2 (2)

where Slope represents the slope of the pixel-by-pixel regression equation, Si denotes the
i-th year data, and n denotes the duration of the data. When Slope > 0, it means that the
data Si has an increasing trend; when Slope < 0, it means that the data Si has a decreasing
trend; and when Slope = 0, it means that the data Si has no significant change.
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In this study, Pearson’s correlation coefficient was used to characterise the correlation
between the OCC and the other environmental factors, which was calculated as follows:

Ri,j =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)
√

∑n
i=1(yi − y)

(3)

where n is the total number of samples, xi and yi denote the ith element and OOC samples,
respectively, and Ri,j characterises the Pearson correlation coefficient between the x and
y factors.

3. Results and Analysis
3.1. Characteristics of the Vertical Spatial Distribution of Tropospheric Ozone

The vertical tropospheric ozone profiles of the eight urban groups are shown in
Figure 2, where the red line represents the mean value for the whole region of China.
From an overall perspective, the variation pattern of tropospheric OCC in the vertical
stratification column is rising first and then decreasing, with the OCC at 0–3 km height
being 7.6 ± 0.86 DU; up to 3–5.8 km, the OCC increases slightly and the concentration is
9.5 ± 1.10 DU; at 5.8–9.6 km height, the OCC is 10.8 ± 0.49 DU; and at 9.6–12.4 km, the
concentration decreases slightly by 8.7 ± 1.02 DU.
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Figure 2. The average tropospheric ozone profile over the study area.

With the exception of QTP, the profile trends of the other seven study areas are more
consistent with the national ozone profile changes, showing an overall trend of being
higher in the east and lower in the west, with the lowest overall OCC in QTP and the fastest
increase in concentration at 5.8–9.6 km; in the remaining seven study areas, the overall OCCs
of BTH and MLS were the highest and increased rapidly from 3 to 5.8 km, while those of
COC, YRD, and PRD changed less, increasing only slightly from 3 to 5.8 km and decreasing
slightly from 5.8 to 9.6 km; SCB changed less from 0 to 5.8 km and increased slightly from
5.8 to 12.4 km with altitude, and UCS increased from 0 to 9.6 km and decreased slightly
from 9.6 to 12.4 km. The concentration of UCS at 0.6–9.6 km increased with increasing
altitude and decreased slightly at 9.6–12.4 km.

3.1.1. Characteristics of the Horizontal Distribution of Tropospheric Ozone at
Different Heights

Figure 3a shows the distribution of OCC levels in mainland China from 0 to 3 km,
and clearly shows that the distribution of ozone in this layer in China is more obviously
distributed according to the topographic trend, and the national average OCC is 7.6 DU.
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The high value ozone zone is distributed in BTH, YRD, COC, and SCB, with an OCC
around 12.5 DU; the second high-value zone is distributed in PRD, MLS, and UCS, with
an OCC around 5–7 DU; and the low-value zone is mainly in QTP, with a relatively small
OCC, being only around 0–1 DU. It is noted that the average elevation in the QTP region
is above 4 km, making the 0–3 km OCC results lower in this region. As can be seen from
Figure 3b, the trend in the topographic distribution of ozone remains more pronounced at
altitudes of 3–5.8 km, with national OCC at this layer increasing by approximately 3 DU
compared with 0–3 km, with an average concentration of 10.3 DU. The high-value area
also shows a clear clustering distribution, with the relative range of the high value area
decreasing, mainly concentrated in BTH, MLS, UCS, and the northern part of YRD, where
the concentration is around 13 DU; the secondary high-value area is mainly located in
SCB, PRD, eastern COC, and the southern part of YRD, with an OCC around 11 DU; and
QTP remains the lowest value area, with an OCC of only 2–3 DU. As shown in Figure 3c,
although the OCC at 5.8–9.6 km is still influenced by topography (e.g., the QTP region),
it also shows a latitude effect, with the OCC at higher latitudes being significantly higher
than at lower latitudes. For example, the OCC in the MSL area can exceed 12 DU, while
that in the PRD area is only around 9 DU. The OCC in the QTP region remains the lowest,
but has grown to the range of 8–9 DU. Finally, the results of Figure 3d show that the spatial
distribution of OCC at 9.6–12.4 km is hardly affected by topography, and latitude is the
main factor affecting the OCC at this layer. The high values are found between 45◦ N and
54◦ N, with concentrations around 12–15 DU; while the overall OCC in southern China is
less than 7 DU, the largest difference between the north and south can reach 10 DU.
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3.1.2. Seasonal Distribution Characteristics of Tropospheric Ozone at Different Heights 

Figure 3. Distribution characteristics of tropospheric ozone at different heights: (a) characteristics of
ozone distribution at 0–3 km in mainland China; (b) characteristics of ozone distribution at 3–5.8 km
in mainland China; (c) characteristics of ozone distribution at 5.8–9.6 km in mainland China; and
(d) characteristics of ozone distribution at 9.6–12.8 km in mainland China.
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3.1.2. Seasonal Distribution Characteristics of Tropospheric Ozone at Different Heights

The seasonal distribution of tropospheric ozone profiles in mainland China from 2005
to 2020 is shown in Figure 4. The seasons are defined as spring from March to May, summer
from June to August, autumn from September to November, and winter from December
to February. From the figure, it can be seen that there are large seasonal differences in
the OCC. In spring, the OCC increases with altitude, from 8.22 ± 1.05 DU at 0–3 km to
11.84 ± 1.30 DU at 9.6–12.4 km. In summer, the OCC shows a trend of increasing first and
then decreasing with height, with the maximum OCC value of 11.25 ± 0.95 DU appearing
at the height of 5.8–9.6 km. The OCC in autumn shows a similar trend to summer, but
the maximum value of OCC occurs at 3–5.8 km, with a value of 9.25 ± 1.19 DU. In winter,
the maximum value of OCC also occurs at 3–5.8 km, with a value of 10.50 ± 0.45 DU, and
there was no significant difference in OCC between 5.8–9.6 km and 9.6–12.4 km. At 0–3 km,
the value of OCC falls in descending order as summer > spring > winter > autumn, with
a maximum value of 8.80 ± 1.29 DU in summer. For the remaining altitudes, the highest
OCC always occurs in spring. However, it should be noted that the OCC only has a small
standard deviation range in winter and, in other seasons, the OCC at different altitudes
may change significantly.
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Figure 4. Seasonal distribution characteristics of tropospheric ozone profiles in mainland China
(shaded areas indicate the standard deviation ranges; spring is March to May, summer is June to
August, autumn is September to November, and winter is December to February).

3.2. Time-Varying Characteristics of the Vertical Profile of Tropospheric Ozone
3.2.1. Characteristics of Interannual Variability

As can be seen from Figure 5, the tropospheric OCC in mainland China has generally
shown a continuous increase over the past 15 years, from 32.0 DU in 2005 to 34.52 DU
in 2020, with a growth rate of 7.9%. The segmental trends of tropospheric OCC can be
summarised as follows: the period 2005–2008 showed little change; the period 2009–2018
showed a continuous increase, with tropospheric ozone OCC rising from 32.26 to 35.62 DU,
an increase of 3.36 DU or 10.4%; and the period 2019–2020 showed a decreasing trend,
with a decrease of 1.1 DU or 3%. The two years with the largest increases in tropospheric
OCC were 2009 and 2018, with increases of 2.88 and 2.47%, respectively, compared with
the previous year.
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Figure 5. Interannual variation in tropospheric OCC in mainland China.

Figure 6 shows the annual mean changes in OCCs at different altitudes for the eight
major urban agglomerations from 2005 to 2020, and Table 3 shows the corresponding mean
year-on-year changes (MYC) in OCCs. At the 0–3 km altitude level, the OCC in the eight
major urban agglomerations show an increasing trend, with a regional MYC of 0.143 DU,
among which BTH, MSL, COC, and YRD show larger increases, with MYCs greater than
0.15 DU. In contrast to the 0–3 km layer, the OCCs in the eight major urban clusters at
3–5.8 km all showed a decreasing trend, with a regional MYC of −0.09, the decrease being
smaller than the increase at 0–3 km, and the decrease being proportional to the increase at
0–3 km. Here, it is hypothesised that 3–5.8 km is one of the sources of the increase in 0–3 km
OCCs, a conjecture that will be tested later. For the 5.8–9.6 km altitude layer, there is no
clear pattern of variation in OCCs relating to geography, and the overall variation is small,
lying mainly in the range of −0.05 to +0.03 DU. For the 9.6–12.4 km altitude layer, the OCCs,
except for SCB, show a decreasing trend, and the variation is still small. It is assumed
that the variation in OCCs in the 5.8–9.6 km and 9.6–12.4 km altitude layers is mainly due
to cyclical fluctuations caused by climatic factors. For example, changes in atmospheric
circulation can cause material exchange between the bottom of the stratosphere and the top
of the troposphere, resulting in small disturbances in the OCC [26].
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Figure 6. Interannual variation characteristics of OCC at different altitudes in each study area:
(a) interannual variation characteristics of OCC at 0–3 km; (b) interannual variation characteristics
of OCC at 3–5.8 km; (c) interannual variation characteristics of OCC at 5.8–9.6 km; (d) interannual
variation characteristics of OCC at 9.6–12.8 km.

Table 3. MYC of OCCs at different tropospheric altitudes (DU).

Area 0–3 km 3–5.8 km 5.8–9.6 km 9.6–12.4 km

BTH 0.239 −0.200 −0.014 −0.034
SCB 0.074 −0.011 0.032 0.009
UCS 0.132 −0.063 −0.012 −0.022
YRD 0.155 −0.091 0.001 −0.008
COC 0.166 −0.113 −0.015 −0.013
PRD 0.105 −0.061 0.005 −0.002
MSL 0.205 −0.163 −0.007 −0.035
QTP 0.064 −0.019 0.053 −0.007

Mean 0.143 −0.091 0.005 −0.014

3.2.2. Characteristics of Monthly Variation

Figure 7 shows the monthly average trend of OCCs in different altitudes of the tropo-
sphere in different regions of China from 2005 to 2020. From this, it can be seen that the
trend of 0–3 km OCCs in the seven regions, except QTP, is relatively consistent, showing a
single-peak distribution in general, i.e., OCCs increase month-by-month in the first half of
the year, reaching a yearly peak in May or June (SCB and PRD reach their peak in May, the
rest of the regions in June), and then begin to gradually decline, reaching a yearly minimum
in December. For QTP, the overall monthly trend in OCC has a continuous “M” pattern, but
with small month-on-month changes. As can be seen in Figure 7b, the monthly variation
in OCCs at 3–5.8 km varies greatly among regions: PRD and YRD have similar trends,
both of which are in river delta topography; BTH, MSL, and COC have similar trends,
all of which are in plain topography; and the remaining three regions have no similar
characteristics, with SCB in hilly basin topography, QTP in highland topography, and UCS
in desert basin topography. Therefore, the monthly variation in OCC at 3–5.8 km height
is mainly dominated by the topographic conditions of the subsurface. As can be seen in
Figure 7c, the OCCs at 5.8–9.6 km show an overall single-peaked distribution, with a grad-
ual increase from January to April, with the peak in each region occurring between April
and June, followed by an overall decreasing trend. As shown in Figure 7d, the trend of
OCCs between 9.6 and 12.8 km is consistent, showing a sinusoidal distribution with a grad-
ual increase from January to March, with peaks in each region occurring between March
and May, decreasing from May to September and increasing from October to December.
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Figure 7. The monthly variation trend of OCC at different troposphere levels in China: (a) the
monthly average variation trend of OCC at 0–3 km; (b) the monthly average variation trend of OCC
at 3–5.8 km; (c) the monthly average variation trend of OCC at 5.8–9.6 km; and (d) the monthly
average variation trend of OCC at 9.6–12.4 km.

4. Discussion

In Section 3.2.1, it is shown that the OCC in the lower troposphere (OCCLT) in the
eight major urban agglomerations shows an increasing trend year-by-year. Figure 8 further
shows the trend of the annual average OCCLT for the whole land area of China from 2005 to
2020, which shows that the overall OCCLT for the whole region of China is still exhibiting
an increasing trend, with an overall concentration increase of 2%, and an average annual
increase of 0.13 DU. The lower tropospheric ozone has a significant impact on human
production and life, and the growth of plants and animals, so it is important to investigate
the causes of the increase in order to combat ozone pollution. Studies have shown that
ozone formation in the atmosphere is closely related to the ratio of VOCs to NOx. While
VOCs have an obvious linear relationship with HCHO, hydrocarbons (RH) are oxidised
by organic peroxyl radicals (RO2) and OH generated in the first stage of oxidation, which
react with NOx to produce HCHO or higher carbonyl groups. The subsequent reaction
eventually produces HCHO [27,28], which can indirectly reflect the accumulation of VOCs
through the properties of HCHO [29]. At the same time, due to China’s rapid development
resulting in consistently high NOx concentrations in China, the increase in VOCs has been
the main driver of soaring ozone pollution across China due to the positive impact of rising
HCHO concentrations on OCCs in the context of the Chinese government’s vigorous NOx
abatement policies and tight restrictions on NOx emissions [30,31]. A large proportion of
biogenic VOCs (BVOCs), which are ozone-generating precursors, originate from vegetation
and other biogenic emissions [4,32]. Whereas BVOCs are more reactive in photochemical
reactions, ozone is more sensitive to changes in BVOCs emissions and BVOCs contribute
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relatively more to ozone formation, making them an important precursor to tropospheric
ozone production [33]. The analysis of vegetation changes in Chinese regions over many
years based on satellite remote sensing data can help us to analyse the causes of low-level
ozone growth; temperature is the most important meteorological factor for ground-level
ozone concentrations across China, and ozone production is positively correlated with
sensitivity to increased temperature, with temperature being one of the main causes of
ozone production, and areas where near-surface ozone increases significantly often being
accompanied by severe near-surface warming [34,35]. In terms of the direction of influence,
temperature has a persistent positive effect on ground-level ozone concentrations in most
cities [36]. At the same time, warming will not only increase the reaction rate, but also
increase the natural emission of VOCs from natural sources, which contributes to ozone
production [37]. In addition, it has been pointed out that under certain weather systems,
the rise in PBLH will lead to the transport of ozone from the upper atmosphere to the near-
surface layer [38], which will facilitate the vertical exchange of ozone-producing precursors
within the boundary layer [39], and eventually lead to an increase in ozone concentration.
Furthermore, studies have shown that the positive correlation between the PBLH and the
concentration of near-surface ozone is even greater than that of ozone precursors, especially
when high ozone concentrations occur [40,41]. The above studies show that the effect of
PBLH on ozone concentration is opposite to that of particulate matter [42]. In summary, in
this paper, four factors, namely ozone-producing precursors (HCHO, NO2), normalised
difference vegetation index (NDVI), air temperature, and PBLH, were selected to carry out
a causal analysis of the increase in the OCCLT.
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Figure 8. Variation trend of the annual mean value of the OCCLT over the entire Chinese land area
from 2005 to 2020.

4.1. Ozone Transport in the 3–5.8 km Altitude Layer

Figure 9 shows the spatial distribution of the OCC slope in the 0–3 km and 3–5.8 km
altitude layers in China from 2005 to 2020. Note that due to the influence of altitude, only
a few areas of the QTP have valid pixels, so the slope of most areas is 0. Except for the
QTP, the OCCLT mainly shows an increase, while that at the 3–5.8 km layer mainly shows
a decrease. The spatial distribution of the two shows an obvious inverse distribution, so
the 3–5.8 km layer most likely contributes to the increase in the OCC. To determine this
possibility, an analysis of whether the 3–5.8 km altitude layer transmits ozone upwards is
required. In this paper, the slope of all altitude layers of the OMI ozone profile product
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for 2005–2020 was calculated. The slope of the OCC at each altitude layer and 3–5.8 km
was correlated, and the corresponding correlation coefficient results are shown in Table 4.
Because the number of effective pixels in the 0–3 km altitude layer is smaller due to the
altitude of the QTP, the total sample size of the 0–3 km altitude layer is smaller than that of
the other altitude layers. The table shows that although there is a high correlation between
several altitude layers and the 3–5.8 km OCC slope, a positive correlation coefficient only
represents a homogeneous change in slope, i.e., the OCC is decreasing in all these altitude
layers, and if the 3–5.8 km altitude layer has a direct influence on these altitude layers, the
correlation coefficient should be negative. There are four altitudes with negative correlation
coefficients: 24–26.7 km, 21–24 km, 18.8–21 km, and 0–3 km. The correlation coefficient
for 0–3 km is −0.891, indicating that there is an obvious negative correlation between the
3–5.8 km and 0–3 km OCCs. The correlation coefficients for the rest of the height layers are
all greater than −0.3, and the negative correlation is relatively weak. The above analysis
shows that the 3–5.8 km altitude layer contributes significantly to the increase in OCCLT,
i.e., there is a transfer of ozone from the 3–5.8 km altitude layer to the 0–3 km altitude layer.
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Table 4. Correlation coefficient of the OCC slope at different altitudes and at 3–5.8 km.

Altitude Layer (km) Number of Samples Correlation Coefficient

53.3–57

10,766

0.264
48–53.3 0.334
42.8–48 0.497
40–42.8 0.457
36–40 0.319

33.7–36 0.374
31.4–33.7 0.494
26.7–31.4 0.429
24–26.7 −0.283
21–24 −0.261

18.8–24 −0.001
16.7–18.8 0.583
14.3–16.7 0.787
12.4–14.3 0.789
9.6–12.4 0.805
5.8–9.6 0.284

0–3 9290 −0.891

However, as can be seen from the mean year-on-year changes in OCCs at different
altitudes in the troposphere for each region in Table 4, the decrease in OCCs at altitudes of
3–5.8 km is not sufficient to offset the increase at altitudes of 0–3 km, so there are still other
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external factors influencing OCCLT. Next, analysis will be carried out in relation to ozone
precursors, vegetation cover, meteorological conditions, and other factors.

4.2. Precursor Effects

The annual trend of HCHO and NO2 tropospheric variation over China from 2005 to
2020 is shown in Figure 10. As seen from Figure 10a, the growth trend of HCHO during
2005–2016 is obvious. The average slope is 0.072, and the maximum value reaches 0.72,
with 82.7% of the pixels showing positive growth. The high HCHO slope area is mainly in
eastern China, including BTH, MSL, YRD, COC, and SCB. In the south-central region of
QTP and Yunnan Province, although the increase in HCHO concentration is obvious, it is
not conducive to ozone production because of the lower temperature and higher level of
water vapour. From Figure 10b, it can be seen that the trend of NO2 changes in the east
and west of China during 2005–2020 differed significantly; the background value of NO2
in western China increased slowly, with its slope being between 0 and 0.1 overall, and
between 0.1 and 0.2 in a few areas; southern and central-eastern China showed a significant
decreasing trend, with the PRD, YRD, COC, and BTH areas decreasing most significantly,
exhibiting slope indices greater than −0.6, and up to −0.93. SCB, MLS, and UCS also
have a more obvious reduction, which is related to the country’s recent introduction of
relevant energy-saving and emission-reduction measures. In a comprehensive analysis,
comparing the spatial distribution trends of HCHO slope growth areas with Figure 6a,
there is an obvious agreement between the two, especially in MLS, BTH, YRD, COC, and
SCB, with a trend correlation up to r = 0.8, which indicates that the continuous growth of
HCHO is an important driver of the rising OCCLT in China. At the same time, the rapid
decline in NO2 is also in high agreement with the spatial distribution trend of 0–3 km
ozone. The areas where NO2 declines significantly are also the areas where the distribution
of high value ozone areas is concentrated, most significantly in PRD, YRD, COC, and BTH,
while the areas where NO2 changes insignificantly or increases also have relatively low
ozone concentrations. Previous studies have shown that when atmospheric NOx is at
high concentrations, the reduction in NOx emissions will reduce the NOx titration and
the reduction of ozone by NOx will also increase the oxidation of VOCs to produce ozone
and OH, resulting in higher ozone concentrations [43,44]. Figure 10a,b shows that the
increasing HCHO level and decreasing NO2 level in China over the years have disrupted
the mutual balance of ozone production and depletion by atmospheric VOCs and NOx,
and the “titration” of ozone by NO has weakened, resulting in a shift from VOC-limited to
VOC-driven ozone generation [45–47]. This has resulted in more conversion of VOCs to
ozone, leading to a continued increase in tropospheric near-surface ozone concentrations,
suggesting that NOx and VOCs should be controlled in tandem, rather than one or the other.
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4.3. Vegetation Growth Effects

Monthly mean values of the NDVI for 2004–2020 were obtained based on the MYD13Q1
product and compared with the OCCLT, the results of which are shown in Figure 11. Over
the years, NDVI has been on a fluctuating upward trend in most regions of China, while
NDVI and OCCLT show a cyclical variation with obvious consistency in all regions ex-
cept QTP. During March to July of each year, vegetation grows rapidly with increasing
temperature, and also releases a large amount of BVOCs, including monoterpenes and
isoprenes [48], which also provide good conditions for photochemical reactions to gener-
ate ozone [49]. From July to August, when vegetation is flourishing and growing more
slowly, the release of BVOCs decreases and ozone concentrations begin to decrease; from
September to February, as vegetation gradually dies, NDVI drops rapidly to lower values,
and along with the rapid drop in temperature, ozone concentrations also begin to decrease
rapidly to their lowest value of the year [50,51]. At the same time, although OCCLT in-
creases with NDVI, it also shows a significant lag, with peak NDVI lagging behind peak
OCCLT by approximately one month in most areas, especially in BTH, MLS, COC, SCB, and
UCS. If the peak NDVI is used as a marker of plant maturity, the stage of NDVI increase
can correspond to the growing phase of plants, which in turn indicates that plants drive
OCCLT in these areas more strongly during the growing phase than during maturity. In
the PRD region there is a 2-month difference in the occurrence of the two peaks, with the
peak PRD OCCLT occurring in April and the peak NDVI occurring in July, suggesting that
vegetation growth in this region is a weak driver of ozone. In the northern part of the
YRD, as a major wheat-rice-growing area, the cultivation cycle of cash crops has a strong
influence on NDVI [52], and the maturation of cash crops for harvesting causes the NDVI
during May–June in YRD to undergo a period of rapid decline, and the rapid decrease in
vegetation is accompanied by a significant decrease in OCCLT, so the relationship between
changes in OCCLT and vegetation growth is linear. At QTP, due to the low vegetation cover
related to the climate, there is no significant relationship between OCCLT and vegetation
growth trends.
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By comparing the correlation between NDVI and OCCLT among different regions, as
shown in Table 5, it can be seen from the fitted relationship equations in most regions that
NDVI and ozone changes show a clear linear correlation. The consistency between OCCLT
and NDVI trends is highest in UCS, with an r as high as 0.87, which indicates that changes
in OCCLT in this region are significantly influenced by vegetation growth. Followed by MLS
and BTH, the r exceeds 0.7, indicating that plant growth is an important influencing factor
driving the increase in OCCLT in this region. In SCB and YRD, the growth of vegetation
cover also has some influence, while there is no significant correlation between the two in
the PRD and QTP regions.

Table 5. Correlation between OCCLT and NDVI.

Area r Fitted Formula

UCS 0.875 y = 26.0044x + 3.05747
MSL 0.793 y = 16.115x + 4.23403
COC 0.785 y = 16.115x + 4.23403
BTH 0.746 y = 18.2164x + 4.18514
YRD 0.630 y = 16.9844x + 4.32518
SCB 0.613 y = 9.44341x + 5.86769
PRD 0.330 y = 4.39351x + 6.11428
QTP −0.184 y = −6.23702x + 2.90587

4.4. Temperature Effect

The results regarding the temperature of six layers in the troposphere from 1000 to
750 hPa were extracted using ERA-5 reanalysis data, and the temperature trends of different
altitude layers in the lower troposphere during 2008–2020 are shown in Figure 12. During
2008–2020, the temperature of all six altitude layers showed an increasing trend and the
change trend was basically the same, but the rate of increase varied among different
altitude layers. The atmospheric temperature in the 1000 mb altitude layer increases faster
with a fitting coefficient of 0.045, and the overall temperature increase in this altitude
layer is 0.63 ◦C. With increasing altitude, the temperature growth rate from the 950 hPa
altitude layer to the 750 hPa altitude layer gradually slows down, the fitting coefficient
decreases from 0.038 to 0.029, and the temperature growth ranges from 0.41 to 0.53 ◦C.
Figure 13 further shows the spatial variation in temperature from year-to-year in the
1000 hPa altitude layer, and it can be seen that the temperature of the whole region of China
shows an increasing trend, which undoubtedly provides the conditions for the increase
in OCCLT. Temperature, as the main driver of photochemical reactions in the process of
ozone pollution generation, directly affects the photochemical reaction rate of precursors.
Combined with the increase in HCHO, described in Section 4.2, it is clear that the increase
in temperature causes the photochemical reaction rate of converting VOCs to ozone to
increase, and thus more ozone can be produced in the same period of time. Therefore, the
increase in the temperature of the lower troposphere is an important meteorological factor
leading to the increase in OCCLT in China.
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4.5. PBLH Effects

In this study, the monthly and annual average values of PBLH over China were
calculated using the ERA-5 meteorological reanalysis data. Then, the correlation between
PBLH and OCCLT was analysed using the averaged results. Figure 14 is a scatter plot of
the monthly mean values of OCCLT and PBLH in China from 2005 to 2020, and the r of the
two is 0.902, which demonstrates a high positive correlation. Similar to other studies, the
results illustrate the contribution of elevated boundary layer height to OCCLT. Figure 15
shows the annual average spatial distribution of PBLH from 2005 to 2020. The slope of
the PBLH in the Chinese region ranges from −2 to 2. The PBLH in most regions show an
increasing or slightly decreasing trend, and only some regions in QTP (Qinghai) exhibit a
significant decrease. The regions with increasing PBLH also correspond to the regions with
significantly increasing or higher OCCLT shown in Figure 6a, i.e., the four regions of MSL,
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BTH, COC, and YRD. For the other regions, although there is a small decrease in the PBLH,
the increase in temperature (Figure 13) still eventually leads to an increase in the OCCLT
that is smaller than that of the above four regions. Among the meteorological driving
factors leading to OCCLT growth, the effect of temperature is greater than that of PBLH.
However, once the PBLH and temperature in a certain region are increased simultaneously,
the growth of OCCLT will be further enhanced.
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5. Conclusions

1. The vertical distribution characteristics of tropospheric OCC in China from 2005 to
2020 were analysed using OMI ozone profile products. The results show that the
OCCLT shows an increasing trend from 2005 to 2020, with a mean year-on-year change
of 0.143 DU, and a decreasing trend in the mid-troposphere, with a mean year-on-year
change of −0.091 DU; OCC across the troposphere rose by 2.52 DU or 7.9% There
is a significant negative correlation between the slopes of the OCCs at the two high
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layers (with an r of −0.891), which indicates that the OCCLT is affected by the ozone
transmission from the mid-troposphere.

2. The variation in OCCs in the different altitudes of the troposphere is characterised by
obvious seasonal changes, with the OCCLT being higher in spring (8.22 ± 1.05 DU)
and summer (8.80 ± 1.29 DU) than in autumn (6.38 ± 0.77 DU) and winter
(5.70 ± 0.48 DU); the extreme values of the OCCLT occur in May or June and peak in
the middle troposphere in autumn (9.25 ± 1.19 DU) and winter (10.50 ± 0.45 DU).
The mid-troposphere is strongly influenced by topographic conditions; in the upper
troposphere it rises continuously in spring (up to 11.84 ± 1.30 DU) and decreases
during the rest of the season, while the upper troposphere OCC shows a consistent
latitude-dependent trend.

3. Analysis based on multi-source data shows that the changes in OCCLT are closely
related to ozone precursors, vegetation cover, air temperature, and PBLH. The energy
conservation and emission reduction policies in China in recent years have led to a
large reduction in NOx, and the increase in VOCs due to natural factors has weakened
the titration of ozone production and contributed to the increase in OCCLT. The
NDVI shows a fluctuating upward trend, and the vegetation growth shows a positive
correlation with the OCCLT, with an r > 0.6 in most regions of China; the temperature
of the lower troposphere in China increases significantly (+0.63 ◦C), which strengthens
the photochemical reaction of ozone. In addition, the increase in the PBLH also plays
a positive role in the increase in the OCCLT.

In summary, the mechanism of influence of tropospheric ozone is complex, and is
not the result of a single factor; both natural factors and climate change make important
contributions to increases in tropospheric ozone and cannot be ignored. At the same time,
oxygen pollution precursors should be controlled in a synergistic manner, and a single effort
to control one of these factors may lead to an increase in ozone. This study recommends the
incorporation of more long-term and diversified monitoring tools and the implementation
of more comprehensive control measures, which are essential to control ozone pollution
and to safeguard health and the balance of the ecosystem.
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