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Abstract: Monitoring ex-situ water parameters, namely heavy metals, needs time and laboratory
work for water sampling and analytical processes, which can retard the response to ongoing pollu-
tion events. Previous studies have successfully applied fast modeling techniques such as artificial
intelligence algorithms to predict heavy metals. However, neither low-cost feature predictability
nor explainability assessments have been considered in the modeling process. This study proposes
a reliable and explainable framework to find an effective model and feature set to predict heavy
metals in groundwater. The integrated assessment framework has four steps: model selection uncer-
tainty, feature selection uncertainty, predictive uncertainty, and model interpretability. The results
show that Random Forest is the most suitable model, and quick-measure parameters can be used
as predictors for arsenic (As), iron (Fe), and manganese (Mn). Although the model performance is
auspicious, it likely produces significant uncertainties. The findings also demonstrate that arsenic
is related to nutrients and spatial distribution, while Fe and Mn are affected by spatial distribution
and salinity. Some limitations and suggestions are also discussed to improve the prediction accuracy
and interpretability.

Keywords: Random Forest; heavy metals; groundwater quality; explainable artificial intelligence
(XAI); prediction intervals

1. Introduction

Water quality sampling is essential to reflect the environmental status and governance
efficiency. However, spare monitoring data and tedious analysis processes also inhibit the
interpretation of ongoing pollution events, leading to broader contaminant transportation
and treatment costs [1]. Heavy metals are not only among the toxic substances causing
a high risk to ecological and human health but also need much time and complicated
procedures to detect and remediate. Thus, developing a model to predict heavy metals will
optimize the data collection process, transmission, and lab-based analyses [2,3], resulting
in a faster response to contamination. Current technology advancements enable real-time
water quality monitoring, but continuous monitoring at dense spatial scales will be a cost
challenge. Most sensor technologies are expensive and need regular care but may measure
a single or a few parameters [4]. Therefore, utilizing data that can be measured from one in
situ multiparametric probe to predict heavy metals would be very applicable for setting up
an effective monitoring system.

The practical approach to evaluating a model’s feasibility relies on the performance
of the model, including the data accessibility and the model’s robustness, accuracy, and
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uncertainty. The feasible model could support the stakeholders in deciding whether
the target task is successful and applicable. Many studies have successfully applied
cost-effective parameters and machine learning algorithms for predicting water quality
indexes [5,6] or heavy metals [7,8]. However, the previous investigations usually focused on
accessing model predictability for one data set without uncertainty evaluation. Evaluating a
trained model based on historical data might be too optimistic because future data behavior
could change with different degrees of uncertainty induced by natural or anthropogenic
activities [9]. Therefore, comparing single values of evaluation metrics, such as goodness-
of-fit and errors, could not reveal much about the prediction perturbation [10]. Modelers
need more evidence beyond accuracy to convince the general public or managers to trust
predicted values [11]. Thus, efforts need to be devoted to exploring how the changes in
data input may lead to a different prediction, whether the cost-effective features can yield
good predictions, and which factors drive the outcomes.

Furthermore, from a quick overview, studies that express interpretability in heavy
metal prediction models have not yet been developed and assessed. The wisely used analy-
ses, namely the correlation analysis, clustering analysis, and principal component analysis,
have been applied to explore the causal relationship between groundwater heavy metals
and other chemical compositions [12–17]. Those outcomes could explain the contamination
sources or geochemistry conditions but could not provide information on how a predictive
model could internally make decisions. The interpretable or transparent models with
clear links between input and output are often insufficient to express highly non-linear
relationships [18]. Although the black-box or opaque models are more accurate and reliable,
operators and managers have found it difficult to trust and implement them [19]. Even
transparent models occasionally require explanations for non-expert audiences [20]. A
model with explainability will aid in expressing their results as convincing evidence for
their real-life implementation, improvement, and transmission.

The study aimed to develop a scanning framework to test the feasibility and inter-
pretability of a generalized machine learning model for heavy metal prediction. With the
recent development of sensor technologies, low-cost multiparameter probes are widely
used for measuring fundamental groundwater quality. However, determining various
heavy metals remain challenging because of the cost–demand of field samplings and the
associated laboratory work. The observations of multiparameter probes could facilitate real-
time predictions of heavy metals. In the study, this modeling experiment focused on the
feasibility of available physicochemical parameters by comparing a model’s performance
on data perturbation, feature changes, and prediction intervals. The proposed model can
be reliable and accessible for practical applications if the low-cost parameters outcompete
other predictors. Furthermore, the model interpretability is the supplementary information
to enhance a user’s understanding of the rationale behind the prediction or how much
each predictor contributes to the estimated value. We expect the systematic assessment to
provide general insight into the modeling issues of accuracy, reliability, and explainability
to facilitate the trained models in groundwater quality monitoring and management.

2. Materials and Methods
2.1. Uncertainty Quantification

Several approaches have been proposed to quantify uncertainty, including the Monte
Carlo methods [21–24], perturbation methods [25–28], or Bayesian methods [29–31]. In
particular, most approaches can only measure specific uncertainty sources. The Monte
Carlo methods focus on parameter uncertainty, Bayesian methods deal with input data
uncertainty, and perturbation methods optimize model architecture robustness. These
approaches require the known parameter distributions, a constraint in sparse sampling
datasets. Nonetheless, bootstrapping does not need either assumptions about the data
distribution or complex computations [32]. Bootstrapping is compatible with assessing
the uncertainty of unknown or complicated data distribution and the insufficient sample
size of a large-scale model. In practice, the bootstrap method has been applied in model
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robustness evaluation by comparing the distribution of model performances [10,33] and
prediction interval estimation [34–37].

In this computational experiment, we considered uncertainty in various sample distri-
butions. The bootstrap scheme was set up 100 times, randomly splitting 75% of data for
training and 25% for testing using different random states. One hundred times replicated
sampling with replacement from the data pool will give 100 prediction results. Con-
sequently, repeated in-samples (training data) were used for training models, whereas
we only used out-samples (testing data) for uncertainty evaluation. The distribution of
100 evaluation metrics in the box and whisker plots can demonstrate the error range that
each model produces. Similarly, the model’s performance distribution on feature selection
uncertainty was assessed on different feature groups of 100 bootstrap datasets. Finally, the
models or predictors with the lowest bias range and highest goodness-of-fit were selected
for the subsequent analysis.

2.2. Interpretable Machine Learning

Explainable artificial intelligence (XAI) relates to using methods that explain how
machine learning algorithms make decisions so that humans can understand them [38–41].
Concerning the scale of interpretability, global explanations determine which variables have
the most predictive power, while local interpretations estimate how much each variable
contributes to a prediction [42]. Permutation Feature Importance (PFI) is a global and model
agnostic method that can be used for any model in selecting the most relevant features
for predicted targets to decrease the required data and computational cost [43–46]. PFI
only shows how sensitive each variable is but does not show how negatively or positively
those features contribute to the model’s output [47]. To obtain local explanations of a
single prediction, many studies [48–52] have applied local interpretable model agnostic
explanations (LIME) and Shapley additive Explanations (SHAP) because of their attractive
visualization and multi-properties. However, SHAP-Kernel and SHAP-Deep Explainer are
very slow and do not support some models. Feature coefficients provided by LIME are
similar to the coefficients extracted from Bayesian linear regression and feature importance
from decision trees [52]. For tree-based models, Treeinterpreter [53] outperformed SHAP-
Tree Explainer [50] in terms of attribution accuracy computation cost [54].

2.3. Conceptual Framework

In this study, many popular machine learning algorithms such as Support Vector
Regression (SVR), K-Nearest Neighbors (KNN), Feedforward Artificial Neural Network—
Multilayer Perceptrons (MLP), Random Forest Regression (RFR), Gradient Boosting Regres-
sion (GBR) and Linear Regression (LR) are applied to achieve the objectives. Firstly, data
discovery and pattern mining methods included clustering data by Density-based Spatial
Clustering of Applications with Noise (DBSCAN) to find the similarity samples and outliers;
we also analyzed multivariate statistics to discover the relationship between hydrochemical
parameters. Secondly, the baseline model was trained with the most abundant cluster data,
which was derived from DBSCAN, using all physicochemical parameters (Depth, Temp,
EC, pH, TH, Cl, TDS, NO3, NH4, SO4, TOC) and two spatial features (X, Y geographic
coordinate). We used a performance metric range from lower and upper bounds to express
prediction uncertainty instead of a single value. A bootstrapping sampling was applied to
generate sample variability for input perturbation. The distribution of model performance
was evaluated to select which was the most suitable model. The best-performed model was
selected for further analysis. Besides that, the selected model was optimized by a five-fold
cross-validation of training data and the RandomsearchCV method to find the number
of optimal features for each target. The tuned hyperparameters included max_depth,
min_samples_leaf, max_features, min_samples_split, and n_estimators. After optimizing,
the models were applied to assess the feature contribution by ranking in PFI. Thirdly, we
examined the feasibility of low-cost parameters for prediction by comparing the perfor-
mance distribution between three feature combinations: (1) the first feature set consisted of
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full parameters; (2) the second feature set was selected by an optimal number of features
that have a high rank in PFI; (3) the third feature set followed the criteria of technical and
economic efficiency that are quick and inexpensive to measure on-site, irrespective of its
sensitivity. Finally, model uncertainty was quantified by the model prediction intervals (PI)
and the percentage of expected values falling into the intervals. The added interpretability
analysis also enhanced the model’s trustworthiness. The general research procedure is
illustrated in Figure 1. Although the applied methods in the framework are not highly
complex, they are easy to use and computationally efficient. With the combination of all
the procedures, we were able to quickly discover new insights into the capacity of the
indicators and models.

Int. J. Environ. Res. Public Health 2022, 19, x 5 of 23 
 

 

 
Figure 1. A Conceptual research framework. 

2.4. Evaluation Metrics 
There were three metrics used for the model’s evaluation. The R2 (the coefficient of 

determination) is a typical metric for quantifying the variance in outputs of linear models 
[58], indicating the goodness of fit (Equation (1)). The R2 score ranges from -∞ to 1; thus, 
the closer to 1, the better the prediction is. Root mean squared error (RMSE) is the standard 
deviation of the residuals, computed as Equation (2). When compared to mean absolute 
error, RMSE can provide a more reliable error distribution and sensitivity within a large 
sample size [59]. Moreover, the model’s uncertainty is expressed by the Prediction Inter-
val Coverage Probability (PICP) to find the possibility of expected values falling into the 
interval (Equation (3)) and the Mean Prediction Interval (MPI) (Equation (4)) to indicate 
the average width of all prediction intervals. The lower the MPI, the lower the uncertain-
ties. If PICP is greater than the probability quantile, the uncertainty is overestimated, oth-
erwise it is underestimated. PICP and MPI have been used in [22,60–62] to evaluate pre-
diction uncertainties. 

2

2 1

2

1

ˆ( )
ˆ( , ) 1

( )

n

i i
i
n

i
i

y y
R y y

y y

=

=

−
= −

−




 (1)

Figure 1. A Conceptual research framework.

The study was conducted using Python scripting on the PyCharm integrated develop-
ment environment. Scikit-learn [55], Matplotlib [56], Pandas [57], Numpy, Treeinterpreter,
and other packages were used to perform the analysis, simulation, and output charts.

2.4. Evaluation Metrics

There were three metrics used for the model’s evaluation. The R2 (the coefficient
of determination) is a typical metric for quantifying the variance in outputs of linear
models [58], indicating the goodness of fit (Equation (1)). The R2 score ranges from
−∞ to 1; thus, the closer to 1, the better the prediction is. Root mean squared error
(RMSE) is the standard deviation of the residuals, computed as Equation (2). When
compared to mean absolute error, RMSE can provide a more reliable error distribution
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and sensitivity within a large sample size [59]. Moreover, the model’s uncertainty is
expressed by the Prediction Interval Coverage Probability (PICP) to find the possibility of
expected values falling into the interval (Equation (3)) and the Mean Prediction Interval
(MPI) (Equation (4)) to indicate the average width of all prediction intervals. The lower
the MPI, the lower the uncertainties. If PICP is greater than the probability quantile, the
uncertainty is overestimated, otherwise it is underestimated. PICP and MPI have been
used in [22,60–62] to evaluate prediction uncertainties.

R2(y, ŷ) = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

(1)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

PICP =
count(N|Qlow ≤ N ≤ Qhigh)

n
∗ 100% (3)

MPI =
1
n

n

∑
i=1

(Qhigh−Qlow) (4)

where yi is the observed values, and ŷi is the estimated values. Notations Qlow represent
lower quantile, and Qhigh is for the upper quantile.

2.5. Study Site and Data Sources

Taiwan covers 35,808 square kilometers (35,801 km2), with 70% coverage of rugged
and densely forested mountains as the spine in the central. The flatter area is located along
the west coast, which is also densely inhabited. Uneven rainfall and steep-sloped rivers
force residents to depend on groundwater resources significantly [63]. Since 2002, the
Taiwan Environmental Protection Administration (EPA) has monitored groundwater with
a relevant sampling frequency (monthly or seasonally, half-yearly) at different authority
levels. All the monitoring data are updated on the EPA Taiwan website for public access,
whether being single-well-, administrative- or watershed-level [64]. The study obtained
physicochemical data of groundwater monitoring data from 453 wells over ten groundwater
basins of Taiwan from 2000 to 2020. The location of monitored wells and the defined basins
are shown in Figure 2.

In this study, the water quality records were downloaded from the Taiwan EPA
website [65]. According to the Taiwan Groundwater Pollution Monitoring Standard, As and
Mn concentrations for domestic supply and irrigation purposes are limited at 0.025 mg/L
and 0.25 mg/L, respectively, whereas Fe values are 0.15 mg/L and 1.5 mg/L, respectively.
The 2019 annual water quality monitoring report of Taiwan EPA revealed that only 53.2%
of manganese (Mn) samples achieved the standard, while 73.4% of iron (Fe) is under-
controlled [64]. A quick scan of collected data also shows that Mn, Fe, and As comprise
levels of 27%, 10%, and 0.3% in samples, respectively, exceeding the standard levels, while
other trace elements (Cr, Cd, Cu, Pb, and Zn) are much lower than the limits. Therefore, As,
Fe, and Mn were targeted in this experiment. Fourteen physicochemical constituents were
used for analysis. After the data preprocessing, there were 20,685 groundwater samples
in the period of 2000–2020 used for modeling. Table 1 shows the statistical summary of
the data.
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Figure 2. The locations of 453 observation wells in ten groundwater basins in Taiwan.

Table 1. Statistical summary of physicochemical parameters.

Variables Description Min a Max b Mean STD c Ske d Kur e Unit

Temp Water temperature 18.600 33.200 26.524 1.704 −0.287 0.449 ◦C
Depth Depth to water 0.000 39.627 4.944 4.569 2.777 10.014 m

EC Electrical conductivity 2.000 65,800.000 1899.373 6205.603 6.419 43.874 µS/cm 25 ◦C
pH pH 4.100 9.300 6.739 0.552 −0.922 1.799 -
TH Total hardness 2.700 8390.000 416.436 735.115 6.207 43.697 mg/L
TDS Total dissolved solids 4.100 52,300.000 1302.772 4502.321 6.689 48.265 mg/L
Cl Chloride salt 0.500 27,800.000 454.055 2268.745 6.763 49.321 mg/L

NH4 Ammonia Nitrogen 0.001 20.000 0.791 1.704 3.9 19.951 mg/L
NO3 Nitrate Nitrogen 0.010 45.500 2.170 3.708 3.22 15.553 mg/L
SO4 Sulfate 0.500 4260.000 139.139 312.284 6.386 46.222 mg/L
TOC Total organic carbon 0.020 15.800 1.922 1.549 2.453 9.442 mg/L
As Arsenic 0.000 0.146 0.006 0.013 4.031 20.404 mg/L
Mn Manganese 0.005 11.300 0.519 0.854 4.152 26.062 mg/L
Fe Iron 0.000 58.800 1.526 4.161 5.821 44.764 mg/L

a minimum; b maximum; c standard deviation; d skewness coefficient; e kurtosis coefficient.
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3. Data Analysis and Feature Engineering

The clustering analysis by DBSCAN shows the distribution of groundwater quality
deviating through a spatiotemporal scale. The algorithm generated six unique clusters,
including five clusters (from 0 to 4), based on their similarities and noise data (cluster-1).
To illustrate how the clusters distribute across spatial scales, we added geographical coordi-
nates and show them on the scatter chart in Figure 3. The concentration of target parameters
(Mn, Fe, As) from each cluster is shown in Figure 4. There is a distinguishable characteristic
of different clusters. For instance, Cluster 1 contains all extreme values considered outliers
from most of the sampling locations. Cluster 0 can represent groundwater quality in Taiwan
because it includes the most abundant samples in over ten groundwater basins. On the
other hand, Cluster 1 to 4 have a smaller sample size, characterized by small As, Fe, and Mn
concentrations in specific basins. Concerning temporal distribution, Cluster 0 is similarly
distributed throughout the years, but minor clusters are scattered/distributed in some
periods. In order to prepare data for As, Mn, and Fe prediction, Cluster 0 was used for
training and testing the datasets, while all the other clusters with particular characteristics
were filtered out.
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each cluster.

The Spearman correlation coefficient was applied to assess the interrelationship be-
tween parameters in Cluster 0 because this method can capture the non-linear relationship
between variables. The coefficients are close to 1 for a similar trend and −1 for an opposite
trend, while nearly 0 means no relationship. Figure 5 shows a highlighted relationship
between salinity indicators, namely EC, TDS, Cl, SO4, and TH. Moreover, salinity indicators
have a slight opposite trend with X. It can be interpreted that the larger X values (from the
west coast toward the east), the lower the salinity levels are. There was no clear relationship
between Y and salinity. The water temperature slightly increases toward the south (decreas-
ing Y) and the west (decreasing X). Considering the feature–target relationship, As, Mn,
and Fe have a slight negative correlation with NO3 and a positive correlation with NH4.
The opposite trends of NO3 and NH4 can result from the oxygen concentration in water.
Saltwater reduces dissolved oxygen, leading to an anoxic condition and denitrification.
Therefore, As, Mn, and Fe may be related to the salinity level. Salinity had robust effects on
Mn and Fe solubility [66]. Other features do not have a clear correlation with targets, but
they may have non-linear relationships.

Preprocessing steps included filling missing values, removing bad attributes, adding
features, resampling, and normalizing samples. In consideration of the spatial heterogeneity
of samples, there is no other convenient information available except for locations. That is
why longitude and latitude coordinates (X, Y) were also used as spatial feature inputs for
prediction. To reduce the model complexity for point estimation, we shuffled the samples
before the train–test partition and ignored the temporal dimension. Moreover, the sample
size at each location should be over 30 samples for meaningful statistical analysis. As
a result, from 403 wells of Cluster 0, we have 20,685 samples for training and testing.
Finally, all input features were normalized into a fixed range between 0 and 1 to speed up
the computation.
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4. Results
4.1. Assessment of the model Predictability

It is necessary to evaluate model robustness by comparing result distribution since
average metrics cannot precisely represent how stable the model performance is against
new inputs. Initially, we trained six regression algorithms (MLP, RFR, KNR, SVR, LR, and
GBR) to predict As, Fe, and Mn, using all features for 100 data sets to find which model is
the most robust. Because R2 scores can have negative values, the RMSE values were used
for plotting charts. The prediction biases of As, Fe, and Mn from 100 random datasets are
shown in the box and whiskers plots in Figure 6 to illustrate the stochastic nature of the
algorithm’s performance due to input changes.

Overall, the RMSE distribution of RFR in all target species (Figure 6a–c) has the lowest
mean errors in the training and testing data sets, indicating that RFR produces fewer biases
than other models. From As prediction (Figure 6b), all models (except for SVR) are robust to
data perturbations because their interquartile ranges of errors are small and less susceptible
to outliers. There are also tiny gaps between training and testing performances caused
by the similar training and testing data distribution or generalized models. However,
Fe prediction (Figure 6b) and Mn prediction (Figure 6c) experienced similar problems,
with potential outliers resulting from noisy data sets or highly skewed distributions. The
significant differences in the training and testing error distributions of RFR and KNR exhibit
overfitting models. In fact, it is hard to build a model that is ideally fitted to all new data.
Overfitting models learn noise rather than actual signals, but they can be improved through
hyperparameter optimization or input regularization. That is why RFRs were considered
even though they are overfitted. Those models with a low variance and high bias may need
more data or features that we did not consider in this scope.
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In addition, the testing R2 scores of the RFR models for all targets are the highest,
followed by KNR and GBR (Table 2). All RFR models predicting As, Fe, and Mn have high
average fitting scores (over 0.7), while LR and SVR seem unsuitable for the data. LR and
SVR have average R2 scores lower than the satisfactory criteria (<0.5). Therefore, RFR was
selected to predict As, Fe, and Mn.

Table 2. Model performance on 100 testing data sets for different targets (mean R2 score ± standard
deviation).

Models As Prediction Fe Prediction Mn Prediction

GBR 0.65 ± 0.02 0.59 ± 0.03 0.62 ± 0.02
KNR 0.73 ± 0.02 0.60 ± 0.03 0.65 ± 0.03
LR 0.18 ± 0.01 0.08 ± 0.01 0.18 ± 0.01

MLP 0.30 ± 0.06 0.47 ± 0.06 0.50 + 0.08
RFR 0.79 ± 0.02 0.70 ± 0.03 0.76 ± 0.02
SVR −26.32 ± 1.88 0.02 ± 0.01 0.21 ± 0.02

4.2. Assessment of the Feature Predictability

The predictability of feature sets was evaluated by comparing performance metrics
between feature groups toward each target. Then, the feature sets were selected through
three steps.

Firstly, three RFR models for three targets were successively optimized by Ran-
dom search CV and five-fold cross-validation to find the optimal values for hyperpa-
rameters. Some primary hyperparameters were used for tuning, namely max_depth,
min_samples_leaf, max_features, min_samples_split, and n_estimators. The best configu-
ration of each model is reported in Table 3. Figure 7 shows the validation curves for the
number of features from each model. The red lines from Figure 7a–c are the optimized
feature for As, Fe, and Mn models. For instance, the As model needs a maximum of ten
features, while Fe and Mn models require six and eight features, respectively. Although
the gaps between train and test errors can remain somewhat large at the stopping points,
the validation scores will not decrease due to overfitting. An efficient model will require
less input but perform satisfactorily for testing data. Fewer redundant features mean fewer
opportunities to make decisions based on noise. Therefore, fewer features reduce the
algorithm’s complexity, resulting in faster model training [67].
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Table 3. Random Forest Regressor hyperparameter optimization.

Hyperparameters Description As Model Fe Model Mn Model

min_samples_leaf The lowest number of observations in a terminal node 4 4 4
max_features Number of variables for the best split 10 6 8

min_samples_split The lowest number of observations needed to split an
internal node 6 4 8

n_estimators Number of trees in a forest 1848 1727 1000
max_depth The maximum depth of the tree 16 18 20
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The learning capability of the optimized models is expressed by learning curves,
which show the behaviors of training scores and validation scores responding to sample
numbers. From Figure 8, the training and validating curves have not yet converged as the
data are increasing. Variability during cross-validation was higher than during training,
showing that the models suffer from variance (overfitting) rather than bias. The dataset is
so unrepresentative that the model cannot capture the statistical characteristics. Potentially,
the validation scores could increase and would be closer to the training scores if more data
are trained to generalize more effectively.

Secondly, as to which variable is selected for each group depends on the order in
the feature importance process. Figure 9 reveals the sensitivity of each feature to the
predicted targets. It can be seen that NH4, NO3, pH, X, and Y showed a strong effect
in the three models, while TOC and Temp had a negligible impact on the results. As
expected, the correlation of NH4 and NO3 with targets also affects the importance of
analysis. pH, X, and Y have unclear correlations with targets but also have high importance.
This result also proves that the most important features are not always the most statistically
correlated features [46]. The ionic forms of heavy metals also relate to pH levels and
oxidation–reduction conditions. For instance, increasing pH values cause the heavy metal
precipitation to increase, whereas the solubility decreases [68–70]. The high ranks of X
and Y show that spatial heterogeneity rather than physicochemical parameters influence
the results. Additionally, RFR often gives low importance to those features with collinear
relations, such as EC, TDS, although they may have physical meaning to the targets.
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Based on the optimized number of features required for each model in Figure 7 and
feature ranks in Figure 9, we divided the input features into three groups: full features,
important features, and low-cost features, as given in Table 4. Essential feature sets were
selected from the highest downward until the required max features. The low-cost features
should be quick and inexpensive to measure by one multiparameter probe; thus, a slow or
expensive feature from the important feature sets was replaced. For instance, SO4 is harder to
measure by the same probe; it was replaced by EC (in the As model) or Cl (in the Mn model)
as a low-cost feature. Finally, although important features from the Fe model can be measured
easily by one multiparameter sensor, another low-cost feature set was created to evaluate.

Finally, we compared the performance distributions of the RFR between full features
and reduced inputs on 100 testing data sets. This experiment aimed to find the most robust
features for each model. The goodness-of-fit distribution was compared in Figure 10. In
general, all feature sets successfully fit targets with a minimum R2 score higher than 0.6. The
As model performances by three feature groups were almost similar (Figure 10a), while
the reduced feature sets of the Fe and Mn model caused a decrease in model performance
(Figure 10b,c). The Wilcoxon signed-rank test was applied to calculate the performance
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discrimination among benchmark models (full features) and other feature sets. The null
hypothesis was that the performance of the paired feature sets is similar. If the p-value
is more significant than 0.05, they have similar distributions; otherwise, they come from
different distributions. As shown in Table 5, the important feature scores and the low-cost
feature scores of As model are similar to the full feature scores; thus, using low-cost features
is more beneficial. Although the Fe model’s important feature scores and low-cost feature
scores are different from the full feature scores, the average low-cost feature score is higher
and more robust to data changes in the Fe model. In Mn prediction, both important feature
scores and low-cost feature scores have the same distribution and are worse than the full
feature scores. Therefore, low-cost features can predict As, Fe and Mn.

Table 4. Feature grouping for models.

Feature Set As Model Fe Model Mn Model

Full features X, Y, pH, TH, EC, TDS, Cl, SO4, NO3, NH4, TOC, Temp, Depth

Important features NH4, X, Y, pH, NO3,
SO4, Cl, Depth, TH, TDS

pH, NH4, Y, NO3,
Depth, X

pH, Y, NO3, TH, NH4,
SO4, X, EC

Low-cost features NH4, X, Y, pH, NO3, EC,
Cl, Depth, TH, TDS

pH, NH4, Y, EC,
Depth, X

pH, Y, NO3, TH, NH4,
Cl, X, EC
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model; (c) Mn model.

Table 5. Results of Wilcoxon-signed rank test on R2 scores of 100 testing data sets: statistic (p-value).

Paired Tests As Model Fe Model Mn Model

Full features—Important features 2065.000 (0.912) 0.000 (0.000) 0.000 (0.000)
Full features—Low-cost features 1883.000 (0.140) 6.000 (0.000) 0.000 (0.000)

Important features—Low-cost features 1396.500 (0.009) 661.500 (0.000) 1697.000 (0.277)

4.3. Quantification of Predictive Uncertainty

This evaluation explains how confident the models can perform on one data set. The
prediction interval for a response is constructed from the results of single decision trees
in the optimized RFR. In order words, each output value from the As model, Fe model,
and Mn model was aggregated from 1848, 1727, and 1000 possibilities, respectively. We
expected the PICP of 90% prediction interval to be around 90%. The lower values of MPI
are the lower uncertainties. Table 6 summarizes the comparison of prediction uncertainties
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generated by different feature sets. The full features produce the highest uncertainties
among the three feature sets, whereas the low-cost features generate almost the lowest
uncertainties. Very high PICPs of the As model by three feature sets indicate that the model
overestimates the noise, while the Fe and Mn models underestimate the uncertainties. The
real uncertainties may be higher than calculated, but the Mn models are more reliable
than the Fe models. Hence, the low-cost features can predict heavy metals but need more
regularization to improve the model’s generalization.

Table 6. Coverage probability of 90% prediction intervals from different inputs: PICP (MPI).

Feature Sets As Model Fe Model Mn Model

Full features 98.32 (0.0174) 80.53 (6.1914) 87.65 (1.4521)
Important features 98.05 (0.0154) 75.02 (4.8758) 86.31 (1.2356)
Low-cost features 98.07 (0.0152) 77.05 (4.9346) 86.41 (1.2340)

Uncertainty simulation results of low-cost features for three models are illustrated in
Figure 11. Overall, the observed values tend to fall into the prediction intervals, masked
by the red shading areas. The median predictive performance of the As model (R2 = 0.80,
RMSE = 0.006) is the highest, followed by the Mn model (R2 = 0.75, RMSE = 0.401) and Fe
model (R2 = 0.65, RMSE = 2.219). It can be seen that the Fe model and Mn model cannot
capture data patterns well, resulting in high variance. The reason may come from the
lack of good predictors because the absence of causal links will limit machine learning
algorithms from drawing desirable outcomes [11]. Besides, bias could be yielded from
too few features or inference of false feature relationships [19]. Reducing features will
ignore some essential features relevant to predictability and cause a significant impact on
predictability. This is contrary to the Fe model. Even the full features also cause the largest
uncertainties. This situation may result from unrepresentative data.
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(c) Mn model, PICP = 86.41%, MPI = 1.230.

4.4. Interpretability of the Proposed Models

This analysis was aggregated from Treeinterpreter outputs. The predicted values were
decomposed into a linear combination of feature contributions and biases to understand
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how the model estimates those targets. The bias was assumed to be the same for training
and testing data; thus, the differences in feature contributions will produce variability.
Figure 12 shows the coefficient distribution for each target in training and testing data.
These graphs describe the local interpretability for a single prediction. NO3 and NH4 have
the most significant contribution range, while the other features are susceptible to outliers,
indicating scattered or non-normal distributed data.
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In general, the global feature contributions were calculated by averaging the local
coefficients of each prediction (Table 7). Nutrients, spatial characteristics, and salinity
highly contribute to As, Fe, and Mn predictions. Under more reduction conditions, Fe and
Mn have more extensive concentration ranges [71]. These results are suitable with earlier
correlation analyses and explanations. The dissimilar ranking in feature contributions
in training and testing shows that either the decomposition method cannot explain the
Fe and Mn models or that the training and testing sets come from different distributions.
Moreover, the feature contribution ranking presented by the three models in the training
stage is different from the ranking in feature importance (see Figure 9), indicating that the
models do not generalize well [72]. In order to have a more efficient explanation of model
behaviors, samples with different characteristics can be separated into different explanatory
models or even different predictive models. Due to time and computation constraints, the
interrelationship of features has not been calculated.

Table 7. Global feature contributions in each model.

Features As Model Fe Model Mn Model
Train Test Train Test Train Test

Cl 4.33 × 10−6 −1.86 × 10−5 6.56 × 10−4 2.76 × 10−3

Depth 4.85 × 10−6 3.63 × 10−5 4.34 × 10−3 −7.28 × 10−-3

EC 4.49 × 10−6 −1.71 × 10−6 3.19 × 10−3 −3.52 × 10−2 4.19 × 10−4 −2.94 × 10−3

NH4 6.13 × 10−6 9.45 × 10−5 2.56 × 10−3 −6.71 × 10−4 3.62 × 10−4 −1.85 × 10−3

NO3 6.87 × 10−6 4.68 × 10−5 3.64 × 10−4 7.00 × 10−3

pH 6.86 × 10−8 8.14 × 10−5 1.22 × 10−3 −5.52 × 10−3 −2.52 × 10−4 −4.82 × 10−3

TDS 1.49 × 10−6 2.25 × 10−5

TH 3.10 × 10−6 6.76 × 10−6 5.27 × 10−4 4.19 × 10−3

X 7.58 × 10−7 2.95 × 10−5 1.17 × 10−3 −4.67 × 10−3 2.76 × 10−4 −2.61 × 10−3

Y −2.42 × 10−6 7.36 × 10−5 −2.55 × 10−4 −9.63 × 10−3 7.97 × 10−5 −5.02 × 10−3
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5. Discussion

Although low-cost features can potentially predict heavy metals through this evalu-
ation framework, both model configuration and feature sets are not fine-tuned for their
actual application. Therefore, some issues need to be considered to yield better results.

Firstly, the selected models are not finely optimized due to the shortcomings of the
randomized search method, namely, not fully exploring the hyperparameter search space.
That is why the models are overfitted. They can be improved by applying other exhaustive
optimization methods, such as Bayesian optimization or Grid search. However, Random
Search could be relatively close to optimal performance but requires less computation for
large sample sizes and many hyperparameters [73,74]. It is still suitable for quick scanning
over reasonable hyperparameter ranges.

Secondly, the feature selection method by importance rank may have an adverse effect.
It gives a single impact on model performance, whereas the inter-relationships are hidden.
Hence, the selected features cannot capture data characteristics. Even though we used
all the feature sets, the training scores of Fe and Mn were not too high. In both the As
and Fe models, uncertainties were unavoidable due to the inherent uncertainties of the
hydrological process [75]. Koutsoyiannis, 2003 [76] also found that hydroclimatic processes
produce more uncertainties than estimation because assumptions are often based on a
stable climate. In order to understand the multi-scalar behavior of contaminated substances
at multiple spatio-temporal scales, using the entropy technique and the Hurst exponent
can be very helpful [77]. However, natural structural factors, including climate, soil and
aquifer formation, sources of groundwater recharge, or human impacts, may interrupt the
long-range correlation of hydroclimatic processes [78]. Vu et al., 2019 [79] and 2021 [80] also
found that land use, especially in agriculture-dominated regions, has a higher potential
for groundwater contamination; thus, land use can be a good indicator of groundwater
characteristics. A simple set of predictors cannot perform as well as expected; thus, adding
more features may improve the model’s performance.

Moreover, the learning curves indicate that adding more samples or modifying the
data structure may improve the model performance. A suitable dataset is more effective
than many predictors and sample sizes [81]. Data regularization can also smooth the
noise to get more generalized predictions. Due to training the models on bootstrapping
samples, the Hurst phenomenon in hydrological processes was excluded. Analyzing
Hurst–Kolmogorov dynamics to find independence structures [82] and cluster data in
smaller groups and training by different models is another strategy to cope with data
heterogeneity at different scales. Simplifying the models then necessitates further effort to
explore data distribution, instance structures, and target analysis to enhance the scalability
of the predictive models. However, training data subsets with different models will amplify
computational load and management. Improving learning efficiency can be done by
simultaneously computing services [83].

Lastly, uncertainty quantification and model interpretation show the heterogeneity in
the data structure. By using gene entropy techniques and the Hurst exponent to understand
the multi-scalar behavior of nitrate-N in groundwater, this approach should readily be
transferable to other contaminated aquifers and catchments. A realized model should
increase accuracy by increasing the complexity, such as adding multi-source data collection
and internet of things (IoT), geographic information systems (GIS), and numerical models
into a large-scale model [84] to have more precise simulation at each spatial scale. As a result,
the model may lose interpretability. The model interpretation can also be processed before
optimization to remove unnecessary features. The selection of quick scan techniques should
be prioritized to save time and effort. Therefore, seeking a good model and indicators is an
exhaustive trial–error process.

6. Conclusions

The study has developed a scanning framework to test the feasibility of candidate ma-
chine learning models, including Support Vector Regression (SVR), K—Nearest Neighbors
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(KNN), Feedforward Artificial Neural Network—Multilayer Perceptrons (MLP), Random
Forest Regression (RFR), Gradient Boosting Regression (GBR) and Linear Regression (LR)
and interpretability of the selected model. The samplings and experiments for heavy
metals in groundwater have been challenging tasks and have drawn much attention in
environmental sciences. The main issues are the test costs that grow exponentially with the
concentration accuracy of the target heavy metals. The prediction of heavy metals using
low-cost water quality data can considerably benefit the monitoring efficiency of heavy
metals in groundwater systems. The study evaluated the predictability of machine learning
models, compared the performance of different water quality indicators, and explored the
reliability and explainability of the model for practical applications.

This study observed that heavy metals in groundwater, namely As, Fe, and Mn, could
be predicted by Random Forest using low-cost physicochemical water quality samples.
Results showed that the As model using ten predictors (NH4, X, Y, pH, NO3, EC, Cl, Depth,
TH, TDS) had low bias (R2 = 0.80) and low uncertainties (PICP = 97.97%, MPI = 0.015).
The Mn model using eight features (pH, Y, NO3, TH, NH4, Cl, X, EC) yielded a relatively
satisfactory fit (R2 = 0.75) and slightly high uncertainties (PICP = 86.41%, MPI = 1.230). The
Fe model needed the fewest features (pH, NH4, Y, EC, Depth, X) but has not been general-
ized, leading to the lowest fitting scores (R2 = 0.65) and high uncertainties (PICP = 77.13%,
MPI = 4.907). The feature contribution simulations showed that nutrients, salinity, and
spatial factors strongly affect heavy metal behaviors.

In the study, the predicted values were decomposed into a linear combination of
feature contributions and biases to understand how the model estimates those targets.
Results showed that NO3 and NH4 had the most significant contribution range, while the
other features were susceptible to outliers, indicating scattered or non-normal distributed
data. Nutrients, spatial characteristics, and salinity highly contributed to As, Fe, and Mn
predictions. Although the built models were not optimally generalized, the results were
promising. This framework addressed how accurate and sensitive the model performances
were, how confidently the predictions covered, where the uncertainty sources were coming
from, and how a particular instance was predicted. The limitation of this experiment is that
one generalized model cannot fit all data patterns in a large area. Further investigation
for more features, namely vegetation cover, climate, topography, land deformation, or
soil properties, may improve the results. Because the data are heterogeneous, it can be
localized in smaller groups by time, space, or chemical characteristics (hardness, salinity)
before training. Other techniques, like clustering, classification, and mixture models, can
be combined to improve the regression performance. However, those findings help in
assessing the practicability of the proposed model for groundwater quality inspection.
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43. Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation Importance: A Corrected Feature Importance Measure. Bioinformatics
2010, 26, 1340–1347. [CrossRef]

44. Galkin, F.; Aliper, A.; Putin, E.; Kuznetsov, I.; Gladyshev, V.N.; Zhavoronkov, A. Human Microbiome Aging Clocks Based on
Deep Learning and Tandem of Permutation Feature Importance and Accumulated Local Effects. bioRxiv 2018.

45. Huang, N.; Lu, G.; Xu, D. A Permutation Importance-Based Feature Selection Method for Short-Term Electricity Load Forecasting
Using Random Forest. Energies 2016, 9, 767. [CrossRef]

46. Yajima, H.; Derot, J. Application of the Random Forest Model for Chlorophyll-a Forecasts in Fresh and Brackish Water Bodies in
Japan, Using Multivariate Long-Term Databases. J. Hydroinformatics 2018, 20, 191–205. [CrossRef]

47. Petkovic, D.; Altman, R.; Wong, M.; Vigil, A. Improving the Explainability of Random Forest Classifier – User Centered Approach.
HHS Public Access 2018, 23, 204–215.

48. Elshawi, R.; Al-Mallah, M.H.; Sakr, S. On the Interpretability of Machine Learning-Based Model for Predicting Hypertension.
BMC Med. Inform. Decis. Mak. 2019, 19, 146.

49. Ryo, M.; Angelov, B.; Mammola, S.; Kass, J.M.; Benito, B.M.; Hartig, F. Explainable Artificial Intelligence Enhances the Ecological
Interpretability of Black-Box Species Distribution Models. Ecography 2021, 44, 199–205.

50. Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.I. Explainable
AI for Trees: From Local Explanations to Global Understanding. arXiv 2019, arXiv:1095.0461v1. [CrossRef]

51. Hall, P. On the Art and Science of Explainable Machine Learning: Techniques, Recommendations, and Responsibilities. In
Proceedings of the KDD’19 XAI Workshop, Anchorage, AK, USA, 4–8 August 2019.

52. Jalali, A.; Schindler, A.; Haslhofer, B.; Rauber, A. Machine Learning Interpretability Techniques for Outage Prediction: A
Comparative Study. In Proceedings of the European Conference on the Prognostics and Health Management Society, Turin, Italy,
1–3 July 2020; pp. 1–10.

53. Saabas, A. Treeinterpreter. Available online: https://github.com/andosa/treeinterpreter (accessed on 15 April 2020).

http://doi.org/10.1103/PhysRevResearch.3.023223
http://doi.org/10.1029/2008WR007030
http://doi.org/10.1016/j.cageo.2019.06.012
http://doi.org/10.3390/e21020184
http://doi.org/10.1016/j.jhydrol.2009.12.013
http://doi.org/10.1038/s41598-019-53166-6
http://doi.org/10.1016/j.ecoser.2018.04.004
http://doi.org/10.1287/ijoc.2013.0548
http://doi.org/10.1021/acs.jctc.8b00959
http://www.ncbi.nlm.nih.gov/pubmed/30605342
http://doi.org/10.1109/ACCESS.2018.2870052
http://doi.org/10.1007/s12652-020-02712-6
http://www.ncbi.nlm.nih.gov/pubmed/33425047
http://doi.org/10.1109/ACCESS.2019.2936143
http://doi.org/10.1109/JIOT.2021.3053420
http://doi.org/10.1109/TVCG.2020.3030354
http://doi.org/10.1093/bioinformatics/btq134
http://doi.org/10.3390/en9100767
http://doi.org/10.2166/hydro.2017.010
http://doi.org/10.1038/s42256-019-0138-9
https://github.com/andosa/treeinterpreter


Int. J. Environ. Res. Public Health 2022, 19, 12180 20 of 21

54. Sharma, P.; Mirzan, S.R.; Bhandari1, A.; Pimpley, A.; AbhiramEswaran; Srinivasan, S.; Shao, L. Evaluating Tree Explanation
Methods for Anomaly Reasoning: A Case Study of SHAP TreeExplainer and TreeInterpreter. In Proceedings of the Advances in
Conceptual Modeling, Vienna, Austria, 3–6 November 2020; Grossmann, G., Ram, S., Eds.; Springer Nature Switzerland: Vienna,
Austria, 2020.

55. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

56. Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]
57. McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the Proceedings of the 9th Python in Science

Conference, Austin, TX, USA, 28 June–3 July 2010; Volume 445, pp. 56–61.
58. Deb, S. A Novel Robust R-Squared Measure and Its Applications in Linear Regression. Adv. Intell. Syst. Comput. 2017,

532, 131–142.
59. Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)? -Arguments against Avoiding RMSE in

the Literature. Geosci. Model Dev. 2014, 7, 1247–1250. [CrossRef]
60. Mazloumi, E.; Rose, G.; Currie, G.; Moridpour, S. Prediction Intervals to Account for Uncertainties in Neural Network Predictions:

Methodology and Application in Bus Travel Time Prediction. Eng. Appl. Artif. Intell. 2011, 24, 534–542.
61. Seifi, A.; Ehteram, M.; Singh, V.P.; Mosavi, A. Modeling and Uncertainty Analysis of Groundwater Level Using Six Evolutionary

Optimization Algorithms Hybridized with ANFIS, SVM, and ANN. Sustain. 2020, 12, 4023. [CrossRef]
62. Fox, E.W.; Ver Hoef, J.M.; Olsen, A.R. Comparing Spatial Regression to Random Forests for Large Environmental Data Sets. PLoS

One 2020, 15, e0229509. [CrossRef] [PubMed]
63. Chang, F.J.; Huang, C.W.; Cheng, S.T.; Chang, L.C. Conservation of Groundwater from Over-Exploitation—Scientific Analyses for

Groundwater Resources Management. Sci. Total Environ. 2017, 598, 828–838. [CrossRef]
64. EPA. Environmental Water Quality Monitoring Annual Report; Environment Protection Administration: Taipei City, Taiwan, 2020.
65. EPA Environmental Protection Administration. Available online: https://ewq.epa.gov.tw/Code/?Languages=tw (accessed on

13 April 2020).
66. Zhang, Z.; Xiao, C.; Adeyeye, O.; Yang, W.; Liang, X. Source and Mobilization Mechanism of Iron, Manganese and Arsenic in

Groundwater of Shuangliao City, Northeast China. Water (Switzerland) 2020, 12, 534. [CrossRef]
67. Mahbooba, B.; Timilsina, M.; Sahal, R.; Serrano, M. Explainable Artificial Intelligence (XAI) to Enhance Trust Management in

Intrusion Detection Systems Using Decision Tree Model. Complexity 2021, 6634811. [CrossRef]
68. Ibrahim, N.I.M. Majmaah The Relations Between Concentration of Iron and the PH Ground Water (Case Study Zulfi Ground

Water). Int. J. Environ. Monit. Anal. 2016, 4, 140.
69. Klingel, F. Potential of In-Situ Groundwater Treatment for Iron, Manganese and Arsenic Removal In. In Proceedings of the

Proceeding of The 4th International Symposium Vietnam Water Cooperation Initia-tive for Water Security in a Changing Era,
Hanoi, Vietnam, 19 October 2015.

70. Rajakovic, J.; Rajakovic Ognjanovic, V. Arsenic in Water: Determination and Removal Chapter. In Arsenic-Analytical and
Toxicological Studies Figure; IntechOpen: London, UK, 2018.

71. Groschen, G.E.; Arnold, T.L.; Morrow, W.S.; Warner, K.L. Occurrence and Distribution of Iron, Manganese, and Selected Trace Elements
in Ground Water in the Glacial Aquifer System of the Northern United States; USGS: Reston, VA, USA, 2009.

72. Molnar, C. Interpretable Machine Learning. A Guide for Making Black Box Models Explainable; Leanpub: Victoria, BC, Canada, 2019;
p. 247.

73. Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
74. Andradóttir, S. A Review of Random Search Methods. In Handbook of Simulation Optimization; Fu, M.C., Ed.; Springer Sci-

ence+Business Media: New York, NY, USA, 2015; pp. 277–292.
75. Solomatine, D.P.; Shrestha, D.L. A Novel Method to Estimate Model Uncertainty Using Machine Learning Techniques. Water

Resour. Res. 2009, 45, WR006839. [CrossRef]
76. Koutsoyiannis, D. Climate Change, the Hurst Phenomenon, and Hydrological Statistics. Hydrol. Sci. J. 2003, 48, 3–24. [CrossRef]
77. Dwivedi, D.; Mohanty, B.P. Hot Spots and Persistence of Nitrate in Aquifers across Scales. Entropy 2016, 18, 25. [CrossRef]
78. Lu, C.; Song, Z.; Wang, W.; Zhang, Y.; Si, H.; Liu, B.; Shu, L. Spatiotemporal Variation and Long-Range Correlation of Groundwater

Depth in the Northeast China Plain and North China Plain from 2000∼2019. J. Hydrol. Reg. Stud. 2021, 37, 100888. [CrossRef]
79. Vu, T.D.; Ni, C.F.; Li, W.C.; Truong, M.H. Modified Index-Overlay Method to Assess Spatial-Temporal Variations of Groundwater

Vulnerability and Groundwater Contamination Risk in Areas with Variable Activities of Agriculture Developments. Water
(Switzerland) 2019, 11, 2492. [CrossRef]

80. Vu, T.D.; Ni, C.F.; Li, W.C.; Truong, M.H.; Hsu, S.M. Predictions of Groundwater Vulnerability and Sustainability by an Integrated
Index-Overlay Method and Physical-Based Numerical Model. J. Hydrol. 2021, 596, 126082. [CrossRef]

81. Machado, D.F.T.; Silva, S.H.G.; Curi, N.; Menezes, M.D. De Soil Type Spatial Prediction from Random Forest: Different Training
Datasets, Transferability, Accuracy and Uncertainty Assessment. Soil Plant Nutr. 2019, 76, 243–254.

82. Dimitriadis, P.; Koutsoyiannis, D.; Iliopoulou, T.; Papanicolaou, P. A Global-Scale Investigation of Stochastic Similarities in
Marginal Distribution and Dependence Structure of Key Hydrological-Cycle Processes. Hydrology 2021, 8, 59. [CrossRef]

http://doi.org/10.1109/MCSE.2007.55
http://doi.org/10.5194/gmd-7-1247-2014
http://doi.org/10.3390/su12104023
http://doi.org/10.1371/journal.pone.0229509
http://www.ncbi.nlm.nih.gov/pubmed/32203555
http://doi.org/10.1016/j.scitotenv.2017.04.142
https://ewq.epa.gov.tw/Code/?Languages=tw
http://doi.org/10.3390/w12020534
http://doi.org/10.1155/2021/6634811
http://doi.org/10.1029/2008WR006839
http://doi.org/10.1623/hysj.48.1.3.43481
http://doi.org/10.3390/e18010025
http://doi.org/10.1016/j.ejrh.2021.100888
http://doi.org/10.3390/w11122492
http://doi.org/10.1016/j.jhydrol.2021.126082
http://doi.org/10.3390/hydrology8020059


Int. J. Environ. Res. Public Health 2022, 19, 12180 21 of 21

83. Wang, M.; Fu, W.; He, X.; Hao, S.; Wu, X. A Survey on Large-Scale Machine Learning. IEEE Trans. Knowl. Data Eng. 2020,
34, 2574–2594. [CrossRef]

84. Su, Y.S.; Ni, C.F.; Li, W.C.; Lee, I.H.; Lin, C.P. Applying Deep Learning Algorithms to Enhance Simulations of Large-Scale
Groundwater Flow in IoTs. Appl. Soft Comput. J. 2020, 92, 106298. [CrossRef]

http://doi.org/10.1109/TKDE.2020.3015777
http://doi.org/10.1016/j.asoc.2020.106298

	Introduction 
	Materials and Methods 
	Uncertainty Quantification 
	Interpretable Machine Learning 
	Conceptual Framework 
	Evaluation Metrics 
	Study Site and Data Sources 

	Data Analysis and Feature Engineering 
	Results 
	Assessment of the model Predictability 
	Assessment of the Feature Predictability 
	Quantification of Predictive Uncertainty 
	Interpretability of the Proposed Models 

	Discussion 
	Conclusions 
	References

