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Abstract: Around nine million people have been exposed to toxic humidifier disinfectants (HDs)
in Korea. HD exposure may lead to HD-associated lung injuries (HDLI). However, many people
who have claimed that they experienced HD exposure were not diagnosed with HDLI but still felt
discomfort, possibly due to the unknown effects of HD. Therefore, this study examined HD-exposed
subjects with normal-appearing lungs, as well as unexposed subjects, in clusters (subgroups) with
distinct characteristics, classified by deep-learning-derived computed-tomography (CT)-based tissue
pattern latent traits. Among the major clusters, cluster 0 (C0) and cluster 5 (C5) were dominated by
HD-exposed and unexposed subjects, respectively. C0 was characterized by features attributable to
lung inflammation or fibrosis in contrast with C5. The computational fluid and particle dynamics
(CFPD) analysis suggested that the smaller airway sizes observed in the C0 subjects led to greater
airway resistance and particle deposition in the airways. Accordingly, women appeared more
vulnerable to HD-associated lung abnormalities than men.

Keywords: humidifier disinfectants; computed tomography; deep learning; cluster analysis;
computational fluid and particle dynamics

1. Introduction

Humidifier disinfectants (HDs) are used for the prevention of microorganism growth
in humidifiers. In Korea, several types of HD were found to have severe adverse effects on
human health. Before they were banned, around nine million people had been exposed
to toxic HDs [1]. Many epidemiological studies have demonstrated the relationship of
HD with lung injuries and fibrosis [2–8]. In addition, Kim et al. have demonstrated the
aerosolized particles of HD-induced lung inflammatory and fibrotic responses through
in vivo and in vitro experiments [9].

Machine learning techniques have been widely used for discovering imaging subtypes
of lung diseases with heterogeneous characteristics, such as chronic obstructive pulmonary
disease (COPD). For example, Binder et al. used a generative model that captures emphy-
sema subtypes correlated with distinct physiological indicators using an unsupervised
approach [10]. In addition, Haghighi et al. employed CT-imaging-based structural and
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functional variables on both the local and global scales to identify clinically relevant clusters
among current and former smokers, respectively [11,12]. However, subjective selections
of imaging-based variables or features, which are based on known physiology and patho-
physiology, may not be inclusive enough to describe all the features of a heterogeneous
lung disease. With the advancement of deep learning techniques, deep learning models
are able to detect the important imaging features for the task concerned without human
intervention. For example, Li et al. proposed a three-dimensional (3D) convolutional
autoencoder with a feature constructor (CAE-FC) that is able to identify imaging-based
latent traits which can be used to differentiate phenotypes among COPD patients [13].

HD-associated lung injuries (HDLI) can develop due to multiple causes, and the
long-term effects of HD exposure remain unclear. A large portion of people who have
claimed that they experienced exposure to HD were not diagnosed with HDLI but still
claimed discomfort, possibly due to the influences of HD exposure. Yoon et al. reported
the increased risk of asthma symptoms in children with a history of acute bronchiolitis
after exposure to HD [14]. In this case, not only exposure to HD, but also the pre-existing
bronchiolitis, contributed to the asthma symptoms.

In this study, we aimed to identify subgroups with distinct tissue pattern factors or
latent traits derived by computed tomography (CT). The identified subgroups were used to
differentiate HD-affected subjects from unaffected subjects among the subjects with normal
lung CTs and lung functions. To identify the latent traits, we employed an in-house deep
learning model, along with exploratory factor analysis (EFA), to evaluate CT images of both
HD-exposed and unexposed subjects [13]. We furthermore applied computational fluid
and particle dynamics (CFPD) analysis to elucidate the airway resistance and HD aerosol
particle deposition that may characterize HD-exposed subjects with normal-appearing
lungs. To our knowledge, this is the first study that uses an unsupervised deep learning
approach to discover the subtypes of HD-affected patients, potentially beyond those who
can be identified through the manual reading of the CT images. The findings of this study
may be useful for the better management of the disease in the future.

2. Methods
2.1. Human Subject Data and Image Processing

A total of 121 subjects were selected for investigation. We retrospectively collected
inspiratory (IN) and expiratory (EX) CT image data acquired at total lung capacity (TLC)
and residual volume (RV), as well as PFT results. Among these, 96 subjects claimed expo-
sure to toxic HD but had normal CT and pulmonary function test (PFT) results. The most
common HD chemical ingredient was polyhexamethylene guanidine (PHMG). Other major
ingredients were oligo (2-)ethoxyethoxyethyl guanidine chloride (PGH), chloromethylisoth-
iazolinone (CMIT), and methylisothiazolinone (MIT) [15]. The exposure type and duration
were defined based upon the questionnaire. The other 25 subjects did not claim exposure to
toxic HD and had normal-appearing CT and PFT results. The demographic data and PFT
measurements for each stratum are shown in Table 1. The study protocol was approved by
the institutional review boards (IRB) of Seoul National University Hospital (SNUH) and
Jeonbuk National University Hospital (JBNUH) (project title: Quantitative CT features of
potential respiratory abnormalities in children and adults with normal-appearing chest CT
by humidifier disinfectant inhalation exposure). For the current research, informed consent
was waived by IRB at SNUH, because this was a retrospective study based upon existing
data and the research involved minimal risks. The research collected only non-identifiable
data. All methods were carried out in accordance with the relevant institutional guidelines
and regulations.

Patients underwent 128 multidetector CT scanning at full inspiration and full expira-
tion using a Philips Ingenuity scanner (Philips Healthcare, Cleveland, OH, USA) in SNUH
and Somatom Definition Flash scanner (Siemens Healthcare, Forchheim, Germany) in
JBNUH. The CT parameters were as follows: tube voltage (120 kVp), tube current (SNUH:
inspiration, DRI (dose right index) 14, expiration, DRI 14; JBNUH: inspiration, 110 quality
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reference mAs, expiration, 50), slice thickness (1.0 mm), reconstruction interval (1.0 mm),
reconstruction algorithm (SNUH: standard (B); JBNUH: B35f), and rotation time (0.5 s).

Table 1. Demographic data and PFT measurements for HD-exposed and unexposed subjects. Entries
are mean (SD) unless otherwise specified. The differences between the means of independent groups
were analyzed by Welch’s t-test and the significance level was set as 0.05. Chi-square test was used to
examine the relationship between two categorical variables.

Exposed
(n = 96)

Non-Exposed
(n = 25)

Total
(n = 121) p

Age (yrs.) 49.86 45.44 48.95
0.116(15.43) (11.38) (14.75)

BMI (kg/cm2)
23.40 24.72 23.67

0.057(3.21) (2.94) (3.19)

Height (cm) 163.95 169.96 165.20
0.002(7.89) (8.15) (8.28)

Weight (kg) 63.11 71.76 64.91
0.003(10.94) (12.06) (11.68)

FVC (% of pred) 87.16 99.28 89.68
<0.001(16.64) (7.17) (15.92)

FEV1 (% of pred) 89.53 107.72 93.32
<0.001(20.86) (10.51) (20.52)

Gender (%)
45.8/54.2 16.0/84.0 39.7/60.3 0.013(Female/Male)

The determinant of the Jacobian matrix (J) was computed by registering IN and EX
images [16,17] for each voxel in the IN images so as to measure local volume change. In
this study, J is defined as the EX to IN volume ratio; thus, 1/J indicates the local volume
expansion. Two-channeled images were constructed by combining the J values with the IN
images (Figure 1a). In total, 98,250 3D regions of interest (ROIs) were randomly extracted
from the two-channeled images. The size of the ROI was approximately the size of a
secondary pulmonary lobule (20 × 20 × 20 mm3), which is a fundamental unit of the
lung structure [18]. We used Apollo software (VIDA Diagnostics, Coralville, Iowa) for
the segmentation of the lungs and airways and Insight Toolkit (ITK, version 5.0, Kitware,
Clifton Park, NY, USA) and in-house software for the further image processing. The
detailed information about the image processing can be found in Li et al. [13].

2.2. 3D Convolutional Autoencoder (CAE) and Feature Constructor (FC)

Each voxel in the extracted ROIs consisted of two input data channels: rescaled CT
density and J. The ROIs were fed into a 3D CAE-FC model to obtain their one-dimensional
(1D) representations and to group the ROIs with similar patterns into pattern clusters [13].
The optimal number of pattern clusters was determined by testing different numbers of
pattern clusters and selecting the number which yielded the lowest loss during the training
of the CAE-FC model (Figure S1).

The CAE-FC model contained an encoder, which consisted of 3D convolutional layers,
an embedding layer, and a decoder, which consisted of 3D de-convolutional layers and
a FC (Figure 1). The FC suppressed the small activations in the embeddings and forced
the decoder to reconstruct the ROIs using only the important activations. The ROIs were
grouped based on the greatest activations among the highest-level feature maps (embed-
dings). Therefore, the CAE-FC model was able not only to extract the 1D representations of
the ROIs but also to group the 1D representations with similar patterns. Please refer to [13]
for more detailed information about the CAE-FC model.
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Figure 1. (a) A two-channeled image was constructed using the IN image as the first channel and
the Jacobian mask as the second channel. (b) Schematic of the CAE-FC model. Reprinted/adapted
with permission from Ref. [13], 2021, Li et al. The ROIs were fed into the 3D CAE-FC model to
obtain their one-dimensional (1D) representations and to group the ROIs with similar patterns into
pattern clusters.

After the CAE-FC training, a sliding window technique was applied to classify the
lung tissue patterns and quantify the frequency of each pattern cluster within the whole
lung. Then, a pattern cluster frequency histogram could be calculated for each subject.
The procedure is illustrated in Figure 2. We further used EFA [19–21], a data reduction
technique, to extract latent traits (factors) from these pattern clusters. That is, highly
associated pattern clusters were grouped together into the same factor, and the pattern
cluster frequencies of the subjects were then transformed into factor scores. Please refer to
the Supplementary Materials for the steps of the EFA.
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Figure 2. The CAE-FC model is applied to the ROIs extracted by the sliding window technique so as
to classify the lung tissue patterns and construct a pattern cluster histogram for each subject. EFA
is then used to extract the latent traits (factors) from the pattern cluster histograms of the subjects.
Using the factor scores, subject clusters are identified by the k-means clustering technique. Finally,
CFPD analysis is conducted to evaluate the particle depositions of the representative subjects.

2.3. Factor Interpretation

The averaged intensities and the averaged J of the pattern clusters showing high
associations with each factor were compared. In addition, to facilitate the interpretation of
the identified factors, we evaluated the correlations of the factors with the clinical and CT
imaging-based variables. The included clinical variables were age, gender, height, weight,
body mass index (BMI), percent-predicted forced expiratory volume in 1 s (FEV1%), and
forced vital capacity (FVC). The included imaging-based variables were the low attenuation
area (LAA) percentage at RV (LAARV%) in the total lung and in each lobe, tissue fraction at
TLC (Tissue%) in the total lung and in each lobe, LAA percentage at TLC (LAATLC%) in the
total lung and in each lobe, functional small airway disease percentage (fSAD%) in the total
lung and in each lobe, airway tree to lung volume ratio (AWV%) [22,23], and CT-measured
RV to TLC ratio (RV/TLC) [24].
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2.4. Identification of the Subject Clusters

K-means clustering was applied to identify the subject clusters within the factor scores.
The number of subject clusters was determined by evaluating the inter-cluster and intra-
cluster variability. Next, the correlation between the clusters and exposure was tested.
Moreover, the inter-cluster differences in terms of the aforementioned clinical and imaging-
based variables were examined. Lastly, a decision tree model, viz., a non-linear feature
selector, was trained and developed using both the clinical and imaging-based variables,
showing significant differences between clusters. Thus, this model may potentially be used
in clinical practice to assist in the identification of HD-associated lung abnormalities in
susceptible patients.

2.5. Simulations of Airflow in the Airways Using CFPD

To facilitate the interpretation of the subject clusters in terms of the inhaled HD aerosol
deposition, a HD-exposed subject and an unexposed subject were selected for CFPD
analysis, who were chosen from the clusters with the minimal and the largest proportions
of HD-unexposed subjects, respectively. The selection was based on their proximity to the
clusters’ geometric centers in the feature space of the factor scores. Moreover, the mean
hydraulic diameters of the lobar and sub-lobar subsets were calculated for the two clusters
in order to facilitate the explanation of the CFPD results. The lobar airways were defined
as the left upper lobe (LUL) bronchus, left lower lobe (LLL) bronchus, the right upper lobe
(RUL) bronchus, right middle lobe (RML) bronchus, and right lower lobe (RLL) bronchus.
In this study, the sub-lobar subset airways were defined as the child and grandchild
branches of the lobar branches.

Subject-specific flow rates were applied at the supraglottal inlet. The inhalation flow
pattern was approximated by a sinusoidal waveform. The inhaled air volume was set to
a tidal volume, which was estimated using 7 mL of air per kilogram of body weight [25].
For all cases, the time to peak inspiration was set to 1.2 s with an inhalation period (T)
of 4.8 s. An in-house three-dimensional (3D) CFPD lung model was used to simulate the
velocity field and pressure drop in the central airways, which can be used to calculate the
airway resistance [26,27]. Subsequently, the trajectories of 0.5 µm spherical particles, which
were used to model the HD particles, were computed using a Lagrangian particle-tracking
algorithm [27] in order to capture the local hotspots of high deposition density on the walls
of the 3D airways. We further applied a 1D deposition model to predict the deposition
fractions in the entire subject-specific airway tree [28–30]. Particle depositions in the entire
conducting airway were estimated for the representative subjects during inspiration.

2.6. Statistical Analysis

The differences between the means of the independent groups were analyzed by
Welch’s ANOVA with the Games–Howell method for post hoc pairwise tests. Pearson’s
correlation and bi-serial correlation were used to examine the associations of the identified
factors with the known continuous variables and binary variables, respectively. The chi-
square test was used to examine the relationship between two categorical variables. The
significance level was set as 0.05. The statistical analyses were conducted using SciPy 1.4.1
and Pingouin 0.3.4 in the Python 3 packages.

3. Results

The deep learning and the following statistical analyses were conducted for the 121 sub-
jects. Among them, 96 subjects (79.3%) claimed exposure to HD and 25 subjects (20.7%)
did not. A total of 80 pattern clusters were identified by the CAE-FC model, and the quan-
tification of the pattern clusters within the lungs was performed to generate the pattern
cluster histograms. Subsequently, six factors (F0–F5) were extracted from the pattern cluster
histograms of all subjects. Finally, six clusters (C0–C5) were obtained by k-means clustering
in the feature space of the factor scores. The demographic data, PFT measurements, and
exposure information for each cluster are shown in Table 2. The exposure frequency for
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each cluster is shown in Table 3. A significant relationship (p < 0.001) between exposure to
HD and the clusters showed that the frequencies of HD-exposed subjects in the clusters
were different from one another. C0 had the smallest fraction (3.1%) of HD-unexposed
subjects, while C5 had the largest fraction (48.5%) of HD-unexposed subjects. On the other
hand, the proportions of HD-unexposed subjects in C1 (13.0%) and C2 (17.9%) were similar
to that of the entire dataset, indicating that exposure to HD was not the main feature differ-
entiating C1 and C2 from the entire dataset. C3 and C4 were excluded from the analysis,
since the number of members was small. Thus, hereafter, we presented the results for the
four main clusters of C0, C1, C2, and C5, with a focus on C0 and C5, to characterize the
HD-exposed subjects, regarding C5 as cluster of unexposed subjects with no HD-induced
abnormal features. We note that the majority (64.0%) of unexposed subjects were found
in C5. Nevertheless, neither the exposure type nor the exposure duration were associated
with the cluster membership (Table 2). As an illustration, Figure 3 shows a comparison of
the factors, CT densities, and J values of the representative subjects for the four clusters.

Table 2. Demographic data and PFT measurements for each cluster. Entries are mean (SD) unless
otherwise specified. The differences between the means of independent groups were analyzed by
Welch’s ANOVA with the Games–Howell method for post hoc pairwise tests. The chi-square test was
used to examine the relationship between two categorical variables.

C0 C1 C2 C5 p

Age (yrs.) 54.41 48.96 40.89 49.91
0.005(15.55) (14.43) (12.03) (14.36)

BMI (kg/cm2)
23.74 25.14 22.29 23.65

0.038(3.19) (2.69) (3.37) (3.03)

Height (cm) 161.55 163.35 166.96 168.33
<0.001(8.40) (7.44) (8.32) (7.61)

Weight (kg) 62.16 67.43 62.65 67.25
0.142(10.81) (11.12) (13.24) (10.96)

FVC (% pred) 81 93.7 94.75 91
0.104(18.34) (16.74) (14.60) (11.17)

FEV1 (% pred) 82.58 98.48 101.18 94.76
0.064(24.40) (17.38) (13.86) (18.15)

Gender (%)
59.4/40.6 52.2/47.8 39.3/60.7 15.2/84.8 <0.001(Female/Male)

Exposure (%)
96.9/3.1 87.0/13.0 82.1/17.9 51.5/48.5 <0.001(Yes/No)

Time of Exposure (hrs.)
15,075.72 11,293.16 10,459.82 15,928.53

0.61
(18,150.32) (10,507.95) (10,561.51) (21,145.16)

PHMG or PGH (Count) 17 14 13 9

0.65
CMIT or MIT (Count) 1 2 1 0

PHMG AND CMIT (Count) 9 2 5 6

Other HDs (Count) 2 1 3 2

Table 3. Counts of HD-exposed and unexposed subjects in each cluster.

Exposure
No Yes Total

Cluster

C0 1 31 32
C1 3 20 23
C2 5 23 28
C3 0 1 1
C4 0 4 4
C5 16 17 33



Int. J. Environ. Res. Public Health 2022, 19, 11894 8 of 19

Int. J. Environ. Res. Public Health 2022, 19, 11894 8 of 20 
 

 

PHMG or PGH (Count) 17 14 13 9 

0.65 
CMIT or MIT (Count) 1 2 1 0 

PHMG AND CMIT (Count) 9 2 5 6 

Other HDs (Count) 2 1 3 2 

Table 3. Counts of HD-exposed and unexposed subjects in each cluster. 

Exposure 
No Yes Total 

Cluster 

C0 1 31 32 

C1 3 20 23 

C2 5 23 28 

C3 0 1 1 

C4 0 4 4 

C5 16 17 33 

 

Figure 3. Comparison of two representative subjects each for C0, C1, C2, and C5. Factor masks (left 

column) and Jacobian masks (right column) were overlapped with CT images (middle column). 

A significant relationship (p < 0.001) between gender and the clusters was found. C0 

was female dominated (59.4%), while C5 was male dominated (84.8%). On the contrary, 

there was no significant difference between the means of the clusters in terms of FVC% 

and FEV1%. The pairwise comparisons showed that C0 was significantly smaller than C5 

in terms of height (C0: 159.74 ± 7.52 cm; C5: 168.33 ± 7.61 cm) and LAATLC%_Total (C0: 

1.33 ± 2.23%; C5: 3.46 ± 3.30%). On the other hand, C0 was significantly larger than C5 in 

terms of RV/TLC (C0: 0.76 ± 0.33; C5: 0.55 ± 0.06) and Tissue%_Total (C0: 16.98 ± 5.07%; 

C5: 10.51 ± 1.36%). However, there were no significant differences between C0 and C5 in 

Figure 3. Comparison of two representative subjects each for C0, C1, C2, and C5. Factor masks
(left column) and Jacobian masks (right column) were overlapped with CT images (middle column).

A significant relationship (p < 0.001) between gender and the clusters was found. C0
was female dominated (59.4%), while C5 was male dominated (84.8%). On the contrary,
there was no significant difference between the means of the clusters in terms of FVC%
and FEV1%. The pairwise comparisons showed that C0 was significantly smaller than C5
in terms of height (C0: 159.74 ± 7.52 cm; C5: 168.33 ± 7.61 cm) and LAATLC%_Total (C0:
1.33 ± 2.23%; C5: 3.46 ± 3.30%). On the other hand, C0 was significantly larger than C5 in
terms of RV/TLC (C0: 0.76 ± 0.33; C5: 0.55 ± 0.06) and Tissue%_Total (C0: 16.98 ± 5.07%;
C5: 10.51 ± 1.36%). However, there were no significant differences between C0 and C5 in
terms of LAARV%_Total (C0: 16.43 ± 15.22%; C5: 21.21 ± 10.24%) and fSAD%_Total (C0:
10.52 ± 13.66%; C5: 11.53 ± 7.69%). The mean values and standard deviations of these
variables for each cluster are shown in Figure 4. Significant differences were found between
C0 and C5 for F1, F2, F3, and F5 (Figure 5). Among these factors, F2 and F3 were found
to be bi-polar factors. A bi-polar factor is a latent trait that has two opposite directions.
That is, their positive and negative factor scores were contributed by pattern clusters with
positive loadings and negative loadings, respectively. For example, when describing the air
content in a lung, both low attenuation and high attenuation areas of the CT image can be
used. That is, low and high attenuation areas correspond to more air content and less air
content in a lung, respectively.
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Figure 4. (a) Comparison between the clinical variables of C0 and C5. (b) Comparison between the
imaging-based variables measured at total lung capacity of C0 and C5. The differences between the
means of independent groups were analyzed by Welch’s ANOVA with the Games–Howell method
for post hoc pairwise tests and the significance level was set as 0.05.

The mean CT density and J of the pattern clusters were calculated. The pattern
clusters that were highly positively associated with each factor were denoted as f0−f5. The
pattern clusters that were highly negatively associated with F2 and F3 were denoted as
f2n and f3n, respectively (i.e., pattern clusters associated with the negative portion of the
bi-polar factors). We found that f1 and f2 had a relatively low CT density and J (f1: CT
density = 0.097, J = 0.504; f2: CT density = 0.125, J = 0.588), f3 had a high density but low J
(CT density = 0.156, J = 0.442), and f5 had a low CT density but high J (CT density = 0.088,
J = 0.769). On the other hand, f2n had both the highest CT density and J (CT density = 0.267,
J = 1.470), and f3n had a relatively high CT density and J (CT density = 0.159, J = 0.690,
Figure 6b). Examples of f1, f2(n), f3(n), and f5 are shown in Figure 6a.
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Figure 5. Mean factor scores which account for the differences between C0 and C5. Significant
differences between C0 and C5 were found for F1, F2, F3, and F5. The differences between the means
of independent groups were analyzed by Welch’s ANOVA with the Games–Howell method for post
hoc pairwise tests and the significance level was set as 0.05.
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Figure 6. (a) Samples of the pattern clusters that showed a high contribution to the factors of F1,
F2, F3, and F5. These four factors can differentiate C0 from C5. F2 and F3 are bi-polar factors; thus,
there are pattern clusters with either positive (f2 and f3 in green boxes) or negative (f2n and f3n in
red boxes) contributions to them. (b) Averaged CT attenuation (I) and averaged Jacobian (J) of the
pattern clusters which had showed a contribution to each factor.



Int. J. Environ. Res. Public Health 2022, 19, 11894 11 of 19

Correlations between the factors and common clinical and imaging-based variables
were also calculated in order to better interpret the results (Figure 7). F1 and F2 were
negatively correlated with Tissue%_Total and Tissue% for all the lobes. F3 was nega-
tively correlated with LAARV%_Total and LAARV% for all the lobes, while F5 was posi-
tively correlated with LAARV%_Total and LAARV% for all the lobes. F1, F2, and F3 were
negatively correlated with RV/TLC. On the contrary, F5 was positively correlated with
RV/TLC. Moreover, F1 was positively correlated with LAATLC%_Total, LAATLC%_LUL,
and LAATLC%_RML, while F5 was positively correlated with fSAD%_Total and fSAD%
for all the lobes. However, F1, F2, F3, and F5 were not strongly correlated with the clinical
variables of BMI, weight, height, age, FEV1%, and FVC%.
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Figure 7. Pearson’s correlations between factors and common clinical data and imaging-based
variables. Only correlations with p values of less than 0.05 are shown in the figure.

The lobar and segmental airways of C0 subjects were found to have smaller hydraulic
diameters than those of C5 subjects, although no significant difference was found between
the lobar airways in RML and RLL or the segmental airways in RUL and RML (Figure 8a).
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Similarly, the hydraulic diameters of both lobar and segmental airways were found to be
smaller in the C0 representative subject (Figure 8b). The CFPD analysis showed that the C0
representative subject had a greater pressure drop in both the lobar and segmental airways
of all lobes except for RML (Figure 9a). Hotspots were observed in the segmental airways
of RUL and RLL in the C0 representative subject (Figure 9b). Moreover, a larger amount of
particle depositions in the conducting airway were found in the C0 representative subject
compared to the C5 representative subject (Figure 10). These results suggest that the C0
subjects experienced airway narrowing, which induced increased airway resistance and
greater particle deposition.
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Figure 8. (a) Averaged hydraulic diameters of the lobar airways and segmental airways of C0 and
C5. A “*” denotes a significant difference between C0 and C5. The differences between the means of
independent groups were analyzed by Welch’s ANOVA with the Games–Howell method for post
hoc pairwise tests and the significance level was set as 0.05. (b) Hydraulic diameters of the lobar
airways and sub-lobar subset airways of the C0 and C5 representative subjects. A lobar airway and a
sub-lobar subset airway in a lobe are denoted as “l” followed by the abbreviation of the given lobe
(e.g., lRUL) and “s” followed by the abbreviation of the given lobe (e.g., sRUL), respectively.
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Figure 9. (a) Peak inspiratory pressure distributions in the airways. The arrows represent the greater
pressure drop in the C0 representative subject. (b) Color maps of the particle deposition density on
the airway wall surface (Np/mm2). Hotspots were found in the segmental airways of RUL and RLL
in the C0 representative subject.

A decision tree was trained using the selected inspiratory CT imaging metrics and
clinical variables for the classification of the subjects into either C0, C5, or other clusters
(Figure 11). An accuracy of 0.79 was achieved based on a three-fold cross-validation analysis.
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Figure 10. (a) Deposition fractions (DF) at each individual airway branch of the entire conducting
airway estimated by the 1D particle deposition simulation of the C0 and C5 representative subjects.
(b) The total lung deposition fraction in the conducting airways of the C0 and C5 representative
subjects during inspiration. The C0 representative subject demonstrated a greater particle deposition
in the conducting airways.
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Figure 11. A decision tree model which takes the imaging-based variables and the clinical variables
as inputs and predicts the cluster membership.

4. Discussion

In this study, we extracted six factors from lung tissue patterns. Subsequently, the
factors were used to identify four major clusters of C0, C1, C2, and C5 from a total of
121 either HD-exposed or unexposed subjects with normal-appearing lungs. Table 4
summarizes the characteristics of each cluster. The association between the clusters and
HD exposure indicated that the clusters differentiate HD-exposed from unexposed subjects.
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Among the clusters, C0 had the largest fraction (96.9%) of HD-exposed subjects, while
C5 had the smallest fraction (51.5%) of HD-exposed subjects (Table 3). The majority of
unexposed subjects (16 of 25, 64.0%) were in C5, which suggests that C5 does not reflect
HD-specific abnormalities. Thus, HD-exposed subjects in C5 may be regarded as HD-
unaffected subjects, although they claimed exposure to toxic HD. In contrast, subjects in
C0, as well as C1 and C2, may reflect HD-affected abnormality and could be considered
as candidates for a follow-up study on progression or recovery. F1, F2, F3, and F5 are the
major features that differentiate C0 and C5.

Table 4. Pair-wise contrasts for C0, C1, and C2, with C5 as a reference group.

C0 C1 C2 C5

Height -- -- -
BMI +

FVC % pred
FEV1 % pred

RV/TLC + - -
RV - - -

TLC ---
LAARV% - -- --
fSAD% - -- --
Tissue% +++ ++

LAATLC% -- -- -
F1 +++
F2 -- +++
F3 --- +++
F5 +++

Note: “+” and “-” denote the relative magnitude of a given contrast being greater or smaller.

C0 was dominated by HD-exposed female subjects. It was characterized by negative
scores of F2 and F3, suggesting high CT attenuation, high J (low expansion), increased
Tissue%, and increased RV/TLC. Moreover, f2n appears to be associated with regional hypo-
inflation and subpleural opacities (Figure 6), while f3n may be associated with air trapping
or low attenuation on expiratory CT. The effects of f2n and f3n may lead to opposite results
in regard to lung attenuation. In C0, LAARV% and fSAD% were smaller than those of
C5, which implies that the influence of f2n was stronger than that of f3n in C0. Increased
Tissue% may reflect an increased high attenuation area in an inspiratory image, which
is attributable to inflammation or fibrosis. These findings were obtained by the presence
of mosaic attenuation and air trapping. In addition, an increase in RV/TLC was due to
decreased TLC, that is, hypo-inflation, implying a fibrotic lung [31]. Mosaic attenuation
and air-trapping observed from CT images, as well as decreased TLC, are features similar
to those of fibrotic hypersensitivity pneumonitis [31,32]. It has been suggested that HD can
damage epithelial cells and induce inflammation, leading to excessive tissue repair and
lung fibrosis [3,9].

C5 was dominated by unexposed male subjects. Regarding the identified factors, this
cluster was characterized by positive scores of F2 and F5, demonstrating relatively greater
LAARV%, LAATLC%, and fSAD% than the HD-exposed-subject-dominated clusters. While
C5 was dominated by subjects from the control group, it is noteworthy that C5 subjects
were greater in height. For the HD-exposed subjects in C5, we could assume they were
unaffected by HDs or in the resolving stage, by which point CT features have diminished
into faint lesions or disappeared [33].

C1 and C2 were also predominated by HD-exposed subjects (Table 3). While the char-
acteristics of C1 and C2 are still unclear and further investigation is needed, we provided a
brief discussion. C1 and C2 were associated with greater F3 and F1, respectively. F3 and F1
both showed greater lung deformation (smaller J, Figure 6b). This might be contributed by
hyper-deflation of the lung in RV (Table 4). The TLC volume is not significantly different
from C5. More information for C1 and C2 can be found in Table S1.
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From the CFPD analysis, we found an increase in the pressure drop in both the lobar
and segmental airways of all lobes except RML in the C0 subject. In addition, particle
deposition hotspots were observed in the segmental airways in RUL and RLL of the C0
representative subject. Similarly, more particle depositions were found in the complete
conducting airways of the C0 representative subject. Furthermore, the increase in the
pressure drop might be attributed to a decrease in the hydraulic diameters of the lobar
and segmental airways. Therefore, we speculated that females are more susceptible to
HD-associated lung abnormality because of their smaller airway size, which may lead to
greater airway resistance and more HD particle accumulation in small airways.

However, there may exist other environmental or occupational factors that can also
contribute to the inclination of females to be more vulnerable to HD-associated lung
abnormality. For example, housewives tend to spend longer periods of time at home,
resulting in more exposure to HD. It has been reported that females and children were at
greater risk with a longer duration of exposure [2,34]. This study has several limitations.
First, this is a retrospective study. The duration and dose of exposure to HDs were not well
controlled. The data from the questionnaire related to HD exposure were collected from
the subject years after the HD exposure. Therefore, there is strong possibility of exposure
misclassification due to erroneous statements based on recall bias and other technical
reasons [33]. Moreover, there are many types of HD. Each type may have different effects
on the patients. Thus, these factors may affect the interpretation of the findings.

The decision tree model (Figure 11) used the lung deformation (RV/TLC) and tissue
content in the lung (Tissue%) to differentiate the clusters. This coincides with the previous
result, showing that C0 subjects had less lung deformation and a greater tissue content
than the other clusters, implying more fibrotic or inflammatory lungs in the C0 subjects.
Nevertheless, the derivation of RV/TLC and Tissue% required the image processing of CT
images. The decision tree model could serve as a diagnostic aid for clinical doctors.

5. Conclusions

Among those subjects with normal-appearing lung CT and normal PFT results, HD-
affected (C0) and HD-unaffected (C5) subject clusters were identified by CT-based two-
channel deep learning latent traits. C0 was characterized by increased Tissue% and hypo-
inflation, as compared to C5, suggesting that our model can distinguish HD-associated
lung abnormalities from among a normal-appearing HD-exposed population, and that C0
subjects may be at risk of HD-induced inflammation or lung fibrosis. The CFPD analysis
suggested that HD-affected subjects tend to have a higher airway resistance and higher HD
aerosol particle deposition density, which may increase their susceptibility to HD-induced
lung damage. Finally, we developed a decision tree model to assist in the identification of
HD-associated lung abnormalities in susceptible subjects. The findings of this study may be
useful for the future studies aiming to follow up HD-exposed normal-appearing subjects.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijerph191911894/s1, Figure S1. Training losses for CAE-FC models
trained using different numbers of embeddings (pattern-clusters). Table S1. Post-hoc comparisons
of the clinical and imaging-based variables between the clusters. The comparison pairs which were
significantly different are shaded with gray. The differences between the means of independent
groups were analyzed by Welch’s ANOVA with the Games-Howell method for post-hoc pairwise
tests. Reference [35] is cited in the Supplementary Materials.
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Abbreviations

BMI Body mass index
PFT Pulmonary function test
EX Expiration
IN Inspiration
FEV1 Forced expiratory volume in one second
FVC Forced vital capacity
HD Humidifier disinfectant
HDLI HD-associated lung injuries
CT Computed tomography
EFA Exploratory factor analysis
IRB Institutional review boards
ROI Regions of interest
CAE Convolutional autoencoder
FC Feature constructor
AWV% Airway tree to lung volume ratio
RV/TLC Residual volume to total lung capacity ratio
CFPD Computational fluid and particle dynamics
LES Large eddy simulation
F0 Factor 0
F1 Factor 1
F2 Factor 2
F3 Factor 3
F4 Factor 4
F5 Factor 5
C0 Cluster 0
C1 Cluster 1
C2 Cluster 2
C3 Cluster 3
C4 Cluster 4
C5 Cluster 5
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Variables below measured at different locations are denoted by {Variable}_{Location}.
Variable
Dh Hydraulic luminal diameter
LAARV% Low attenuation area percentage at residual volume
LAATLC% Low attenuation area percentage at total lung capacity
fSAD% Functional small airway disease percentage
J Determinant of the Jacobian matrix
Location
LUL Left upper lobe
LLL Left lower lobe
RUL Right upper lobe
RML Right middle lobe
RLL Right lower lobe
Total Total lung
sLUL Sub-lobar subset airways at LUL
sLLL Sub-lobar subset airways at LLL
sRUL Sub-lobar subset airways at RUL
sRML Sub-lobar subset airways at RML
sRLL Sub-lobar subset airways at RLL
lLUL Lobar airway at LUL
lLLL Lobar airway at LLL
Lobar airway at RUL Lobar airway at RUL
Lobar airway at RML Lobar airway at RML
Lobar airway at RLL Lobar airway at RLL
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