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Abstract: Ecosystem service (ES) bundles can be defined as the temporal and spatial co-occurrence of
ESs. ES bundles are jointly driven by socio-ecological factors and form at different scales. However,
in recent research, a few studies have analyzed the dynamic evolution and driving mechanisms of ES
bundles at different scales. Therefore, this study explored the spatial patterns of six ESs supplied in
Dalian (China) from 2005 to 2015 at three spatial scales, determining the distribution and evolution
patterns of ES bundles and their responses to socio-ecological driving factors. Our results are as
follows: (1) We identified four ES bundles representing ecological conservation, water conservation,
ecological depletion, and food supply. The developmental trajectory of each ES bundle could be
attributed to the combined effects of environmental conditions and urban expansion. In particular,
the water conservation bundle and food supply bundle were changed to the ecological depletion
bundle. Given the ongoing urbanization, the conflict between ESs has intensified. (2) The impact
of socio-ecological driving factors on ES bundles vary with scale. At three spatial scales, the digital
elevation model (DEM) and normalized difference vegetation index (NDVI) had a great impact on
ES bundles. Urbanization indicators also strongly explain the spatial distribution of ES bundles
at the county and grid scales. The interaction factor detector shows that there is no combination
of mutual weakening, indicating that the formation of ES bundles is driven by multiple factors in
Dalian. Overall, this study used a more holistic approach to manage the ecosystem by studying the
temporal-spatial dynamics of the multiple ESs.

Keywords: ecosystem service bundles; multiple temporal–spatial scales; dynamic evolution;
driving factors

1. Introduction

Since the 1940s, coastal areas have undergone rapid urbanization [1]. Although the
rapid urbanization has greatly contributed to the economic development of coastal areas, in
turn, it has negatively affected human well-being and the sustainable development of urban
ecosystems [2]. A major challenge in ecosystem management is to cope with the conflicts
between multiple ecosystem services (ESs) in complex socio-ecological systems [3–5]. This
is because ESs are not independent and interact in complex ways [6–9]. ES bundles refer
to “a collection of multiple ESs that co-occur in space and time” [3,10,11]. ES bundles
emphasize the interdependence of ESs and provide a visual method for characterizing the
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complex nexus between multiple ESs [3,12]. Quantifying the relationships between multiple
ESs is key to ensuring a sustainable supply of ESs and safeguarding human well-being.

The corpus of studies about ES bundles has rapidly evolved in the last decade, as
one can visualize multiple ESs to provide intuitive information about environmental
management [8,11,13–15]. The commonly used evaluation methods include principal
component analysis (PCA) and cluster analysis (CA) [16–18]. With advancements in the
understanding of ES bundles, scholars have introduced the self-organizing map (SOM)
method to quantify the distribution of ES bundles [19–21]. SOM advantageously combines
the capacities of dimensionality reduction with cluster-analysis capabilities and, due to
this, is widely recognized in environmental science [22,23]. Currently, the application of ES
bundles is mainly focused on ES trade-offs and synergies [24], regionally dominant ESs,
ecological-function zoning [25], landscape planning and management [10], etc. Previous
studies have promoted our understanding of ES bundles, but have not considered their
dynamic evolution due to the significant temporal–spatial heterogeneity of ESs [9,26]. The
identification and analysis of multiyear ES bundle evaluations can be used to reveal the ES
spatial pattern more effectively [14,16]. To reduce the uncertainty, it is, therefore, necessary
to explore the evolution trajectory of ES bundles. Changes in the trajectory of ES bundles
can be addressed for more user-friendly identification of the evolutionary characteristics
of urban ecosystems [9]. In turn, it will foster the prevention of further expansion of
ecological-conflict areas.

The relationships among multiple ESs are often affected by socio-economic and en-
vironmental factors, such as climate [27], urbanization rate [28], and land-use change [7].
Some scholars have discussed the formation mechanism of the nexus among varied ESs
from the perspective of driving factors. For instance, Lamarque, et al. (2014) [27] explored
the impact of climate change on the interaction of ESs in the Alpine grassland. Furthermore,
Peng, et al. (2020) [14] used the decoupling index to explore the impact of socio-economic
factors on the interaction of urban ESs. In brief, most scholars have mainly addressed the
influence of natural environmental factors or urbanization indicators on the interaction
of multiple ESs, while the common driving effect of natural and socio-economic factors
has remained understudied [29,30]. Potential conflicts among multiple ESs can be iden-
tified by analyzing the compound influence of socio-economic and natural factors on ES
bundles [29].

Urban landscape is highly heterogeneous and dynamic; a variety of ESs are produced
by various ecological processes and structures [8,9]. Each process is focused at different
spatial scales [31]. As the scale changes—which is determined by the ecological processes
of ES bundles—types and spatial distribution patterns may also change [32], and the final
recommendations for land-use management may also differ [8], implying that research
should be conducted across different spatial scales. Moreover, socio-economic factors show
scale effects [33]; additionally, benefit distribution and ES management occur at specific
scales [32,34,35]. Currently, studies on different ES bundles and their driving mechanisms
are mainly analyzed at a single scale [8,9]. These studies mainly focus on specific scales
such as watershed scale, administrative scale, and grid scale. However, regardless of the
degree of scale dependence, the impact of socio-ecological driving factors on ESs is often
inconsistent in different studies [31]. Research on the dynamic changes of multi-scale ES
bundles and their driving mechanisms is still lacking, and providing effective informa-
tion for decisionmakers of different units to formulate ecosystem management policies
is challenging [34,36]. Thus, with an aim of providing clear and relevant information
about ESs, the scale of different ES processes should consider research and assessment. To
clarify the overall characteristics of the spatial distribution of various ESs in the region at a
rough scale—and to identify the formation mechanism of ES bundles at a fine scale—can
not only clarify the inherent laws of the formation of ESs, but also help managers at all
levels to diagnose the ecosystem in a timely manner and optimize regulation measures
to achieve sustainable ES management, which is of great significance to improve human
well-being [35,37,38].
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Dalian is the epitome of China’s coastal-regional development model and one of the
earliest coastal cities in the history of China [39]. However, industrial pollution, claiming
land from the sea, and other human activities have triggered the continuous loss of eco-
logical land, habitat loss, and the degradation of the ecosystem’s supply capacity [40]. All
these factors have seriously undermined the resource base for sustainable development in
Dalian. From this standpoint, studying the relationships between the spatial distribution of
multiple ESs and socio-ecological driving factors will help implement effective ecological
management in coastal areas in the context of rapid urbanization. To this end, we use the
coastal city of Dalian in China as a case study. Specifically, the main objectives of this study
were to: (1) explore the spatial distribution of ESs and ES bundles at three spatial scales
over time, from 2005 to 2015; and (2) explore the impact of socio-ecological driving factors
on ES bundles at different scales.

2. Materials and Methods
2.1. Study Area

Dalian (120◦98′–123◦52′ E, 38◦73′–40◦22′ N) is located on the east coast of the Eurasian
continent, facing North Korea, South Korea, and Japan across the sea (Figure 1a). Its
administrative area is 12,573.85 km2, including four counties (Wafangdian, Pulandian,
Zhuanghe, and Changhai) and three districts (Dalian Center, Jinzhou, and Lvshunkou)
(Figure 1b). The area is dominated by a mountainous and hilly topography, with an altitude
of up to 1108 m (Figure 1c) and a warm temperate continental monsoon-influenced climate
with maritime characteristics. The average annual precipitation is 550–950 mm, which falls
primarily in summer, and the average annual temperature is 10.5 ◦C. Over the past few
decades, farmland and forestland have been the dominant land-use types in the study area
(Figure 1b). However, due to the impact of high-intensity human activities, ecological land
sharply decreased. It has subsequently caused increased fragmentation of habitats and
increased soil erosion, posing a huge threat to the supply of ESs. Therefore, the restoration
and protection of Dalian’s ecosystem is essential for the sustainable development of the
regional ecological economy.
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2.2. Conceptual Framework

To explore the ES bundles and their connection with socio-ecological factors, we
established a framework using the steps shown in (Figure 2). First, we built a database.
Second, we mapped six ESs at different temporal–spatial scales, including food supply
(FS), water conservation (WC), carbon sequestration and oxygen production (CSOP), soil
conservation (SC), habitat quality (HQ), and landscape aesthetics (LA) at different temporal-
spatial scales. Third, we identified the ES bundles, while also analyzing their dynamic
trajectory changes at different temporal–spatial scales. Finally, we explored the linkages
between socio-ecological driving factors and ES bundles at different scales.
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2.3. Data Sources

We describe the datasets used in this study in Table 1. Note that all datasets were
projected to the same coordinate system (WGS_1984_UTM_Zone_51N).



Int. J. Environ. Res. Public Health 2022, 19, 11766 5 of 20

Table 1. Data sources for ES evaluation.

Data Category
ES Types

Data Source Usage Details and Resolution
FS HQ SC LA CSOP WC

Land-use data
√ √ √ √ √ √ Land-use data was obtained by interpreting Landsat TM/ET/OLI data from the

USGS website (accessed on 3 November 2020) (https://usgs.gov/landsat,
accessed on 5 December 2019)

Interpreted and obtained thirteen
types of land-use in Dalian from
2005 to 2015 (30 m × 30 m)

MODIS data
√ Normalized difference vegetation index (NDVI)

(http://lpdaac.usgs.gov/products/mod13q1v006/, accessed on 15 March 2020)
Net primary production (NPP)
(http://lpdaac.usgs.gov/products/mod17a3hv006/, accessed on 26 March 2020)

NDVI (MODIS13Q1 dataset)
(250 m × 250 m)

NPP (MODIS17A3 dataset)
(500 m × 500 m)

Digital Elevation
Model (DEM) data

√ √ Geospatial data cloud site (http://www.gscloud.cn/, accessed on
14 December 2019)

Based on the digital elevation
model (DEM) data, extracted the
slope and slope length by
hydrology modeling
(30 m × 30 m)

Soil data
√ √ China soil map based on harmonized world soil database (HWSD) (v1.1)

(http://www.ncdc.ac.cn/portal/, accessed on 25 January 2020)

Including current data on silt,
clay, sand, and organic carbon
(1 km × 1 km)

Meteorological
data

√ √ √ China meteorological data network (http://data.cma.cn/, accessed on
15 January 2020)

Includes meteorological data
such as precipitation,
evaporation, average
temperature, wind speed, and
solar radiation from thirteen
weather stations in and around
Dalian (Text data–daily
and monthly)

Socio economic
data

√ √ Statistical yearbook of Dalian
(http://stats.dl.gov.cn/, accessed on 20 November 2020)

Including annual food
production, tourism income in
the study area (Text data–yearly)

https://usgs.gov/landsat
http://lpdaac.usgs.gov/products/mod13q1v006/
http://lpdaac.usgs.gov/products/mod17a3hv006/
http://www.gscloud.cn/
http://www.ncdc.ac.cn/portal/
http://data.cma.cn/
http://stats.dl.gov.cn/
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2.4. Mapping ESs at Multiple Spatial Scales

This study uses the following three criteria to determine the ESs indicators in Dalian:
(1) First, ESs can reflect the current natural conditions in Dalian. Surrounded by sea on three
sides and with numerous islands, Dalian is an important water-conservation/biological
habitat. The diversity of the landscape also promotes the spread of aesthetics. (2) They are
in accordance with the representations of different ecosystem service categories in the clas-
sification framework of the Millennium Ecosystem Assessment [8], including provisioning
services, regulating services, supporting services, and cultural service. (3) ESs can express
the current economic and food-security situations [41]. The planting and breeding industry
is an industrial pillar of Dalian. With the advancement of urbanization, the population
of Dalian is increasing, and the demand for food is also increasing. On this basis, six
ecological service indicators were selected and evaluated, including: one provisioning
service (FS), two regulating services (CSOP, WC), two supporting services (SC, HQ), and
one cultural service (LA). We quantified ESs at the 1 km scale, and then calculated the
average of ESs at the watershed and county scales. Table 2 provides the evaluation method
for each ES in this study. Most explorations of ESs focus on specific scales, however, the
provision and distribution of ESs may be different at different scales. Therefore, the three
scales selected in this paper respectively represent the natural environment characteristics
and the administrative management scale of Dalian. The 1 km scale is suitable for the
precise management of ecosystems. As a natural geographical unit, the watershed scale
can accurately reflect the biophysical characteristics of different ecosystem services, and
has inherent advantages in solving the mismatch between ecological-process scale and
human management. The county scale often represents the smallest scale of local landscape
management, and is also the basic scale for landscape spatial planning and management
decisions [8,9,31].

Table 2. Indicators and methods used to measure each ES.

ESs Description Unit Evaluation Methods and
Key References

FS
(Provisioning services)

Crops (cereals, fruits, vegetables), livestock
products (meat, eggs, milk), aquatic
products (shrimp, crab, fish)

(t/hm2·a)
Food yield per unit area is
assigned to the corresponding
land-use grid [42,43].

HQ
(Supporting services)

Distribution of habitat quality was
quantified by combining the sensitivity of
the landscape type and the intensity of
external threats

Index (0–1)

based on the habitat quality
module in the integrated
valuation of ecosystem
services and trade-offs
(InVEST) model [44].

SC
(Supporting services)

Quantification of the supply of soil
conservation caused by vegetation through
the effect of vegetation on reducing soil
loss and sediment accumulation

(t/hm2·a)

Use of the revised universal
soil loss equation (RUSLE)
model to estimate potential
soil erosion and actual soil
erosion [28].

CSOP
(Regulating services)

Use of NPP data based on the principle of
photosynthesis, in which 1 unit of organic
matter can fix 1.63 units of carbon dioxide
and production 1.2 units of oxygen

(g C/m2·a)

Estimation of NPP based on
Carnegie–Ames–Stanford
Approach (CASA)
model [45,46].

WC
(Regulating services)

Adoption of the principle of water balance,
and calculate the flow rate coefficient, soil
permeability, soil conservation, and
hydraulic conductivity of Dalian to obtain
water conservation

(mm·a) Use of the InVEST model to
quantify water yield [47,48].
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Table 2. Cont.

ESs Description Unit Evaluation Methods and
Key References

LA
(Cultural services)

Considering that the tourism industry can
indirectly reflect landscape aesthetics,
tourism income is used to characterize the
service value of landscape aesthetics

(yuan/hm2·a)

The equivalent value per unit
area method was used to
assign the revised tourism
revenue per unit area to the
landscape category.

2.5. Identify ES Bundles at Multiple Spatial Scales

In this study, the self-organizing map (SOM) method, an unsupervised clustering
algorithm with an artificial neural network, was applied to identify the ES bundles [17,49].
SOM algorithms reduce high-dimensional data by grouping observations based on their
similarities while preserving the topological properties of the input data [19]. To identify
and map the ES bundles, we initially performed Z-score standardization on six ESs to avoid
excessive distance differences, driven by different units. Note that too many homogeneous
regions would weaken the differences between different regions [50,51], while too few
homogeneous regions would weaken the similarity within each homogeneous region. To
identify the optimal cluster and to obtain more robust results, we determined the optimal
number of clusters under three different spatial scales according to the ClusGap function
in the R programming language. Finally, based on the selforgmap function of the Matlab
R2019b platform, we experimented with different iteration times to provide the most
suitable cluster-mapping results under different spatial scales.

2.6. Identification of Drivers of ES Bundles

The formation of and changes in ES bundles are closely related to environmental
and socio-economic factors. Geodetector has advantages for studying heterogeneity of
categorical variables and provides technical support for identifying the influencing factors
of bundles. Due to this, it has been widely used in geography, ecology, and environmental
studies [52,53]. The core idea of Geodetector is that if there is significant spatial consistency
between the independent variable X and dependent variable Y, the association between them
does exist. We divide these factors into two categories and briefly describe them in Table 3.

Table 3. Driving factors selected for this study.

Category Driving Factors Spatial Resolution Source

Natural factors

PRE—annual average precipitation 1 km × 1 km http://data.cma.cn/, accessed on
15 January 2020

MT—mean temperature 1 km × 1 km http://data.cma.cn/, accessed on
15 January 2020

TSR—total solar radiation 1 km × 1 km http://data.cma.cn/, accessed on
15 January 2020

NDVI—normalized difference vegetation index 1 km × 1 km https://www.nasa.gov/, accessed
on 15 March 2020

SLOPE—terrain slope 1 km × 1 km http://www.gscloud.cn/, accessed
on 16 December 2019

DEM—digital elevation model 1 km × 1 km http://www.gscloud.cn/, accessed
on 14 December 2019

CLAY—percentage of clay in soil 1 km × 1 km http://westdc.westgis.ac.cn,
accessed on 25 January 2020

OM—percentage of organic matter in soil 1 km × 1 km http://westdc.westgis.ac.cn,
accessed on 25 January 2020

SAND—percentage of sand in soil 1 km × 1 km http://westdc.westgis.ac.cn,
accessed on 25 January 2020

SILT—percentage of silt in soil 1 km × 1 km http://westdc.westgis.ac.cn,
accessed on 25 January 2020

http://data.cma.cn/
http://data.cma.cn/
http://data.cma.cn/
https://www.nasa.gov/
http://www.gscloud.cn/
http://www.gscloud.cn/
http://westdc.westgis.ac.cn
http://westdc.westgis.ac.cn
http://westdc.westgis.ac.cn
http://westdc.westgis.ac.cn
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Table 3. Cont.

Category Driving Factors Spatial Resolution Source

Human factors

POP—population density 1 km × 1 km http://www.resdc.cn/, accessed
on 20 November 2020

UR—urbanization rate 1 km × 1 km http://www.resdc.cn/, accessed
on 20 November 2020

GDP—GDP per unit area 1 km × 1 km http://www.resdc.cn/, accessed
on 20 November 2020

LUI—land-use intensity 1 km × 1 km https://usgs.gov/landsat,
accessed on 20 November 2020

Geodetector can also be utilized for exploring the degree-of-interpretation of the de-
pendent variable when two independent variable factors work together. The superposition
of the two influencing factors may weaken or enhance the impact on the distribution of the
ES bundles. The types of interactions are listed in Table 4.

Table 4. Type of interaction.

Judgment Criteria Type of Interaction

q(X1∩X2) < Min(q(X1), q(X2)) Non-linear reduction
Min(q(X1), q(X2)) < q(X1∩X2) < Max(q(X1), q(X2)) Single-factor nonlinearity reduction

q(X1∩X2) > Max(q(X1), q(X2)) Double factor enhancement
q(X1∩X2) > q(X1) + q(X2) Non-linear enhancement
q(X1∩X2) = q(X1) + q(X2) Independent

3. Results
3.1. Spatial Distribution Characteristics of ESs at Different Spatial Scales

From 2005 to 2015, the spatial distribution of six ESs changed in different ways, and
their spatial-pattern differences were shown at three scales (Figure 3). The provisioning
service (FS) was mainly the harvest of grain and aquatic products in Dalian. At the
grid scale, the high-value areas of food supply were distributed in the paddy fields and
aquaculture areas along the eastern and western coastal margins, but at the watershed
scale, the high-value areas were obviously smooth. The agglomeration of such high-value
areas was more obvious at the county scale. The spatial distribution of CSOP showed
similarities at the three analysis scales. Northeast and southwest of Dalian are high-altitude
areas with high forest coverage. Therefore, the high-value areas related to CSOP and
NDVI were mainly distributed in the northeast and southwest regions. The distribution
patterns of SC, LA, HQ, and CSOP were similar, with high value areas concentrated in
the mountainous regions along the northeast and southwest. The rougher the scale, the
more evident the spatial clustering of high values in northeast and southwest Dalian is. In
general, the dispersion of the spatial distribution of ESs increased with the refinement of
the spatial scale. In terms of time, except for CSOP, the five ESs in the study area showed
a significant decrease in 2015. Affected by reclamation, the area of non-ecological land
continued to expand; the most significant degradation occurred in the east and west tidal
flats and offshore.

http://www.resdc.cn/
http://www.resdc.cn/
http://www.resdc.cn/
https://usgs.gov/landsat
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3.2. Historical Patterns and Dynamics of ES Bundles at Different Spatial Scales

The SOM algorithm showed that the ES bundles from 2005 to 2015 were stabilized at
three spatial scales (Figure 4), corresponding to the four ES bundles with similar social–
ecological conditions and sets of ESs, namely: ecological conservation, water conservation,
ecological depletion, and food supply. In this study, the spatial patterns of each ES bundle
varied across different years. Specifically, ecological conservation bundle demonstrated
high ecological benefits, characterized by a relatively uniform supply of CSOP, SC, WC, HQ,
and LA, but featured lower FS. This finding can be related to the higher altitudes, which
have less human interference and increased forest cover. It is concentrated in the forest areas
of Zhuanghe and Pulandian in the north of the study area and in the Lvshunkou District
in the south. At the county and watershed scales, spatial distribution of the ecological
conservation bundle was different, but the dominance of forest-based services persisted;
in the meantime, it has become more concentrated at the county and watershed scales.
The water conservation bundle was concentrated in Zhuanghe in the east, Wafangdian
in the west, and Lvshunkou District in the south, where the precipitation is relatively
high. It is characterized by its ability to conserve water, while the supply of WC, HQ,
and LA was relatively balanced at the watershed scale. The ecological depletion bundle
exhibited the lowest ES ecological benefit; ES bundles of different scales were generally
consistent, characterized by a low ability to provide all ESs. This is mainly because the
ecological depletion bundle was concentrated in the central urban areas where districts
and counties feature intense anthropogenic activities such as construction and land change.
The food supply bundle was clustered in Zhuanghe in the east and Wafangdian in the
west, characterized by its outstanding ability to provide FS, while the other five ESs were
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relatively weak, which was consistent with the grain supply bundle observed at different
scales. This pattern could emerge due to the location of the food supply bundle as it was
located at a low altitude with sufficient rainfall and superior irrigation conditions, which
were more suitable for aquaculture and planting. In general, grid-scale analysis can provide
a finer detail to ecosystem management information than county and watershed scales.
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At different scales, the spatial distribution of ES bundles changed obviously over time
(Figure 5). The changes of ES bundles mainly followed two different trajectories, which
were related to the natural environment and the process of urbanization. In general, the
spatial distribution of the ecological conservation bundle was relatively invariable, being
determined by the special terrain and, less-so, by the relatively low human interference
and/or favorable forest coverage. The number of water conservation bundles has been
greatly reduced at all three scales, and most of them are transformed into the ecological
exhaustion bundle. At the county and grid scales, this change mainly occurs in the Lvshun
New City in the southwest and the Huayuankou Economic Zone in Zhuanghe City in
the east. At the watershed scale, it was mainly concentrated in Wafangdian in the west.
Simultaneously, rapid urbanization has caused vegetation degradation. This phenomenon
has greatly aggravated ecological damage and forced the ecological depletion bundle to
become the dominant bundle in the region, which was consistent between different scales.
The food supply bundle has also been significantly reduced at different scales. Some
farmland areas were exposed to construction activities, and the food supply bundle has
been transformed into the ecological exhaustion bundle. As an intermediate conclusion, it
can be stated that promoting ecological restoration and moderating human activities can
ensure the supply of several ESs.
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3.3. Determining Socio-Ecological Drivers for ES Bundles at Different Spatial Scales

The dynamic changes of ES bundles were determined by the socio-economic and
environmental characteristics of the study area. The relative importance of each indepen-
dent factor to the spatial distribution of ES bundles was determined by calculating the q
value (Figure 6). Moreover, the explanatory power of ES bundles may vary at different
scales. We used 2015 as a temporal scale; at the county scale, SLOPE, NDVI, DEM, and
UR were the dominant socio-ecological driving factors, explaining 57%, 47%, 44%, and
18% of the distribution of ES bundles, respectively. At the watershed scale, SLOPE, DEM,
NDVI, and TSR were the dominant social and ecological driving factors, which explained
53%, 53%, 45%, and 19% of the distribution of ES bundles, respectively. At the grid scale,
DEM, NDVI, LUI, and MT were the dominant social and ecological driving factors, which
explained 47%, 31%, 24%, and 19% of the distribution of ES bundles, respectively. In a
word, DEM and NDVI have always had a strong influence on the spatial pattern of ES
bundles as the scale changed. As a central city along the coast of China, Dalian is greatly
affected by anthropogenic activities. From this perspective, UR was a direct manifestation
of the local social and economic development. When human demand is in conflict with an
ecosystem (such as through urban expansion and sea reclamation), short-term irreversible
impacts on the ecosystem emerge. Meanwhile, DEM and NDVI are predictors of vege-
tation growth. Therefore, researching and formulating ecological and/or environmental
protection-planning schemes for different ES bundles can more effectively maintain good
ecological benefits.
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The impact of different combinations of historical driving factors on ES bundles should
be considered, as well. We selected the 10 pairs of combinations that have the largest impact
on the common driver of ES bundles at different scales (Figure 7). These combinations were
dominated by double-factor enhancement, which indicated that the spatial differentiation
of ES bundles was driven by multiple factors in Dalian. At the county scale, (MT∩SLOPE)
had the largest explanatory power (q = 0.81), followed by (TSR∩SLOPE) (q = 0.80) and
(SLOPE∩POP) (q = 0.79). At the watershed scale, (MT∩SLOPE) had the largest explanatory
power (q = 0.78), followed by (LUI∩SLOPE) (q = 0.78) and (TSR∩SLOPE) (q = 0.77). At
the grid scale, (MT∩DEM) had the largest explanatory power (q = 0.61), followed by
(PRE∩DEM) (q = 0.59) and (GDP∩DEM) (q = 0.57). The relationships between different
driving-factor combinations and ES bundles vary with scale. The strongest combination of
driving factors at different scales was representative of the connection between different
natural factors, suggesting that the natural factors were critical for the formation of ES
bundles. Furthermore, at the county and grid scales, the interaction between socio-economic
factors and natural factors also showed strong explanatory power.
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4. Discussion
4.1. Model Validation and Uncertainty Analysis

As the model simulations are sensitive to changes in spatial scale and input data,
model simulation results need to be validated [54]. It is not negligible that the robustness
of ES evaluation directly affects subsequent interactions between different ESs. Model
simulation results can be verified in two ways. One is to identify the relationship between
observed and predicted values, and the other is to compare results with previous similar
studies [55,56].

This study validates the results of four ESs simulated by the model, including water
conservation, carbon sequestration and oxygen production, soil conservation, and habitat
quality. First, the average water production in the period was retrieved by using the InVEST
model for 2005–2015. The simulation revealed the average water production (3.79 km3/yr),
which slightly exceeded the actual water volume (3.45 km3/yr) in the area as announced
by the Liaoning Water Resources Department (http://slt.ln.gov.cn/, accessed on 25 March
2021). It might be due to an error of the spatial interpolation method, but the overall
error is small. We established 1,000 random points in the ArcGIS model and extracted the
NPP simulated by the CASA model (NPPCASA) and the MODIS17A3 data (NPPMODIS)
published on the USGS official website in the same year (http://lpdaac.usgs.gov/products/
mod17a3hv006/, accessed on 26 March 2020). We performed a linear regression analysis
of the NPP that extracted the same points. As shown (Figure 8), there was a significant
correlation between NPPCASA and NPPMODIS. The coefficients of determination (R2)
were 0.664 and 0.726 in 2005 and 2015, respectively. This finding indicates that the CASA
model has a higher simulation accuracy in the study area. We found that the average
soil erosion modulus released by the Dalian Water Affairs Bureau (https://swj.dl.gov.cn/,
accessed on 25 March 2021) was 23.60 t/ha in 2015, which was not significantly different
from the actual soil erosion amount of 26.49 t/ha as calculated based on the RUSLE model.
The habitat-quality model yielded results within the same range of values as those from
northeast China. Namely, it revealed a habitat-quality value of 0.8–1.0 in the north and
south of Dalian, and 0.0–0.2 in Central Dalian [40]. As seen prior, the simulation results are
close to the empirical estimates, suggesting that the results are credible.

http://slt.ln.gov.cn/
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Although the evaluation model can reflect the supply capacity of ESs in Dalian to a
large extent, there are still uncertainties in the ES evaluation of this study. For example, in
some cases, the water-yield module overestimates surface runoff and ignores intra-annual
variability in groundwater flow. Additionally, complex underlying geographies may have
intricate water-balance processes [57], but the InVEST model cannot simulate the required
parameters in complex terrain. In terms of habitat quality, this study failed to obtain appro-
priate measurements or statistics to validate the results of the InVEST model. In the future,
more-representative indicators should be further explored and verified. While the InVEST
model provides good estimates of regional water production, soil conservation, carbon
sequestration and oxygen production, and habitat quality, the simplicity of the model and
the lack of extensive observational data [54] add to the uncertainty of the study results [58].
Therefore, future research should strengthen the observation and verification of field test
data, and use the measured experimental data to calibrate the model parameters to obtain
greater confidence in the quantitative output [59], and further verify the model output.

4.2. Influencing Mechanism of ES Bundles

Comprehensive and in-depth assessment of how social–ecological driving factors
impact the spatial distribution and cross-scale relationships of ES bundles were essential
for the sustainable provision of ESs effectively [38,60,61]. Our results indicated that socio-
ecological factors jointly drive the spatial distribution and evolution of ES bundles at three
scales. DEM and NDVI were the most influential driving factors, which could explain
the spatial distribution of ES bundles at three spatial scales in Dalian. Previous studies
have found that areas with high altitude and vegetation coverage offered high supplies of
supporting, regulating, and cultural services [30,42]. Our study confirmed these findings
and further demonstrated the persistence and durability of the cross-scale impacts of DEM
and NDVI on ES bundles. However, the socio-ecological factors might differ from the
impacts of only the social–ecological factors on ES bundles at different scales. At the county
and grid scales, the impact of UR and LUI on ES bundles could not be ignored either.
LUI and UR are the key pressures of the urban social ecosystem; land-use change will
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have an important impact on the evolution of ES bundles. Understanding how land-use
changes affect the relationships between ESs is a prerequisite condition for future coastal
area planning and land-use management [7,62,63]. From 2005 to 2015, rapid urbanization
has strongly affected the land coverage in the study area. Most impacts emerged in forested
and offshore areas, which play an important role in providing biological protection and
landscape aesthetics. Marine environments are ideal for tourism and recreational activities.
In recent years, land reclamation in coastal areas has caused the destruction of coastal
natural terrain, which has transformed many natural landscapes into human landscapes,
thereby often reducing the aesthetic value of the landscape and damaging biodiversity.
This explains why regulating, supporting, and cultural services are greatly affected by
the process of urban expansion. Accordingly, we constructed a land-use transfer map
(Figure 9), which can more-intuitively reflect the transfer direction and evolution process
among land-use types. These results showed that over the past 10 years, the main changes
in land-use types in Dalian have been the mutual conversion of forest land and cultivated
land; the alteration of forest land and cultivated land to built-up land; and the change of
sea to aquaculture land and built-up land. Notably, the areas of forest land, farmland, and
sea decreased by 3.6%, 1.5%, and 2.4%, respectively, in 2005–2015. Meanwhile, the built-up
and aquaculture land increased by 6.1% and 1.5%, respectively. Notably, built-up-area
expansion is an important driver of the decrease in forest and cultivated land. Moreover,
56.21% of the built-up area came from cultivated land and 23.9% stemmed from forest land,
indicating that the expansion of built-up land mainly came from the occupation of cultivated
land and forest. The latter areas are concentrated in Lvshunkou and Jinzhou in the south.
It should be emphasized that 66.55% of the transferred aquaculture land originated from
the sea. Furthermore, poorly implemented reclamation projects may damage disaster
prevention and mitigation facilities in coastal areas, ultimately affecting social stability and
the sustainability of development. In short, policymakers and managers should recognize
the relationships between different ecological communities and the ESs that they provide,
while facilitating economic development. This consideration is a single measure on a long
way towards the onset of sustainable coastal ecosystems and the mitigation of related
damages in coastal areas.
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4.3. Guidelines for Landscape Planning and Management

Multi-scale understanding of the relationships between ES bundles and social–ecological
drivers is required to make decisions effectively in the regional governance of ESs [31,33,34,64,65].
As mentioned, Dalian is the epitome of China’s coastal regions. With the rapid economic
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development of Dalian, population density in the study area has also rapidly increased.
Urban expansion causes a decrease in the fragmentation and natural ecological area of
the ecosystem; this damages the services, while also harming people’s survival, security,
social relationships, and health [66]. For example, urban infrastructure replaces landscape
communities in natural areas. The spatial pattern characteristics of ES bundles persist in a
multi-scale range, which is beneficial for ensuring the formulation of governance actions
at different scales and reducing the unpredictability that might indirectly affect ESs [31].
Therefore, we concluded that the implementation of management interventions for specific
scales might have a more significant effect on the provision of ESs.

Here we discuss the implications for landscape planning and management in Dalian
and in similar coastal areas by using the results of this study. It is worth noting that
ES bundle 1 focused on regulating and supporting cultural services, and the area was
classified as an ecological protection area. Considering that the formation of ES bundle
1 is closely related to natural driving factors such as DEM and NDVI, we recommend
that protection work should be carried out at the grid scale. In the future, all construction
activities should be permanently prohibited to maintain the original functions of the
land and prevent the expansion of mountainous cities [67]. Simultaneously, rational
use of organic food processing should be developed using natural mountain resources
within the ecological conservation bundle to reduce conflicts with regulating, supporting,
and cultural services. ES bundle 2 specialized in water conservation; it has been clearly
reduced over the past ten years, mainly due to the change in precipitation. We recommend
that protection and restoration work be carried out at the watershed scale, strengthening
the protection of the water-source areas of the Zhuang River, Biliu River, and Yingna
River in the region [68]. Further restoration measures have to be taken in the damaged
areas. Planting forests to protect WC from declining and nature-based solutions (such
as sponge cities) can be incorporated into urban planning to improve regional water-
conservation capabilities [9]. ES bundle 3 exhibited the state of exhaustion at different
scales and continued to expand. The ecological exhaustion bundle was mainly located in
the urban construction area, which should be restored and compensated in the future. The
construction of the Dalian Changxing Island Lingang Industrial Zone, Lvshunkou Western
Lingang New City, and Huayuankou Economic Zone from 2005 to 2015 has significantly
changed the balance of aquatic and terrestrial ecological communities in this area. We
suggest that governance should be conducted at the county level, so as to facilitate the
formulation of corresponding policies by regional managers. Urban green belts should
be considered in the future to expand the proportion of green space, thus protecting the
area from the loss of urban ESs and providing considerable ecological benefits [6,69].
Simultaneously, it should be underlined that the reasonable development of offshore
and tidal flat wetlands can form a balanced natural-coast, breeding-coast, and life-coast
utilization pattern. It is also desirable to further promote carbon reduction and to offset
actions within and outside urban boundaries to achieve carbon neutrality. In addition, ES
bundle 4 is dedicated to food-supply services, which have also decreased over the past
10 years, mainly due to the construction and occupation of cultivated land. Protecting
agricultural areas is essential for urban food security; thus, governmental actions should be
undertaken at three spatial scales [5,70]. In the future, intensive agricultural production
should be encouraged to reduce the number of abandoned farmlands and to develop the
lower–middle farmland [9]. In addition, coastal and natural wetlands gradually evolve
into artificial wetlands, such as aquaculture, which may cause further damage to the
ecosystem [71]. In the future, the technology level of aquaculture should be improved, a
transition from extensive production modes to energy-saving production modes made,
coastal ecological corridors established, and landscape types enriched. In general, the
emergence of potential conflicts between various ESs in Dalian critically depends on
the specific management tools aimed at the landscape [10]. China nowadays is actively
promoting the protection of coastal areas [28], and strives to realize the vision of harmonious
coexistence between humans and nature. Therefore, we appeal to decisionmakers to
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incorporate the spatial distribution and historical dynamics of ES bundles into urban
planning more broadly. This will deepen understanding of the versatility of ecosystems in
environmental management and prevent conflict between ESs and beneficiaries.

4.4. Limitations and Future Directions

Our study offered a multi-scale and comprehensive approach to untangle the relation-
ships among ES bundles and socio-ecological drivers at different spatial scales. We provided
a deeper understanding about which areas have to be focused on conservation, transforma-
tion, and restoration, and provided insights into landscape planning and management. Our
findings contribute to enriching the current knowledge on the scale-dependent changes
of ecosystem management, and provide insights on integrating the scale-dependency of
ESs into the governance of ESs to promote sustainability. The conclusion provides a user-
friendly guideline for ecological management decision-making in Dalian and similar coastal
cities. However, some potential limitations have to be acknowledged in this study. We
only considered the bundling of the ES supply and have not considered the temporal and
spatial aggregation of ES demand; however, ESs are closely related to human well-being.
Identifying ES bundles by combining the supply and demand of ESs can better reflect the
relationships between human development and the potential of ecosystems, especially
in urban areas [5,10,14]. In addition, the high-resolution grid unit is conducive to the
fine-grained management of decisionmakers according to local conditions [56]. However,
undetected uncertainties could emerge due to spatial resampling of the used data, and
this grid-scale-related error propagation was not taken into account [19]. Therefore, the
formation mechanism of ES supply and demand bundles should be further explored in
the future, and more-practically linked to the government decision-making process, so
as to better guide ecosystem management measures and achieve the goal of harmonious
human development.

5. Conclusions

In order to have in-depth understanding of the scale-dependence between ES bundles
and socio-ecological driving factors, this study explored the spatial distribution, bundles,
and driving factors of ESs at different temporal and spatial scales in Dalian. It is of great
significance to promote the supply of diverse ecosystems and regional sustainable de-
velopment. We found that the landscape pattern changed significantly in the context of
rapid urbanization. In particular, WC, FS, HQ, SC, and LA exhibited a downward trend
in 2015. To elucidate the ecological conflicts, we also examined the spatial distribution
of ES bundles. This investigation found that the ES bundles’ patterns at different spatial
scales were consistent. By integrating the identified major influencing factors of ES bundles
at different spatial scales, we can propose feasible zoning and design options to facilitate
sustainable ecosystem planning, bridging the gaps in previous theoretical and practical
approaches to planning. According to the results of the ecological function bundles, Dalian
can be divided into four landscape-function areas: an ecological protection area, water con-
servation area, ecological depletion area, and food supply area. The evolutionary trajectory
of ES bundles is driven by social and ecological factors. DEM and NDVI can explain most
of the variation in ES bundles at different scales, but UR and LUI can cause large variation
in the spatial distribution of ES bundles at county and grid scales. Despite these challenges,
natural and socioeconomic factors should be properly accounted for. We have shown that
the historical dynamics of ES bundles deserve more attention. Integrating ecological and
social drivers in ecosystem assessment can provide reasonable spatial information for the
formulation of ecological management objectives in different regions. According to the
evolution of ES bundles and the factors which influence it, the corresponding land-use
planning is proposed to protect the sustainable development of Dalian. The results show
that the ecological protection scheme of ES bundle 1, the water-source protection scheme of
ES bundle 2, the ecological management scheme of ES bundle 3, and the agricultural and
fishery optimization scheme of ES bundle 4 have good effects on improving the ecological
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environment. Therefore, the landscape-function zoning in this study can provide a spatial
reference for Dalian’s ecosystem protection and urban planning.
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