
Citation: Ismail, S.; Alsowayeh, N.;

Abbasi, H.W.; Albutti, A.; Tahir ul

Qamar, M.; Ahmad, S.; Raza, R.Z.;

Sadia, K.; Abbasi, S.W. Pan-Genome-

Assisted Computational Design of a

Multi-Epitopes-Based Vaccine

Candidate against Helicobacter cinaedi.

Int. J. Environ. Res. Public Health 2022,

19, 11579. https://doi.org/10.3390/

ijerph191811579

Academic Editors: José Tuells,

Olivier Epaulard, Zitta Barrella

Harboe and Paul B. Tchounwou

Received: 16 July 2022

Accepted: 30 August 2022

Published: 14 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Pan-Genome-Assisted Computational Design of a Multi-
Epitopes-Based Vaccine Candidate against Helicobacter cinaedi
Saba Ismail 1,† , Noorah Alsowayeh 2,*,†, Hyder Wajid Abbasi 3,†, Aqel Albutti 4 , Muhammad Tahir ul Qamar 5 ,
Sajjad Ahmad 6 , Rabail Zehra Raza 1, Khulah Sadia 7 and Sumra Wajid Abbasi 1,*

1 Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
2 Department of Biology, College of Education (Majmaah), Majmaah University,

Al-Majmaah 11952, Saudi Arabia
3 Pakistan Institute of Medical Sciences, Shaheed Zulfiqar Ali Bhutto Medical University,

Islamabad 44000, Pakistan
4 Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University,

Buraydah 51452, Saudi Arabia
5 Department of Bioinformatics and Biotechnology, Government College University Faisalabad,

Faisalabad 38000, Pakistan
6 Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
7 Department of Biosciences, COMSAT University, Islamabad 45550, Pakistan
* Correspondence: n.alsowayeh@mu.edu.sa (N.A.); sumra.abbasi@numspak.edu.pk (S.W.A.)
† These authors contributed equally to this study.

Abstract: Helicobacter cinaedi is a Gram-negative bacterium from the family Helicobacteraceae and
genus Helicobacter. The pathogen is a causative agent of gastroenteritis, cellulitis, and bacteremia. The
increasing antibiotic resistance pattern of the pathogen prompts the efforts to develop a vaccine to
prevent dissemination of the bacteria and stop the spread of antibiotic resistance (AR) determinants.
Herein, a pan-genome analysis of the pathogen strains was performed to shed light on its core
genome and its exploration for potential vaccine targets. In total, four vaccine candidates (TonB
dependent receptor, flagellar hook protein FlgE, Hcp family type VI secretion system effector, flagellar
motor protein MotB) were identified as promising vaccine candidates and subsequently subjected
to an epitopes’ mapping phase. These vaccine candidates are part of the pathogen core genome:
they are essential, localized at the pathogen surface, and are antigenic. Immunoinformatics was
further applied on the selected vaccine proteins to predict potential antigenic, non-allergic, non-toxic,
virulent, and DRB*0101 epitopes. The selected epitopes were then fused using linkers to structure a
multi-epitopes’ vaccine construct. Molecular docking simulations were conducted to determine a
designed vaccine binding stability with TLR5 innate immune receptor. Further, binding free energy
by MMGB/PBSA and WaterSwap was employed to examine atomic level interaction energies. The
designed vaccine also stimulated strong humoral and cellular immune responses as well as interferon
and cytokines’ production. In a nutshell, the designed vaccine is promising in terms of immune
responses’ stimulation and could be an ideal candidate for experimental analysis due to favorable
physicochemical properties.

Keywords: Helicobacter cinaedi; pan-genome; vaccine candidates; epitopes; multi-epitopes’ vaccine;
docking; molecular dynamics simulation

1. Introduction

Antibiotic resistance (AR) is a phenomenon that appears when microorganisms such
as bacteria, viruses, and fungi become resistant against a specific group of antibiotics [1,2].
It is mostly caused by the inappropriate use of antibiotics in human and animal medicine
as well as in the environment and in agriculture. It has become a leading cause of mortality
and morbidity worldwide, resulting in substantial economic losses. The principle behind
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AR is based on concept of evolution [3,4]. According to this theory, the adaptation of
new strategies in therapeutics is necessary to alleviate the threat posed by AR [5,6]. One
of these strategies involves the boosting of the immune system of humans through im-
munotherapeutic and immunological interventions. Bacterial infections quickly exhaust the
natural defense mechanisms, limiting the therapeutic options available for acute therapy.
Immunotherapeutic and immunological therapies can be used to combat such bacterial in-
fections [7]. Furthermore, therapeutic monoclonal/polyclonal antibodies can be developed
to generate vaccinations for certain pathogens to protect at-risk groups or to manage the
diseases/infections due to AR [8]. There are currently no licensed immunoprophylactics
or vaccines to combat nosocomial infections; however, implementing the aforementioned
measures may assist in reducing illness load in hospitals [9].

Helicobacter spp. are divided into two groups: gastric (stomach) and enterohepatic
(intestine and hepatobiliary). H. pylori is the most common human infection in the gastroin-
testinal group [10]. The gastrointestinal and hepatobiliary systems of diverse mammalian
and avian hosts are mostly inhabited by enterohepatic species [11]. Helicobacter cinaedi
is one of the best researched enterohepatic Helicobacter species that causes infections in
humans. In 1984, Helicobacter cinaedi was discovered from rectal cultures of homosexual
men for the first time. H. cinaedi has been isolated from both immunocompromised and
immunocompetent people all over the world in the recent three decades [12]. It was once
identified as a Campylobacter-like organism type-1 (CLO-1) until being reclassified as H.
cinaedi in 1991. It is a spiral-shaped, Gram-negative enterohepatic bacillus found mostly in
the digestive systems of humans and other animals [13,14]. According to several previously
investigated reports, immunocompromised individuals are more susceptible to infection
by H. cinaedi. Recent research has shown multiple examples of immunocompetent people
infected with H. cinaedi [13,15].

In immunocompromised individuals, particularly those with rheumatoid arthritis and
malignant lymphoma, several cases of H. cinaedi-related infections have been found [16,17].
H. cinaedi-related bacteremia was found in immune-competent people who had a hepatic
cyst infection, carotid atherosclerosis, a thyroid infection presenting with thyroid storm,
and a case of atypical Raynaud disease. A situation of H. cinaedi unique cellulitis was
documented, as well as an H. cinaedi-caused vertebral osteomyelitis identified using 16S
rRNA gene sequencing [18,19]. Anticancer chemotherapy and systemic steroids have been
demonstrated to be independent risk aspects for persistent H. cinaedi-induced bacteremia;
nevertheless, data suggest that targeted digestive cleansing with kanamycin might be an
effective way to prevent infectious bacteremia from recurring [19]. This strain is hard to
recognize at the species level. It was also discovered in tiny slush runs in wastewater
treatment plants, indicating the dangers of activated sludge to human and environmental
health. It also has a stronger vascular affinity than other Helicobacter species and appears to
be associated to heart problems including arrhythmia and atherosclerosis [17]. H. cinaedi
is known to cause many types of infections including diarrhea, gastroenteritis, fever,
abdominal pain, arthritis, and neonatal meningitis in humans [18].

This study was designed to obtain insights about antigenic determinants of H. cinaedi
and pinpoint all antigenic potential targets to design a multi-epitope, peptide-based vaccine.
The failure to find a vaccination yet for the disease has further added to the severity of the
AR problem. Furthermore, the absence of effective preventative measures and the lack of a
treatment might lead to a rise in mortality and morbidity. To increase the maximal antibody
formation and long-lasting immunological responses, immunoinformatics methods were
used to combine epitopes to create a multi-epitope peptide, which was then adjuvanted to
a suitable cholera toxin B subunit (CTBS) adjuvant [20]. The vaccine design was also put to
a blind docking experiment to determine the design’s best possible binding mode to the
rapid innate immune receptor TLR 5 (Toll-like receptor 5) receptor molecule. The complex
was then employed in MD simulations to better comprehend complex structure dynamics
and biological function. Finally, the complex’s binding free energies were calculated to
confirm intermolecular affinity.
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2. Methodology

The flowchart of the comprehensive computational analysis performed in this study is
presented in Figure 1.
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Figure 1. Schematic representation of computational approaches utilized in this study to design a
vaccine construct against H. cinaedi.

2.1. Gene Analysis and Pan-Genome Exploration

The term “pan-genome” refers to the whole gene sequence, which is made up of
dispensable genome families and the core genome. The central genome is crucial in each
species and is largely responsible for bacterial development; but the auxiliary genome
contains crucial genes for resistance, stress mechanisms, and strain pathogenicity. The
pan-genome was evaluated using the genomes of all nine strains of H. cinaedi, which are
available in the GenBank libraries of the NCBI database using BPGA (bacterial pan-genome
analysis) [21]. By conducting pre-processing stages via BPGA by the USEARCH program,
sequence data are built up for creating a sequence identity with a cutoff score of 50%. The
assembled output is used to fabricate the incidence of ambiguous genes and new gene
families; then, it is utilized to calculate the pan-genome outline.

2.2. Pre-Screening Phase

The study embarked on the retrieval of the complete proteome of H. cinaedi from the
genome database of the NCBI. The next important step was to generate the core sequence.
The pan-genome analysis was performed using the BPGA (accessed on 2 January 2022)
tool to generate the core sequence. The core sequence file retrieved by the BPGA tool was
taken and was exposed to the later filters. The core sequence was then further clustered
through the CD-HIT web server [22] (accessed on 3 January 2022), which removed the
redundancy from the core sequence. The percentage identity threshold was set at 0.5%.
CD-HIT is the rapid, efficient, and extensively used program that clusters and compares
protein or nucleotide sequences and removes sequences that are showing an identity
greater than the threshold value. The non-redundant protein dataset was BLASTp [23]
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searched against the core virulence factor database (VFDB) [24], which included selected
proteins with a sequence identity less than 30% and a bit score more than 100. Proteins
were then further evaluated according to their subcellular localizations. This is the key
step for screening attractive vaccine proteins. Proteins that are present at the surface or are
expelled to the outer environment of the pathogen are crucial to design the vaccine because
they come in repeated contact with the host. The pathogen’s antigenic determinants are
easily identified by the host immune system, resulting in targeted immune responses. The
subcellular localization of proteins was predicted through PSORTb 3.0 [25] (accessed on
8 January 2022), which is the localization prediction tool. It was used to short-list the
proteins that were confined in the inner membrane, outer membrane, and periplasmic
and extracellular spaces. The results were then cross-checked with the CELLO2GO [26]
localization predictor tools.

2.3. Prioritization of Vaccine Candidates

Short-listed proteins were then explored for a transmembrane helices check. Only
proteins with 0 or 1 transmembrane helix were chosen and analyzed for further examination.
The protein sequences were then used in ExPASY ProtParam [27] (accessed on 10 January
2022), which permits the computation of several physical and chemical parameters for a
given protein sequence. The pivotal variable assessed in this depiction was the instability
index, which was set at 40; the sequences showing the instability index greater than 40
were considered to be as unstable. The proteins showing stability were further processed
for molecular weight evaluation. Ideally, expedient and effectual targeted vaccines are
deemed to have molecular weight > 110 kDa. VaxiJen 2.0 (accessed on 11 January 2022)
was used to determine the antigenicity of the proteins, with bacteria as the target organism
and a threshold of >0.5. Antigenicity refers to the ability to attach selectively to adaptive
immunity products such as antibodies and T-cell receptors. The adhesive properties of
the antigenic proteins that resulted were investigated. Adhesive proteins are potential
vaccination targets because they facilitate bacterial attachment and adherence to host tissues,
which is critical for microbial pathogenicity [28]. The antigenic proteins’ adhesive properties
were predicted using Vaxign [29] (accessed on 15 January 2022) with a minimal default
value of 0.5. The adhesive proteins were aligned with the proteome of probiotic bacteria to
pool homologs and prevent the chance of helpful bacteria being accidentally inhibited [30].
To avoid inhibition against the bacteria that is beneficial, a BLASTp (accessed on 16 January
2022) search was conducted against probiotic bacteria including three Lactobacillus species:
Lactobacillus casei (taxid: 1582), L. rhamnosus (taxid: 47715), and Lactobacillus johnsonii (taxid:
33959) using an E-value cutoff of 0.005. Further to that, a homology check against the mouse
proteome (taxid: 10088) was performed using the same parameters. The proteins that
were screened were next evaluated in the epitope prediction step, which identified B-cell-
generated T-cell epitopes for the proteins. The proteins’ linear B-cell epitopes were initially
predicted using BepiPred Linear Epitope Prediction 2.0 [31,32] (accessed on 18 January
2022) with a threshold of 0.5. The B-cell epitopes were then used to map T-cell epitopes
in IEDB T-cell epitopes’ prediction tools, which helps researchers find subsequences that
bind to MHC class I and II alleles. The IEDB-recommended 2.22 technique was used for
prediction, and the peptides were sorted by percentile score. High-affinity binders were
defined as those with a low percentile score. Following that, MHCPred 2.0 [33] (accessed on
22 January 2022) analysis was used to determine the binding affinity potential of screened
B-cell-generated T-cell epitopes, with only those having IC50 values for DRB*0101 (16) less
than 100 nM being evaluated. VirulentPred [34] (accessed on 24 January 2022) was used
to revalidate the virulence of antigenic epitopes. VaxiJen 2.0 [35] was used to confirm the
antigenicity of the identified epitopes. Allergic sequences were deleted using AllerTOP
2.0 [36] (accessed on 28 January 2022), an in silico allergen prediction method. Non-soluble
epitopes were discarded through Protein-Sol, and the IFN-γ-inducing potential of soluble
epitopes was evaluated via the IFN epitope server [37] (accessed on 2 February 2022). The
IFN-γ inducer epitopes were investigated using ToxinPred (accessed on 5 February 2022).
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2.4. Multi-Epitopes’ Peptide Design

Low immunogenicity is the main issue related to peptide vaccines that can be over-
come by joining immune-dominant epitopes to construct an MEPVC and appropriate
adjuvanting. The MEPVC contains a number of overlapping immune-dominant epitopes
that are defined as an opportune strategy to inhibit bacterial infections. The selected epi-
topes were joined by Gly-Pro-Gly-Pro-Gly linkers [38,39]. Further sequences of adjuvant
CTB [40] were included to the construct to make a finishing vaccine candidate, and a com-
plete investigation of the subsequent sections was performed with it. With the assistance
of 3Dpro of the Scratch [41] (accessed on 6 February 2022) protein predictor, the tertiary
configuration of the construct was modeled. Loops in the configuration were molded and
a subsequent configuration modification was completed via GalaxyRefine of GalaxyWeb
(accessed on 8 February 2022). Disulfide bonds were proposed in the structure to increase
the strength and support in dynamics understanding of the construct. Disulfide by Design
2.0 (accessed on 15 February 2022) was used for the disulfide production of the deliberate
vaccine construct. Inverse translation was used to adjust the vaccine component sequence
for codon use. It was performed using the Java Codon Adaptation Tool service [42] to
create a higher expression of the cloned sequence, which was then quantified using the
percentage of the GC content and the CAI, or codon adaptation index, which has a value
of 1 in the model. Lastly, the cloning of the optimized vaccine construct was performed
through SnapGene into a pET-28a(+) expression vector.

2.5. Host Immune System Simulation

An agent-based model, the C-ImmSim server, was used to complete the immuno-
genicity classification and immune response profiling of the vaccine construct. It forecasts
immunological epitopes using a position-specific scoring matrix and utilizes machine
learning to evaluate immunological interactions. At the same time, the C-ImmSim server
manages immunological simulation for three slots, which represent three distinct mam-
malian anatomical areas: bone marrow, thymus, and tertiary lymph nodes. The time step
of injection was 1 and the number of the antigen injection was 1000. Random seeds were
12,345. Host HLA selectin included DRB1 0101, DRB1 0101, A0101, B0702, and B0702. Other
parameters were set to default.

2.6. Designed Vaccine Docking

For the intended chimeric vaccine construct with a suitable immune receptor, the
molecular docking was executed to interpret construct similarity for a certain immune
molecule. This evaluation was vibrant because high-affinity interactions among the immune
receptor and vaccine construct led to extremely substantial immune reactions. A blind dock-
ing approach was employed to anticipate the genuine binding of the vaccine construct with
TLR5 having PDB ID: 3IJOU recovered from the protein data bank. TLR5 is a transmem-
brane protein that belongs to the pattern recognition receptor (PRR) family. Its activation
causes the intracellular signaling of NF-kB to function as well as the production of cytokines,
which leads to an innate immune system activation and, eventually, long-term adaptive
immunity against H. cinaedi (https://pubmed.ncbi.nlm.nih.gov/15122529/) accessed on 25
February 2022. Molecular docking was accomplished with an online PatchDock server [43]
that permits the docking of two interrelating molecules. The input clustering RMSD was
set to 4.0 and complex type by default. Docked complexes were instantly upgraded with
FireDock [44]. For the rescoring and improvement of protein–protein docking solutions,
FireDock is a proficient platform. Complexes with the lowest global energy were graded
top in addition to their exposure to a binding approach and intermolecular interactions by
means of UCSF Chimera 1.13.1 [45], Visual Molecular Dynamics 1.9.3 [46], and Discovery
Studio Visualizer 17.2.0.16349 [47] software.

https://pubmed.ncbi.nlm.nih.gov/15122529/
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2.7. Vaccine–TLR5 Dynamics Analysis

The nominated complex was investigated in a 100 ns manufacturing run using molec-
ular dynamics simulation [48,49]. To assess the vaccine construct’s affinity for the TLR5
receptor, the MD simulation test took a long time to complete. Furthermore, it was critical to
establish that epitopes may stay accessible to the host immune system for identification and
processing in order to elicit a sufficient response. Assistant model building using Energy
Refinement was used to complete these levels. The Antechamber software [50] was used
to produce the complicated system libraries and settings for the TLR5 and vaccine built
during the system preparation phase. The complex was immersed in a TIP3P solvation
box (size 12) [51] using the Leap module [52]. The ff14SB force field [53,54] was used to
describe the system’s intermolecular interactions. The system was neutralized by adding
25 Na+ counter ions. The system preparation for the production run was the focus of the
second pre-processing phase. First, system energy was minimized in this phase in the
subsequent direction: energy minimization of hydrogen atoms, energy minimization of
water box, minimization of entire system atoms, and minimization of non-heavy atoms.
The system was then gradually heated to 300 K. Langevin dynamics were utilized to keep
the system’s temperature stable. The system’s hydrogen bonds were restricted using the
SHAKE algorithm [55]. Moving on, the complex was equilibrated for 100 ps using a 2 fs
time step. Pressure equilibrium was achieved using an NPT ensemble [56]. During the
system equilibrium phase, the system was allowed to equilibrate on a 1-nanosecond time
frame. On a time scale of 2 fs, simulated trajectories of 100 ns were created throughout
the production phase. The Berendsen algorithm [57] with an NVT ensemble was chosen
for production [58]. The CPPTRAJ module [59] was used to examine different structural
characteristics for examining complex stability.

2.8. Estimation of TLR5–Vaccine Free Energies

The MMPBSA.py [60] module in Amber20 [61] was used to calculate the binding
free energy of MMPBSA for an MEPVC and TLR5. The ante-MMPBSA.py unit of Amber
generated a parameter file for the receptor, complex, and peptide molecule. For the binding
energy estimates, 100 frames were chosen and assessed from many simulated trajectories.
The estimation of the free energy variation between the unsolvated and solvated phases
was the overall goal of this study. Gbind, solv was simplified for calculating the free energy
of the anticipated complex by using these three equations:

∆G bind, solv = ∆G bind, vaccum + ∆G solv, complex − ∆G solv, ligand − ∆G solv, complex (1)

∆G solv = ∆G electrostatic (∈80 − 1) + ∆G hydrophobic (2)

∆G vaccum = ∆E molecularmechanics − T∆G normalmodeanalysis. (3)

The disintegration of the total free energy of the complex in separate residue was
attained for highlighting the crucial stabilizing residues.

3. Results and Discussion
3.1. Vaccine Targets’ Identification

A total of 11,571 proteins have been identified in the core proteomes of nine strains of
H. cinaedi bacteria that have been sequenced to date. The different pan-genome analyses
of the bacteria is given in Figure 2. The core proteome was analyzed using a subtractive
proteomics approach to predict potential vaccination candidates against selected bacteria.
To eliminate redundant proteins, several CD-HIT analyses were performed. In bioinformat-
ics, a redundancy check is unavoidable due to the large number of redundant databases
that might induce biases and make the process computationally expensive [62]. This re-
dundancy filter found 1675 non-redundant proteins in the core proteomic dataset that
were represented separately. Non-redundant proteins’ subcellular localization predictions
yielded 14 extracellular, 18 periplasmic, 9 outer membranes, 83 inner membranes, and
118 cytoplasmic proteins while other proteins were unknown and flagellar proteins. A total
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of 124 surface (periplasmic, extracellular, outer, and inner membrane) protein antigenic epi-
topes were actively identified by the host’s immune system, resulting in a targeted immune
response. Furthermore, the pathogenicity of non-redundant proteins from the identified
pathogen’s core proteome found in the exoproteome and secretome was investigated. Only
59 proteins out of 124 were discovered to be virulent, indicating that they are important
regulators of bacterial pathogenesis and survival. Proteins with a molecular weight of
110 kDa have previously been found to be more effective for putative vaccine targets [63].
Out of all 59 proteins, 57 pathogenic proteins were discovered to have a molecular weight
of less than 110 kDa and 39 of them had one or less than one TM helix, indicating that they
should be studied further. Because of the difficulty in extracting, cloning, expressing, and
purifying proteins containing numerous TM helices, they are rarely regarded as vaccine
candidates [64]. The antigenicity of those 39 proteins was assessed further, out of which
16 proteins examined by the VaxiJen server were found to be antigenic. Allergenicity
prediction indicated 13 of them were shown to be non-allergenic and 5 out of those 13
were adhesive, indicating that they may be used as vaccine targets. The NCBI database’s
BLASTp program was used to identify and then remove human homologous proteins. Four
human homologs were found and ruled out. Epitope mapping was then performed on
these target proteins. The properties of selected proteins are listed in Table 1.
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Table 1. Physicochemical properties of prioritized vaccine proteins.

Category of
Proteins

Transmembrane
Helices

(TMHMM)

Physicochemical Properties
Antigenicity Allergenicity Adhesion Human

BlastAmino
Acid

Molecular
Weight Gravy Aliphatic

Index
Instability

Index
Theoretical

PI

Outer membrane
>core/100/1/

Org1_Gene1402
(TonB dependent

receptor)

1 726 81.20 −0.42 76.17 40.6 8.75 0.60 Non 0.68 Non-
significant

Extracellular
>core/105/1/

Org1_Gene1184
(Flagellar hook
protein, FlgE)

0 718 77.15 −0.31 76.89 25.11 5.04 0.63 Non 0.82 Non-
significant

>core/1610/1/
Org1_Gene663

(Hcp family type
VI secretion system

effector)

0 171 18.85 −0.46 74.74 41.28 5.46 0.79 Non 0.59 Non-
significant

Inner membrane
>core/1187/1/
Org1_Gene21

(Flagellar motor
protein MotB)

1 250 27.68 −0.28 86.28 44.78 4.75 0.63 Non 0.50 Non-
significant

3.2. Epitopes’ Prediction

The 39 peptides were short-listed from the four vaccine candidates and tested for B-cell-
derived T-cell prediction. Predicting B-cell epitopes is critical since the immune system’s
protective mechanisms are activated when these epitopes bind to certain antibodies [65].
Afterward, these B-cell peptide sequences were examined for T-cell epitope prediction.
CD8+ T-cells detect MHC I molecules on nucleated cell surfaces, causing presenting cells
to die as a result of an immediate immunological response; on the other hand, MHC
II molecules are found on antigen-presenting cells (APCs) and are recognized by CD4+
T-cells [66]. Among the four priority proteins, 79 B-cell-generated T-cell epitopes were
chosen. Only epitopes with an antigenicity score of 0.4 were considered since they were
thought to have the ability to bind antigen. After that, an additional MHCPred analysis was
performed to find epitopes with the highest binding affinity to the DRB1*0101 allele [67],
which is found in all Homo sapiens; epitopes that bind to this allele can induce significant
immune responses. The IC50 value was used to calculate the binding capability. The lower
the IC50 number is, the better the prediction quality is. We chose 105 epitopes with an IC50
of less than 100 nM.

To rule out the possibility of allergic responses, allergenic peptide sequences were
eliminated. This brought the total number of epitopes down to 62. Antigenic epitopes were
evaluated for various physicochemical qualities to make epitope selection even more precise.
The number of antigenic epitopes short-listed was 41. The epitopes were then subjected to
a water solubility check, which allowed only the virulent peptides to be chosen; there were
37. The non-allergenic, non-toxic epitopes and water-soluble epitopes were further filtered
for IFN-positive epitopes, which were 15. To eliminate vaccine-related potential toxicities,
the epitopes were then tested for toxicity. The non-toxicity of all 15 nominated peptides
was predicted. The final selected epitopes and schematic presentation of the designed
vaccine construct is shown in Figure 3. Table 2 shows the final epitope selection from four
priority proteins.
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Table 2. Selected epitopes filtered through different immunoinformatics analysis.

Protein B-CELL MHC II P. Rank MHC I P. Rank MHC-Pred Score Allergenicity Antigenicity Solubility IFN Toxinpred

>core/100/1/
Org1_Gene1402

IMSELPIELQSKQI
SVVEKKDLLQK

IMSELPIE
LQSKQIS 12.1 LPIELQSKQI 0.07 LPIELQSKQ 34.2 Non Antigen Soluble Positive Non-Toxin

GRNTLELNTLDPY GRNTLEL
NTLDPY 2.8 RNTLELNTL 7 RNTLELNTL 10.5 Non Antigen Soluble Positive Non-Toxin

SSYNTQSDTFAATARIRAL
EYGS

VNNLFGGRAEVLGGGGG

SDTFAATA
RIRALEY 9.1 ATARIRALEY TARIRALEY 5.14 Non Antigen Soluble Positive Non-Toxin

YTKDSTRYYTQGR
YTRVESHRAGGLG
AAPGSSYGILMSE

DPISEY

RAGGLGAA
PGSSYGI 6.4 RAGGLGAAP 11 RAGGLGAAP 98 Non Antigen Soluble Positive Non-Toxin

QGRYTRVE
SHRAGGL 7.9 RYTRVESHR 0.19 RYTRVESHR 9.2 Non Antigen Soluble Positive Non-Toxin

GMKKSQLSFAESME GMKKSQLS
FAESME 9.8 GMKKSQLSF 0.01 GMKKSQLSF 76 Non Antigen Soluble Positive Non-Toxin

TISKTKSSTEQSNNNQAI
HIENSRLLDENSVIHSGA

QSNNNQAI
HIENSRL 1.2 QAIHIENSR 0.04 QAIHIENSR 12.7 Non Antigen Soluble Positive Non-Toxin

NFKNPSAGTRMQVTP
SGSSTLTIANPLIKP

KNPSAGTR
MQVTPSG 3.7 NPSAGTRMQV 0.36 PSAGTRMQV 86.1 Non Antigen Soluble Positive Non-Toxin

RGYGAKTRIDPNEE
RATQAYTMT

IDPNEERAT
QAYTMT 20 NEERATQAY 0.06 NEERATQAY 23.1 Non Antigen Soluble Positive Non-Toxin

>core/105/1/
Org1_Gene1184

TVGFKYSRASFV TVGFKYS
RASFV 1.3 TVGFKYSRA 3.3 TVGFKYSRA 77.6 Non Antigen Soluble Positive Non-Toxin

QGWVRPPLEAAESGTMSD
FDFFRVDNTGPVRNIQIDP
GMVMPARATKTITLRANL
NAGRHIDQMQEIAALDST

ARTAADGVAPVYDSRGVLMQ

FDFFRVDN
TGPVRNI 7.6 FDFFRVDNT 15 FDFFRVDNT 24 Non Antigen Soluble Positive Non-Toxin

KTITLRAN
LNAGRHI 0.79 KTITLRANL 0.5 KTITLRANL 6.7 Non Antigen Soluble Positive Non-Toxin

AALDSTAR
TAADGVA 6 STARTAADGV 0.69 STARTAADG 63.2 Non Antigen Soluble Positive Non-Toxin

AFRYRYTKSEDADSTTGQF
RTTEDLRALIQYDANM
IKNPEKNYQESTASVAV

AFRYRYTK
SEDADST 6.9 RYRYTKSEDA 1.7 RYRYTKSED 12.4 Non Antigen Soluble Positive Non-Toxin

NPEKNYQE
STASVAV 9.6 QESTASVAV 0.13 QESTASVAV 21.8 Non Antigen Soluble Positive Non-Toxin
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3.3. Physicochemical Properties of MEPVC

To create an MEPVC, an AAY linker (used to avoid overlapping and maintaining
stability) [39] was used to connect nine possible epitopes. The adjuvant beta-defensin
was linked to the N-terminal of the proposed construct using the EAAAK linker [39]. The
MEPVC had a final structure of 319 amino acids (Figure 4A). The physicochemical and
immunogenic characteristics of the proposed MEPVC were next assessed. The MEPVC
was highly antigenic (score of 0.93509) as well as non-allergenic. The design was also found
to be thermally stable (28.48), and its small size had a molecular weight of 33.14, which will
make it useful for testing. It had a GRAVY of −0.65 and a theoretical pI of 9.5, respectively.
The MEPVC is hydrophilic if the GRAVY value is negative [68]. The MEPVC has a half-life
of 30 h in mammalian reticulocytes, >20 h in yeast cells, and >10 h in E. coli, respectively.
The MEPVC is very soluble, with a probability of 0.93509. The secondary structure of the
MEPVC is shown in Figure 4B.
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3.4. Vaccine Structure Prediction

The next stage was to use the Scratch Prediction server’s 3Dpro to predict a stable,
3D-structured MEPVC, which was then loop modeled using GalaxyLoop. The designed,
complex had 11 loop modeling runs: Leu32-Pro54, Ala81-Asn9, Ser116-Pro135, Gly136-
Pro147, Gly153-His172, Arg173-Gly192, Gln193-Arg212, Met227-GLY246, Pro247-Thr266,
Leu267-Ala282, and Gly286-Gln306. The GalaxyRefine server was then used to fine-tune
the loop-modeled construct. It was searched for both locally and globally, but with more
constraints. In comparison to the input structure, Model 5 was chosen because it had a
lower MolProbity (1.911), the lowest stable galaxy energy, a clash score (9.1), lower bad
rotamers (0.8), and a higher number of Rama preferred residues (93.7). Ramachandran plot
analysis was used to verify the final refined model’s validity [69]. The most favored region,
additionally allowed region, generously allowed region, and disallowed region included
92.6%, 6.9%, 0.4%, and 0.0% of the total amino acids, respectively (Figure 4C). The Z-score
of the vaccine was −1.8 (Figure 4D). The 3D structure of the MEPVC is given Figure 4E.

Disulfide Engineering

The redesigned vaccine design was then disulfide engineered to reduce conformational
entropy, resulting in improved folded orientation stability [70]. Disulfide bonds were tested
both within and between chains. Mutational potential was discovered in 28 pairs of
residues. Because of their permissible energy values and Chi3 angles, 20 of these 28 pairs
were chosen to be modified: Met1-Gln4, Glu12-Asn15, Gly34-Glu37, Ala81-Ile100, Gly122-
Glu170, Gly132-Arg151, Pro133-Gly136, Ala138-Phe187, Pro147-Gly150, Leu155-Tyr166,
Gly156-Ser183, Ala157-Pro177, Arg165-Arg168, Gly176-Pro191, Lys182-Asn199, Gly230-
Gly234, Pro233-Phe238, Pro261-Arg293, Lys263-Thr266, Pro289-Gly304, Val313-Leu319s.
Figure 5A shows the vaccine design’s original and mutant structures as well as the addition
of disulfide links.
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3.5. In Silico Cloning

The MEPVC vaccine was cloned and expressed within the expression vector using
the Java Codon Adaptation Tool (JCat) [55]. In silico cloning was performed using the
cDNA sequence obtained by reverse translation. JCat found a 0.99 CAI score and 56.88%
GC content, indicating that the vaccine protein was highly expressed in the E. coli system.
To clone the MEPVC gene into pET28a (+) plasmid for expression in E. coli, restriction sites
were added to the 5 and 3 ends of the sequence and NdeI and XhoI enzymes were used.
The sequence was cloned into the plasmid pET28a (+) using the SnapGene program. The
clone had a size of 5849 bp. The disulfide-engineered MEPVC 3D structure and the cloned
vaccine in the expression vector are shown in Figure 5B and Figure 5C, respectively.

3.6. Simulating Host Immune System

The MEPVC was examined for its immunogenicity and capability to induce immunity
in the human body [71]. With a high level of the MEPVC antigen presentation to the
host immune system over 5 days, a substantial rise in the secondary immune response
generation in IgM + IgG type was seen. IgM levels, which indicate the major immunological
response, were also found to be elevated. High levels of IgM, IgM + IgG, IgG1, IgG2, and
IgG1 + IgG2 and a large B-cell population can be seen against vaccine in Figure 6A. Similarly,
there was an exceedingly significant increase in IFN-g (>400,000 ng/mL) for nearly 33 days
(Figure 6B).
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3.7. Vaccine Docking with TLR5

Using a molecular docking approach, the best docked vaccine pose to TLR5 immune
receptor molecules was determined. The top 10 models of PatchDock [43] were selected
based on the global energy score. For refining docked solutions, the FireDock server [44]
was employed. The refined candidates were ordered according to their binding energies.
The final model was picked from among the top 10 FireDock models based on the binding
score. The MEPVC demonstrated robust interactions with human immunological receptors,
according to the docking studies (Figure 7). Tables 3 and 4 show PatchDock and FireDock
docking solutions and associated docking scores, respectively.
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Table 3. PatchDock docked solutions-based docking score.

Solution No. Score Area Atomic Contact Energy Transformation

1 23,492 3959.3 113.97 3.06 0.83 −2.27 81.63 43.88 59.96
2 20,000 3297.6 123.73 0.83 0.47 2.98 111.75 118.06 137.80
3 19,574 3202.6 −374.66 −2.85 0.25 −0.50 167.15 133.05 74.02
4 19,538 2663.1 198.87 −1.60 0.59 −2.94 108.59 1.32 137.65
5 19,298 4046.2 −470.53 1.04 −1.25 −0.94 54.91 39.29 111.78
6 18,774 3557.9 100.44 −1.03 0.12 −0.90 123.16 105.31 143.35
7 18,682 2483.8 429.62 2.85 −0.58 −2.65 118.04 91.65 57.75
8 18,588 2610.5 242.81 0.26 −0.30 −1.31 71.64 60.30 139.08
9 18,408 3281.2 −107.39 2.61 0.60 −1.66 88.02 60.20 61.85
10 18,264 3714.8 353.54 −1.37 0.59 2.51 65.97 19.97 137.43
11 18,174 3498.7 −227.03 2.12 0.23 −0.99 75.52 54.46 52.60
12 18,080 2482.3 234.36 0.12 −0.59 −1.43 76.73 53.89 133.59
13 17,852 2598.1 430.16 −1.31 0.64 1.86 62.13 59.69 124.78
14 17,564 2876.2 166.54 −2.56 0.22 −2.35 97.84 68.44 93.37
15 17,558 3028.1 95.72 −3.13 0.94 −2.51 75.37 44.11 61.76
16 17,494 2829.5 243.03 2.91 0.39 0.29 111.91 80.87 72.90
17 17,466 2496 376.63 −0.02 0.60 0.18 81.40 43.87 182.40
18 17,434 2112.7 412.27 1.90 −0.36 0.69 114.91 56.10 60.34
19 17,408 2299.3 456.21 −0.88 −0.19 2.51 88.98 92.68 116.39
20 17,276 2243.5 162.58 2.76 −0.86 −0.46 49.05 99.23 33.79

Table 4. Top 10 docked solutions of FireDock.

Rank Solution
Number Global Energy Attractive van der

Waals Energy
Repulsive van der

Waals Energy
Atomic Contact

Energy
Hydrogen Bonding

Energy

1 3 −13.7 −13.19 5.03 −7.61 −0.83
2 10 8.40 −14.75 13.32 8.68 −1.62
3 2 12.38 −9.09 3.37 7.04 −2.23
4 9 13.54 −11.29 18.74 6.08 −1.61
5 8 30.08 −19.11 58.67 9.00 −2.15
6 4 64.05 −18.81 101.92 14.73 −3.36
7 1 165.6 −20.49 203.14 8.92 −1.40
8 5 200.3 −26.97 236.17 3.87 −1.96
9 7 652.5 −33.22 873.36 15.34 −7.18

10 6 1300.1 −39.65 1620.54 20.31 −7.70
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3.8. Molecular Dynamic Simulation

The information obtained by docking provides valuable insight into the intermolecular
docked conformation. Its ability to provide insights into its structural dynamics is limited.
To better characterize the docked complexes, a molecular dynamics simulation was used.
The C alpha atoms were explored for the divergence among the protein structure over
the course of a 100 ns simulation. The complex’s stability was measured with root mean
squared deviation (RMSD). As shown in Figure 8A, various structural changes were
measured over the duration of the simulation. The highest RMSD noticed for the system
was 15 Å, and the RMSD trend was seen in a steady increase. The vaccine upon trajectories’
analysis noticed the docked vaccine structure with TLR5 was very stable but the steady
RMSD increase was due to a large percentage of system loops. The vaccine atomic residues’
flexibility and rigidity to the TLR5 target must be investigated since it gives a measure
of atomic fluctuations. Throughout the simulation, this was estimated for the suggested
complex structure with a mean square value of 3–5 Å. The highest RMSF was observed in
the loop areas and at the lowest N and C terminals of the vaccine (Figure 8B). The β-factor
was again calculated to revalidate RMSF, which gave the same residue range to show
fluctuations (Figure 8C). Throughout the simulation, the vaccine molecule remained stable
at the docking location. At each nanosecond, the vaccine docked to TLR4 was investigated,
and no significant changes in the protein structure were detected.
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3.9. Hydrogen Bond Analysis

The system became stable as a result of the key interacting residues dominating
throughout the simulation run. A high number of hydrogen bonds was found to be formed
between the vaccine and TLR5 (Figure 9). On average, in each frame, approximately 50
hydrogen bonds were formed among the residues of the vaccine and TLR5 mentioned in
the docking section.
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3.10. Binding Energy Calculations

The intermolecular binding TLR5 with the designed vaccine is important in the prospect
of stimulating the host immune system and generating protective immune responses. As a
result, in the current investigation, a simulated system was used to calculate binding free
energies using the MMPBSA/MMGBSA methods. We calculated the complex’s binding
free energies to determine the critical function of a chemical interaction at the atomic level.
The MMPBSA and MMGBSA suggest that the majority of residues in the pocket areas
had lower binding energies, with average values of −5.8 kcal/mol and −1.4 kcal/mol.
As most of the binding energies of the residues move closer to the specific straight line,
a linear regression value estimate is dependent on the time scale of the simulation in-
tervals. Table 5 summarizes the entire set of energies for both methods considering the
complex. Robust interactions between the receptor and vaccine were investigated in these
studies. The following interactions were discovered as dominant for total system energy,
including the Columbic interactions: (∆Eele = −156.97 kcal/mol), van der Waals energies
(∆Evdw = −391 kcal/mol), and non-polar solvation energy (∆Gnpol = −20.87 kcal/mol).
The polar solvation energy of MMGBSA (∆Gsolv/GB) was 88.99 kcal/mol, while that of
MMPBSA (∆Gsolv/PB) was 87.63 kcal/mol. MMGBSA (tot/GB = −479.88 kcal/mol) and
MMPBSA (∆tot/PB = −484.15 kcal/mol) were the total binding energy calculations.

Table 5. Intermolecular binding free energies in kcal/mol.

Energy Parameter TLR5–Vaccine Complex

MMGBSA
Van der Waals (∆Evdw) −391.03

Electrostatic (∆Eele) −156.97
Polar (∆Gsolv/GB) 88.99

Non-polar (∆Gnpol) −20.87
Gas phase −548
Solvation 68.12

Net (tot/GB) −479.88
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Table 5. Cont.

Energy Parameter TLR5–Vaccine Complex

MMPBSA
Van der Waals (∆Evdw) −391.03

Electrostatic (∆Eele) −156.97
Polar (∆Gsolv/PB) 87.63

Non-polar (∆Gnpol) −23.78
Gas phase −548
Solvation 63.85

Net (∆tot/PB) −484.15

3.11. WaterSwap Energies’ Calculation

An innovative computational method called WaterSwap is used to calculate the abso-
lute TLR5–vaccine binding free energies. WaterSwap considers the binding free energies
of protein–ligand, ligand–water, and protein–ligand–water interactions, thus eliminating
double decoupling problems of cavitation in solvent approaches. The total absolute binding
free energy in the current situation was −48.08 kcal/mol, as calculated from three scoring
functions: Bennett’s (−47.33 kcal/mol), FEP (−48.818 kcal/mol), and TI (−48.1 kcal/mol),
as reported in Figure 10. As expected by MMPBSA and MMGBSA, the complex binding
energy was well converged and relatively stable.
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4. Conclusions

In this study, pan-genome and subtractive proteomic approaches were applied to
short-list potential vaccine candidates against H. cinaedi. Four vaccine candidates (TonB
dependent receptor, flagellar hook protein FlgE, Hcp family type VI secretion system
effector, flagellar motor protein MotB) were identified as promising vaccine candidates
capable of inducing immunity; they were subsequently subjected to an epitopes’ mapping
phase. The predicted epitopes were passed through various immunoinformatics’ filters
including antigenicity, allergenicity, toxicity, etc.; only promising epitopes were used in the
MEPVC. The immunoinformatics tool, to prioritize the potential candidates for a vaccine,
is an efficient method to determine cost-effective vaccine designing. The vaccine was found
to efficiently dock with TLR5 and showed stable dynamics during the simulation time. The
MEPVC was subjected to a few more analyses, confirming its efficacy and ability to induce
immune responses against the H. cinaedi. Despite the fact that the study’s findings are
encouraging, there are some limitations to the study. Experimental testing (wet laboratory)
is required to determine the optimal order of epitopes in a vaccine creation so that the best
potential combination can be achieved in the end. Furthermore, the findings of the current
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research call for the experimental validation of candidate vaccine constructs followed
by in vitro and in vivo testing, in order to report vaccines that are safe, effective, and
immunogenic against the malarial infection caused by H. cinaedi in the future.
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