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Abstract: Since it affects a nation’s economy and people’s wellbeing, food security is a crucial
national security requirement. In order to realize multi-angle grain data presentation and analysis
and achieve the goal of deep mining, we propose a 3D dynamic visualization analysis method of
multidimensional agricultural spatial–temporal data based on the self-organizing map. This method
realizes the multi-angle display and analysis of grain data and achieves the purpose of deep mining.
With the outbreak of COVID-19, the global food security situation is not optimistic, so it is necessary
to use the food security early warning system to solve the food security issue. Machine learning has
emerged widely in recent years and has been applied in various fields. Therefore, it is an excellent
way to solve food security to apply the model in machine learning to construct a food security early
warning system. Afterward, a food security early warning platform is developed with a support
vector regression (SVR) model to ensure food security. Finally, we analyze China’s medium and
long-term food security policy in line with modernization objectives. The experimental results show
that the food security early warning platform based on the SVR model from 2007 to 2016 is effective
compared with the actual situation every year. Through analyses, we should improve the stability,
reliability, and sustainability of food supply, firmly hold the food security initiative, and construct a
national food security guarantee system matching the goal of modernization.

Keywords: food security; 3D dynamic display; early warning platform; security strategy; SOM; SVR

1. Introduction

Food is a tactical issue, while food security is a strategic one. Under the influence of
unilateralism, trade conservatism, and anti-globalization trend, the average international
food trade is facing challenges [1,2]. Domestic grain production is affected by land resources,
agricultural science, technology, and the grain market and has also encountered a bottleneck
period of development [3,4]. When uncertainties and destabilizing factors rise, we must
maintain strategic focus and ensure good food production and national food security [5–8].
Food security refers to a fundamental human right to life, namely, that everyone should
have access to enough food for future survival and health. Specifically, according to the
Food and Agriculture Organization (FAO), food security refers to all people, at all times,
having physical and economic access to sufficient, safe, and nutritious food that meets their
dietary needs and food preferences for an active and healthy life [9–12]. At the national
level, food security means that a country’s food production, supply, and sale are in a state
of no danger and threat. Food security bears on political stability, national economy, and
people’s livelihood and is an essential foundation for overall national security. According
to the FAO, nearly one-third of all food produced for human consumption (1300 Mt of food)
is lost or wasted every year [13]. One of the main challenges towards the enhancement of
food security is the reduction of food waste. As a result of COVID-19, the lockdown in Italy
has stimulated snack consumption, particularly potato chips. Therefore, Amicarelli et al.,
used material flow cost accounting to measure the economic costs of food loss and waste in
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the Italian potato chip industry for sustainable resource and waste management [14]. Poore
and Nemecek investigated how food producers might reduce their environmental effects
by monitoring and reporting their effects to customers [15]. In response to food insecurity,
emergency response capacity should be increased. While grain production is of particular
importance, to solve the problem of food security, it must be based on grain production,
improve grain production capacity, and maintain a high level of self-sufficiency [16,17].
In recent years, some achievements have been made in researching food security early
warning systems. Since the early warning system is enormous, all factors are interrelated,
and there are fuzzy indicator standards and different classification concepts, the current
food security early warning system is too simple, and there is no unified and practical
effective system for food security early warning. Machine learning has emerged widely in
recent years and applied to various fields [18]. Therefore, applying the model in machine
learning to construct a food security early warning system is an excellent way to solve the
current dilemma.

Food security is not only a global issue but also a national one. It is a comprehensive
international and domestic issue. The 2021 edition of the state of food security and nutrition
in the world report estimates that the excess number of hungry people associated with the
COVID-19 pandemic will reach 30 million by the end of the century. In 2020, nearly 12% of
the global population was severely in food insecurity, representing 928 million people and
148 million more than in 2019 [19]. At the global level, the incidence of moderate or severe
and only severe food insecurity is higher in women than in men and more severe in rural
areas [20]. While the global food security situation is deteriorating, the food security risk in
China is also gradually prominent [21–23]. The apparent imbalance between supply and
demand is an easy cause of the food crisis. China’s total grain output has steadily declined
since 2000 and dropped to around 430 Mt in 2003. Since 2004, China’s total grain output
has been a bumper harvest, entering an era of 13 consecutive years of growth. In 2017,
China’s grain output reached 617.9 Mt. Urbanization has reduced the area of agricultural
land. Compared with the grain area in 2017, the area decreased by 960,000 ha in 2018.
Coupled with the frequent occurrence of extreme weather and various disasters, China’s
grain output decreased to 657.89 Mt in 2018, and the trend will continue to decline [24,25].
The growth of total grain output has hit a bottleneck.

With the application of global positioning systems, remote sensing technology, the
Internet of Things (IoT), and other agricultural production technologies, many multidi-
mensional spatial–temporal data are generated [26–28]. This data effectively records and
displays the development of things at various stages, a kind of high-dimensional data with
complex structure, multi-layer nesting, and spatial and temporal characteristics. Due to the
strong correlation of data in time and space, it contains excellent mining potential. How to
mine and analyze this data is of great significance to the development of fine agriculture,
agricultural production, and modern society. Rana et al., analyzed the literature and con-
cluded that using IoT-supported blockchain technology contributes to the sustainability
of agri-food production. However, this technique can lead to some challenges [29]. Bux
et al., conducted a comprehensive literature review assessing the sustainability of halal
food, examining the barriers and opportunities provided by authentication and blockchain
tools [30]. Dimensional reduction mapping technology can project multidimensional or
high-dimensional data into two or three-dimensional space, display the dataset’s cluster-
ing structure and data distribution by scattered graphs, and the clustering result from
standard information [31]. Therefore, it is widely used in information visualization with
high dimensions and extensive data. In this study, a self-organizing map (SOM) is used
to reduce the dimension of high-dimensional data [32]. When the data are analyzed and
expressed by other projection technologies, it can produce good projection results with
a small calculation. Since a single visualization method cannot meet the requirements
of multi-angle representation and analysis of spatial–temporal data, the integrated visu-
alization method is only a combination of spatial–temporal data visualization tools. In
essence, the spatial–temporal data are expressed and explained independently. This study
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proposed multiple views based on SOM collaborative visualization of 3D analysis method,
this method from the perspective of visualization for the data dimension reduction, integra-
tion of a variety of visual analysis tools, data visualization expression after for dimension
reduction, both to solve the traditional visual analysis tools cannot provide visualization of
high dimensional multiple attribute data of time and space. Moreover, the linkage between
various expression tools can realize the real-time multi-angle visual expression and data
analysis and enhance analysts’ ability to mine confidential information, which is of great
significance to the 3D dynamic display of food security.

Under the influence of the international environment, China’s food security situation
has also been negatively affected. However, China attaches great importance to this aspect
of work and makes it an important national strategy. The deterioration of the international
food security situation makes China unable to stay immune [33,34]. In addition, as a
significant food country, China attaches great importance to food security. Therefore, the
research on food security, especially in the past, which is used to observe the current and
future warnings, develops rapidly. Under the threat of global food security, it is significant
to guarantee China’s food security and provide a guarantee for global food security [35,36].
The research on China’s early warning system can make judgments and predictions for the
state of domestic food security. Under various uncertainties, it is not only of theoretical
significance to guarantee China’s food security but also of practical significance to guide
practical economic activities.

The contributions of this paper are summarized as follows. (i) SOM-based collabora-
tive multi-view 3D dynamic visualization of food security is presented. (ii) The SVR-based
food security early warning platform is constructed. (iii) The medium and long-term food
security strategy is discussed.

The rest of the paper is structured as follows. In Section 2, we study the materials and
methods of the construction of food security early warning platforms. Experimental results
are reported in Section 3. Section 4 gives the discussion on medium and long-term food
security strategy, and Section 5 concludes this paper.

2. Materials and Methods

This section presents a SOM-based collaborative multi-view 3D dynamic visualization
of food security. This method uses SOM to reduce the dimension of multidimensional grain
data, combines with a parallel coordinate system, space–time cube, and other visualization
components, realizes multi-angle display and analysis of grain data, and achieves the
purpose of deep mining. Most strikingly, we construct the SVR-based food security early
warning platform for food data. The overall framework is shown in Figure 1.
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2.1. Theoretical Background

As a classical visualization method of high dimensional data in the two-dimensional
plane, the parallel coordinate represents geometric visualization technology [37]. Parallel
coordinates can be able to visually express the relationship between data through projective
geometric interpretation and dual features without using vectors or other visual icons and are
easy to understand. The disadvantage is that the increase in data volume and the increase
in polyline density led to many overlapping lines, which are difficult to identify [38,39].
The original grain data’s dimension is reduced via SOM-based collaborative multi-view 3D
dynamic visualization of food security, which then visualizes the parallel coordinates. When
using parallel coordinates to further supplement the link between multidimensional grain
data, it may better avoid the drawbacks of a high number of overlapping lines brought
on by increased data volume and broken line density. According to the clustering results
obtained from SOM dimension reduction, typical data in each class are obtained as input
variables. Referring to the visualization technology based on parallel coordinates such as data
abstraction, coordinate axis exchange, and dimension control, parallel axes are set according
to data attribute dimensions to realize the visual expression of spatial–temporal data, and
corresponding colors are assigned to each class for convenient observation and analysis.
SOM-based collaborative multi-view 3D dynamic visualization of food security provides data
support for the following enhanced food security warning platform. Sood and Singh discussed
how to reduce food waste by using computer vision and machine learning methods [40].
For sub-Saharan farmers who own very little farmland, Khalif and Nur discussed the role
of African farmers in reducing food insecurity [41]. In the production of food, pesticides
are commonly utilized. Brazil’s shortcomings in monitoring the use of pesticides have been
examined by Gerage et al. In order to increase food security, sustainable agriculture must
use fewer pesticides [42]. Farmland and water resources are the main factors that influence
food production in India. Through the analyses, Kumar et al. found that the gap between
agricultural water demand and water availability is the core of problems with both food
security and water management. As a result, they proposed appropriate solutions to the
water shortage [43].

A space–time cube is mainly used to express the space–time path [44,45]. The space–
time cube model aggregates the sample points into the spatial–temporal data structure
employing bin time series. By creating a space–time cube, spatial–temporal data can be
visualized and analyzed in the form of time series analysis and integrated spatial and
temporal pattern analysis, as shown in Figure 2. In Figure 2, the x-axis and y-axis represent
the spatial position of the time, while the z-axis represents the time. The bottom layer is the
start time, and the top layer is the latest time. Each cube is composed of the attribute value
corresponding to the time, and the value can be distinguished by setting different colors.
A space–time cube is formed by multiple time planes to express the change of spatial–
temporal data. Its main advantage is that the spatial–temporal data can be expressed
in a three-dimensional cube, highlighting the changes in geographical phenomena over
time. Similar to parallel coordinates, when the amount of data is large and the attribute
dimension is large, it will cause problems such as plane overlapping, path chaos, and
multi-attribute challenges to represent [46]. After the data are clustered and dimensioned
by SOM dimension reduction technology, the dimension of data attributes is reduced. The
color can be used to represent the classification of data. With the help of geographical
display tools such as maps, the expression of spatial–temporal data is completed, and the
spatial–temporal attribute relationship of data after SOM dimension reduction is displayed.
Thus, the visualization of high-dimensional spatial–temporal data is realized.

The SOM-based 3D dynamic display platform for food security is divided into three
modules: the food data layer, mining layer, and 3D visual interface layer for food security.
The food data layer stores spatial–temporal data and supports each module to call food
data. The mining layer classifies food data based on SOM’s high-dimensional food data
reduction and mining, providing a data basis for 3D visualization of food security [47].
The 3D visualization interface layer of food security is the platform visualization display
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layer, which is used for the 3D visualization expression of food data. Visualization mainly
includes two kinds of 3D visualization representation before and after food data mining.
The former is mainly used to retrieve food data and acquire interesting data sources
through food data retrieval. In contrast, the latter is mainly used to carry out the 3D visual
expression of food data based on SOM dimensionality reduction and clustering of data
sources selected by the former. The main expression tools include the U-matrix algorithm,
parallel coordinate, space–time cube, etc.
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2.2. Construction of Food Security Early Warning Platform

The basis of constructing the early warning platform is constructing a relatively perfect
and feasible indicator system. If the indicator is selected incorrectly, the system is not
reasonable. Thus, appropriate indicators that can be used for prediction must be selected.

The economic early warning platform plays an essential role in promoting the devel-
opment of the national economy [48] As an important part of the agricultural early warning
system, the food security early warning platform plays an essential and positive role in
ensuring food security. The purpose of studying the past is to guide future development.
Therefore, the food security system must put the early warning work in an important
position. Furthermore, a complete early warning system is the main work to maintain food
security in the future [49–51].

Specifically, constructing a food security early warning platform can collect all kinds
of data directly or indirectly related to food security and provide data sources for security
status identification [52,53]. Through the data collection system, the platform can collect
all kinds of data on food security. The data collection mainly depends on the information
network of each region, which is distributed in each main producing area, main marketing
area, and production and marketing area. Food security data mainly include production,
consumption, circulation, grain output, climate sub-disaster situation, consumption, import
and export volume, etc. Through a series of food data collection, a database can be built
to prepare for identifying past and current food security situations and provide historical
data material for predicting.

The early warning platform of food security is an important achievement of national
informatization construction and provides a basis for scientific decision-making in the
food department. The traditional food security early warning platform is mainly based
on the economic cycle theory of the forecast of the prosperity index, statistical single or
multiple indicators of the early warning model. The amount of data involved is limited
and primarily aimed at a particular aspect of the early warning model, such as a unilateral
yield forecast. The food security early warning platform proposed in this paper will be
based on the original model, integrating various models to show the food security situation
better. The decision system in the food security early warning platform includes the choice
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of model and the formulation of the decision scheme. The early warning platform is based
on past data, that is, historical data, which tends to be relatively comprehensive, showing
the situation of food security in the past and identifying the root causes of long-standing
food insecurity problems [54,55]. The food security early warning platform can realize
the observation of the development trend of long-term food security in the future. The
early warning is prediction-based, which cannot only observe the prediction results but
also process and describe the future short-term and long-term food security situation
according to historical and realistic data. Through the investigation and analysis of the
system operation status, different degrees of alarm can be issued to the possible problems
so that the decision-makers can observe the problem, formulate the excluding warning
plan in time, and reduce the loss caused by food insecurity. Food security early warning
platforms can trigger the alarm and make various decision-making plans according to
experience to facilitate relevant departments to select the best choice [56]. At the same
time, it can dynamically monitor the implementation of relevant programs and assess the
programs at any time. When the current programs are not suitable for the current situation,
the platform will immediately give feedback to decision-makers and report the problems of
the programs for better correction by decision-makers. Different regions have different food
conditions. Through various quantified information, early warning models in the early
warning platform are constructed to achieve more accurate forecasts and more practical
food security early warning.

The food security early warning platform is based on history and is more focused
on the critical pillar of the future to ensure food security. It is the only way to modernize
the future food security powers. Only a high-level warning platform can promote the
progress of China becoming a great nation of food security and thus contribute to world
food security.

The selection of various indicators in the food security early warning platform must
follow the principles of representativeness, comprehensiveness, and operability. Represen-
tativeness means that the indicators selected must be from accurate and reliable sources,
closely related to the warning to be carried out. The comprehensiveness means that the
selected indicators can represent the whole early warning platform, and all aspects are
representative indicators. They should not be too one-sided, and the characteristics and
operating rules of the system should be inferred through the selected indicators. The oper-
ability means that the selected indicators must be available, followed by statistical analysis.
The data must be complete and processed by various software, rather than desultorily.
Warning situation indicators refer to conditions that tend to trigger economic alarm. The
determination of warning situation indicators is the most basic and vital prerequisite for
early warning.

2.3. Data Collection

To comprehensively reflect the food security situation in China, the warning situation
indicator is divided into three subsystems, namely production, consumption, circulation,
and reserve, with a total of 10 indicators. The data are selected from 2007 to 2016 for
10 years, all from China Statistical Yearbook [57]. Since the food security data from 2007 to
2016 are very representative and accurate, the data span is considerable, which may cover
all levels of warning intensity. Therefore, we select the food security data from 2007 to 2016
for warning intensity analysis, and the early warning indicator system data (2007–2016)
is shown in Table 1. The production system includes five indicators: total output, grain
planting area, the proportion of disaster area to affected area, fertilizer application amount,
and irrigation area of cultivated land. The consumption system includes two indicators:
the grain export volume to major agricultural products and the grain import volume to
major agricultural products import volume. Circulation and reserve systems include grain
self-sufficiency rate, grain reserve rate, and grain foreign trade dependence.
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Table 1. Early warning indicator system data (2007–2016).

Total
Output a

Grain
Planting
Area b

Proportion of
Disaster Area to
Affected Area c

Fertilizer
Application
Amount d

Irrigation Area of
Cultivated Land e

Grain Export
Volume to Major

Agricultural
Products f

Grain Import
Volume to Major

Agricultural
Products

Import Volume g

Grain Self-
Sufficiency

Rate h

Grain
Reserve
Rate i

Grain Foreign
Trade

Dependence j

2007 504.13 105,638 51.2 51.08 56,518 0.947811 0.716608 0.942773 0.415082 0.064394
2008 534.34 106,793 55.7 52.39 58,472 0.822455 0.762684 0.949857 0.499551 0.074022
2009 539.40 108,986 45.0 54.04 59,261 0.824163 0.780543 0.918906 0.509659 0.082461
2010 559.11 109,876 49.5 55.62 60,348 0.775617 0.811473 0.916366 0.475717 0.105588
2011 588.49 110,573 38.3 57.04 61,682 0.781934 0.787945 0.904983 0.483806 0.096839
2012 612.22 111,205 46.0 58.39 62,491 0.791962 0.782386 0.89829 0.526525 0.115049
2013 630.48 111,956 45.6 59.12 63,473 0.778135 0.792837 0.854517 0.666741 0.114422
2014 639.64 112,723 50.9 59.96 64,540 0.706001 0.86811 0.692614 0.937113 0.09834
2015 660.60 113,343 56.9 60.23 65,873 0.614453 0.873351 0.65102 1.128235 0.105107
2016 660.43 113,034 52.1 59.84 67,149 0.819672 0.901062 0.5953 1.164821 0.09852

Notes: a, b, c, d, e, f, g, h, i, and j denote the units of warning indicators. a Mt; b kha; c %; d Mt; e kha; f %; g %; h %; i %; j %.
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Therefore, In this paper, x1, x2, x3, x4, x5, x6, x7, x8, and x9 are selected as ten warning
indicators to represent total output, grain planting area, proportion of disaster area to
affected area, fertilizer application amount, irrigation area of cultivated land, grain export
volume to major agricultural products, grain import volume to major agricultural products
import volume, grain self-sufficiency rate, grain reserve rate, and grain foreign trade
dependence. The analysis of warning situation indicators is an integral part of early
warning. Without them, the hazard degree of warning cannot be predicted. Therefore,
the selection of warning situation indicators is the key to determining the outbreak of a
warning situation. In order to ensure the scientificalness of warning situation indicators,
we select five suitable warning situation indicators using principal component analysis [58],
namely, total output, grain planting area, irrigation area of cultivated land, the proportion
of grain exports to primary agricultural products exports, and grain reserve rate, to replace
the original ten indicators, which are more straightforward and more representative. After
selecting the independent variable, we need to select a comprehensive dependent variable
that can reflect food security [59,60].

The warning boundary refers to the threshold value divided by the warning degree.
Generally, it is the upper and lower limit artificially divided by scholars through qualitative
research and comprehensive data [61]. It is also called a threshold value. The division
of warning boundary is the core to determine the size of warning intensity, according to
different thresholds to determine all kinds of warning intensity. Warning intensity refers to
the outbreak of warning used to judge the intensity of the warning situation. The setting of
warning intensity should be based on the constantly changing state of warning situation
indicators. More importantly, different standards are divided according to the threshold
value into different periods to analyze the current situation in a specific warning boundary
and then predict the warning situation. The warning intensity is determined as four levels:
no warning, light warning, medium warning, and heavy warning, respectively, with the
numbers 0, −1, −2, and −3 representing their degree. According to the operation status
of the grain market, the relevant warning intensity degree is defined, as shown in Table 2.
Next, the upper and lower warning situation thresholds are determined to divide the actual
range of each warning intensity level. The determination of warning intensity is generally
set artificially. This paper selects reasonable warning boundaries to judge China’s food
security according to international standards, the studies of many scholars in the past,
and the current economic situation in China, and the setting of warning boundaries is
strict [52,62].

Table 2. Warning intensity definition.

No Warning (0) Light Warning (−1) Medium Warning (−2) Heavy Warning (−3)

Food security level Good Relatively good Relatively poor Poor

Food market conditions Supply–demand
balance

Basically
supply–demand

balance

Basically
supply–demand

imbalance
Totally unbalanced

Price increase Rational Acceptable Governable Uncontrollable

As an essential branch of support vector machine (SVM), support vector regression
(SVR) is used to solve regression problems and is often used to predict the weather, stocks,
and other aspects [63,64]. When SVM is used to process data, it is often assumed that
the training samples are linearly separable, which can be solved by the above method.
However, if the training samples cannot find a hyperplane that can be divided, the kernel
function can be introduced to solve the problem. SVR can solve the problem of linear
inseparability through the intervention of the kernel function. Regarding how to select
kernel functions, certain kernel functions can be selected according to the experience
and research of experts and scholars, or cross-validation can be adopted to test the test
results of different kernel functions. If the results of the above methods are not ideal, the
method of mixed kernel function can also be adapted to combine different kernel functions
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and establish new kernel functions. However, the complexity of calculation increases, so
this paper does not adopt the mixed form and only selects different kernel functions for
model analysis.

Regarding total output, the standard to determine whether the total output is within a
reasonable range is calculated according to the population growth. If the grain output can
meet the grain demand of everyone, the ideal grain output can be obtained by multiplying
the per capita grain output with the total national population, and then the security of the
total grain output can be judged. The population of the country is from China Statistical
Yearbook 2021. Internationally, it is generally believed that the per capita food possession
reaches 400 kg, that is, it reaches the basic level. However, the food conditions in China are
improving in 2020. Therefore, 400 kg per capita food possession is set as the lower limit
of no warning. China used to take the per capita grain possession of 300 kg and 200 kg as
the evaluation standard of having only basic needs, as early as in the 1990s, the per capita
grain possession of China exceeded 300 kg. From this point of view, it is more reasonable to
set 375 kg and 350 kg of grain per capita as the lower limit of light warning and the upper
limit of heavy warning.

Regarding grain planting area, the criterion is to calculate the standard proportion
of the planting area of grain to the total planting area of crops and then multiply this
value with the total planting area of crops. The total planting area of crops is from China
Statistical Yearbook 2021, and the ratio is generally between 0.6 and 0.7. In order to refine
this indicator and more dynamically reflect the state of food security, the lower limit of the
proportion of no warning is set as 0.68, the lower limit of the proportion of light warning is
set as 0.67, and the lower limit of the proportion of medium warning is set as 0.66.

Regarding the irrigation area of cultivated land, the criterion is generally the product
of the standard proportion of irrigation area to cultivated land area and cultivated land
area. Considering the current grain irrigation situation, the preliminary judgment of the
proportion is generally between 0.04 and 0.05. Within a reasonable range, the higher the
proportion of irrigated area, the better the reduction of grain production caused by drought
and other disasters. In order to better reflect the precise influence of irrigation on grain,
the proportion of 0.048, 0.045, and 0.042 close to 0.05 and 0.04 are used as the proportion
threshold of each warning intensity, which is multiplied by the cultivated land area to
obtain the standard value of the warning boundary under the four warning intensities.

Regarding grain export volume to major agricultural products, the criterion is based
on the proportion of grain foreign trade dependence. It is generally believed that the higher
the proportion, the lower the food security. Therefore, the range of no warning is (−∞, 0.7],
light warning is (0.7, 0.8], medium warning is (0.8, 0.9), and heavy warning is (0.9, +∞).

Regarding the grain reserve rate, according to the international standard, the grain
reserve rate between 0.17 and 0.18 reaches the level of food security. Only when the grain
reserve rate is lower than 0.17, it is considered to be lower than the safety line. When it is
below 0.14, it is a food security crisis. However, this international standard is not applicable
in China. In this paper, the grain reserve rate will be combined with China’s grain import
and export and inventory status, and the threshold will be set as the following standard.
The range of no warning is (0.8, +∞), the range of light warning is (0.6, 0.8), the range of
medium warning is (0.4, 0.6), and the range of heavy warning is (−∞, 0.4).

After determining the warning boundary of different warning intensities, the criterion
of warning intensity is formed, and then it is necessary to carry on the next detailed analysis
of the warning intensity. In the early warning system of this paper, a preset provision is
made, that is, when the warning situation is no warning and light warning, no warning will
be triggered. When medium warning and heavy warning occur, the warning is triggered.
It is important to identify all the warning indicators and determine the warning situation
indicators that cause the warning. It is very important to find the warning source quickly.
Only by finding out the source can we clear the dangerous situation in time and formulate
the relevant detailed strategy, so as to truly alleviate the crisis. Early warning systems
formulate the rules of the warning trigger mechanism, which is equivalent to the function
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of a switch, according to whether to pass the switch or to implement different strategic
arrangements. Through the above calculation, the upper and lower thresholds of each
warning intensity of food security can be preliminarily determined. By substituting the
data of each indicator in each year into the threshold, the security degree of each indicator
in each year can be determined, as shown in Table 3.

Table 3. Early warning level of food security in 2007–2016.

Year Total
Output

Grain Planting
Area

Irrigation Area of
Cultivated Land

Proportion of Grain Exports to
Major Agricultural
Products Exports

Grain Reserve
Rate

Average Selling Price per
Kilogram of
Staple Grain

2007 −1 0 −1 −3 −2 −2
2008 0 0 0 −2 −2 −2
2009 0 0 −2 −2 −2 −2
2010 0 0 −2 −1 −2 −2
2011 0 0 −1 −1 −2 −2
2012 0 0 −1 −1 −2 −2
2013 0 0 −1 −1 −1 −2
2014 0 0 −1 −1 0 −2
2015 0 −1 0 0 0 0
2016 0 −1 0 −2 0 0

Notes: 0: no warning; −1: light warning; −2: medium warning; −3: heavy warning.

As seen in Table 3, from 2008 to 2014, the increase in planting area and other factors led
to the rapid growth of total output, which made the two warning intensities quickly turn
into no alarm state. At the same time, the irrigated area showed different degrees of light
warning and medium warning states, mainly from 2009 to 2010. The warning intensity
of grain export volume compared to the export volume of primary agricultural products
showed a declining trend. After 2009, a light warning state appeared that did not need a
warning, while the security degree of grain reserve rate mainly showed a medium warning
state. In 2013, the warning intensity showed a decreasing trend and rapidly entered a light
warning state and no warning state. The improvement of the security degree of these two
indicators mainly depends on the change in grain collection and storage policy. In 2015,
there was no warning state; only the planting area was lightly warned, while all other
indicators showed no warning signs. In 2016, there was no warning, in which the planting
area was a light warning, and the proportion of grain export volume in the export volume
of major agricultural products was a medium warning. Since other indicators were in no
warning state, which could make up for the warning situation in export, it was consistent
with the fact that there was no warning state this year.

The SVR-based food security early warning platform divides the samples into training
and test sets. The training set is used to simulate data. In contrast, the test set is used
to test whether the model presented by the training set has a solid explanatory ability to
judge whether the model is adequate. The training set and test set proportion is 80% and
20%, respectively. The model has ten samples and five features. Therefore, ten samples of
the training set and three samples of the test set were determined. The training samples
were input into the SVR model to adjust the parameters and determine the optimal model.
Specific parameter settings are shown in Table 4.

Table 4. Parameters setting.

Parameter Setting

Penalty factor 1
Cache size 200 M

Kernel function linear/poly/rbf
Shrinking TRUE
Verbose FALSE
Epsilon 0.1
Coef0 0

Gamma auto deprecated
Tol 0.001
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3. Results

In SVR model, y_true represents the true value, and y_pre_kernel represents the
predicted value under different kernel functions. When epsilon = 0.1 and other parameters
remain unchanged by default, the predicted results are shown in Table 5. As seen from
Table 5, in the case of epsilon = 0.1, when the kernel function is rbf, the predicted value in
each year is 1.6238, which differs significantly from the true value without any fluctuation.
In the case of linear and poly, the values predicted by the linear kernel function are closer to
the true values than those predicted by the poly kernel function. Generally, when epsilon is
enlarged, the model’s prediction accuracy will be improved. When epsilon is enlarged to a
certain extent, no matter how much epsilon is enlarged, the prediction result will not be
affected. Therefore, selecting an appropriate epsilon is necessary, defining epsilon as 1.

Table 5. SVR predicted results (epsilon = 0.1).

Year y_true y_pre_Linear y_pre_rbf y_pre_Poly

2014 2.4678 2.4791 1.6238 2.5415
2015 2.3562 2.6657 1.6238 2.7634
2016 2.2768 2.6444 1.6238 2.8312

The predicted results are shown in Table 6. As seen from Table 6, when epsilon is
increased, not only can the prediction result not be more accurate, but also the predicted
value of the three kernel functions deviates further from the true value. Moreover, the
predicted value of the three kernel functions each year is 1.6961, and the true value of the
three years is more than 2. Obviously, this model is not applicable, and epsilon cannot
be defined as 1. Therefore, epsilon is defined as 0.2 in the parameter adjustment, and the
predicted results are shown in Table 7. It can be seen from Table 7 that the predicted value
of the linear kernel function is very close to the true value, while the predicted value of the
rbf kernel function is quite different from the true value. The predicted value of the poly
kernel function is also close to the true value but not as good as the linear fitting. Therefore,
the linear kernel is the most suitable of the three.

Table 6. SVR predicted results (epsilon = 1).

Year y_true y_pre_Linear y_pre_rbf y_pre_Poly

2014 2.4678 1.6961 1.6961 1.6961
2015 2.3562 1.6961 1.6961 1.6961
2016 2.2768 1.6961 1.6961 1.6961

Table 7. SVR predicted results (epsilon = 0.2).

Year y_true y_pre_Linear y_pre_rbf y_pre_Poly

2014 2.4678 2.4687 1.6508 2.5808
2015 2.3562 2.6832 1.6508 2.7241
2016 2.2768 2.4416 1.6508 2.7109

Since the linear kernel is the kernel with the best performance in the training set and
test set results, and it does not need to adjust other parameters, the current parameters are
optimal. The results of the prediction model made by linear kernel function are put into the
warning boundary, and the warning intensity of the average selling price of major grains
per kilogram and the warning intensity predicted from 2014 to 2016 is obtained, as shown
in Table 8. There is almost no difference between the alarming degree of predicted value
and the real warning intensity, which indicates that the SVR model is very effective for food
security early warning, which is very consistent with the actual food security operation
state, which also indicates that the food security early warning platform based on SVR is
very reasonable.
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Table 8. The warning intensity of predicted and true values.

Year Warning Intensity
of Predicted Value

Warning Intensity
of True Value

2014 −2 −2
2015 0 0
2016 0 0

4. Discussion

By constructing a 3D dynamic display and early warning platform for food security, we
can intuitively understand the real-time situation of food, which is of great significance in
promoting the development of agriculture [65,66]. Ensuring food security is the foundation
of economic development and social stability. Currently, COVID-19, extreme weather, and
other uncertain events have brought a chain reaction to the global food industry chain and
supply chain, and the overall situation of the international food market is not optimistic,
raising higher requirements for China to ensure food security and participate in global
food governance effectively. Next, we will study China’s medium and long-term food
security strategy.

In the face of the current international food situation and new developments, to
ensure domestic food security, we must attach great importance to and solve the short-term
impact of the international market. First, strengthen early warning and monitoring of
domestic and international grain markets, effectively guide and manage expectations, and
ensure unimpeded information, transportation, and logistics in domestic grain markets and
circulation. Second, we will stabilize grain yields through cost-cutting and supplementary
measures, release some reserves of potash fertilizer and fertilizer for disaster relief ahead of
schedule, and curb the rapid rise in domestic fertilizer prices. In response to the rapidly
rising prices of agricultural supplies, we provided one-time subsidies to farmers who
grew grain and promoted the establishment of a system of subsidies for actual grain
production in significant rice and wheat-producing areas. Third, we will improve the
domestic grain emergency supply system. Depending on the scale of emergency grain
reserves, we will meet the needs of large and medium-sized cities for grain consumption
for 10 to 15 days and speed up the construction of emergency grain processing enterprises,
emergency supply outlets, emergency storage and transportation enterprises, and regional
distribution centers.

As bulk agricultural products, the market competitiveness of grain depends on grain
price. In recent years, China’s minimum purchase price policy for rice and wheat has
played an essential role in ensuring grain production capacity and stabilizing the income
of food and agriculture. However, the grain price mechanism has not been fundamentally
adjusted, resulting in an insufficient supply of high-quality grain. To this end, we should
continue to adhere to the direction of grain market reform, and the minimum purchase
price policy of grain should not be changed in the short term as long as it conforms to
the WTO micro allowance rules after limited purchase and storage. In order to reduce
the excess ration stocks, we should strengthen the market function to regulate the output,
improve the social tolerance of reasonable fluctuation of ration prices, and expand the
reasonable fluctuation range of ration prices. In the long run, we will adhere to the principle
of market pricing and separation of prices from subsidies to improve the mechanism for
setting grain prices.

Currently, grain production in the water-rich south of China is decreasing while that
in the water-deficient north is increasing. The risk of mismatch of water, soil, light, and
heat resources in food production is becoming increasingly prominent. In terms of the
proportion of grain output in the three-year average from 2006 to 2008 and 2016 to 2018,
the share of the seven central grain-producing provinces in northern China increased from
60.3 percent to 63.9 percent, while that of the six major grain-producing provinces in south-
ern China decreased from 39.7 percent to 37.1 percent, widening the gap by 3.6 percentage
points over the past decade. By 2035, the proportion of major grain-producing areas in
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the north will approach 70 percent, and that in the south will approach 30 percent. At the
same time, as the population continues to gather in critical regions and cities, especially
in recent years, the trend of population migration from north to south is noticeable, and
food consumption and security risks are also concentrated in these regions. In a state of
emergency and under national logistics constraints, food supplies may be strained in some
regions if food is transported externally. Therefore, we must attach great importance to the
responsibility of food security in urban agglomerations and metropolitan areas and take
adequate measures to deal with it.

In the coming period, China’s agricultural production mode will be changed entirely,
the elderly farmers will gradually withdraw from food production, the new agricultural
operation subject will gradually grow, and the main body of grain-growing will experience
a replacement process. However, the overall progress of the rural land system reform in
China is slow, the grain price mechanism has not been fundamentally straightened out, the
income of grain growing is not high, resulting in moderate scale operation, and scientific
and technological grain growing is restricted. The cultivation of new business subjects is
not fast. Based on this, considering China’s primary national conditions and agricultural
conditions, we should speed up the improvement of the agricultural production service sys-
tem, strengthen the construction of interest linkage mechanism, introduce a large number
of small farmers into the track of modern agricultural development through effective forms
such as land trusteeship, promote moderate scale operation of agriculture, and promote
the joint development of family operation and cooperative operation, enterprise operation
and collective operation based on grain subject dominated by family operation. At the
same time, we will accelerate the reform of the rural land and collective property rights
systems, strengthen the application of modern information technology, comprehensively
upgrade equipment for whole-process mechanized production, and promote mechanized
grain growth.

5. Conclusions

Ensuring critical agricultural products, especially food security, is the foundation of
national economic and social stability and development. First, this paper combines the
clustering dimension reduction algorithm with several other visualization methods to real-
ize the 3D visualization of food security with multi-window collaboration, overcomes the
problems of dimension and sample size limitations existing in a single visualization method,
and dramatically improves the efficiency of mining, provides new ideas for analysis and
mining of multi-dimensional spatial–temporal data, and can provide proper technical
support for data mining and analysis of mass agriculture. It benefits the development
and promotion of fine agriculture and has specific economic and social benefits. However,
different clustering methods have different abilities to fit the topological characteristics
of datasets, leading to differences in clustering accuracy. Different visualization methods
have different emphases on data visualization expression. In this regard, for different
agricultural datasets, finding a suitable clustering dimensionality reduction algorithm,
determining its topological distribution, judging its clustering accuracy, and choosing ap-
propriate visual tools to display its spatial–temporal relationship is worth further research.
Then, we expound on how to construct the food security early warning platform. Among
them, the indicator to select the right is a top priority. We select total output, grain planting
area, irrigation area of cultivated land, the proportion of grain exports to major agricultural
product exports, and grain reserve rate to determine four warnings: no warning, light
warning, medium warning, and heavy warning. The relevant scope is determined through
careful division of warning boundaries, trigger rules are formulated, and alarm measures
are taken for medium and heavy warnings that trigger alarms. Finally, the SVR model was
used to predict China’s food security situation from 2014 to 2016, and it was found that the
predicted value was not significantly different from the true value. The warning intensity
is consistent with the actual situation, which shows that the food security early warning
platform is effective.
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