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Abstract: We analyzed the dietary composition of Polypedilum larvae among two contrasting habitats
(river and weir). Our approach was (i) to apply eDNA-based sampling to reveal the gut content
of the chironomid larvae, (ii) the diversity of gut contents in the two aquatic habitats, and (iii)
assessment of habitat sediment condition with the food sources in the gut. The most abundant food
was Chlorophyta in the gut of the river (20%) and weir (39%) chironomids. The average ratio of fungi,
protozoa, and zooplankton in river chironomids gut was 5.9%, 7.2%, and 3.8%, while it was found
decreased to 1.2%, 2.5%, and 0.1% in weir chironomids. Aerobic fungi in river midge guts were 3.6%
and 10.34% in SC and IS, while they were in the range of 0.34–2.58% in weir midges. The hierarchical
clustering analysis showed a relationship of environmental factors with food contents. Abiotic factors
(e.g., pH) in the river and weir habitats correlated the clustered pattern with phytoplankton and
minor groups of fungi. This study could help understand the food source diversity in the chironomid
and habitat environmental conditions by using eDNA metabarcoding as an effective tool to determine
dietary composition.

Keywords: chironomid gut contents; eDNA metabarcoding; next-generation sequencing (NGS); river
and weir habitats

1. Introduction

Non-biting midges (Diptera: Chironomidae) are one of the most abundant inverte-
brates, widely distributed in lentic and lotic environments. The larvae of chironomid are
important constituents in freshwater systems [1]. As Vasquez et al. (2022) [2] mentioned,
chironomids are the biological indicators of aquatic health, the prevalence of ecological
organization, functions, and systematics. Chironomids are sensitive to extreme conditions
and their presence represents quality factors of the environment [3]. Genus Polypedilum is
well known for its physiology among the Chironomidae family. Being omnivores, chirono-
mids have a considerable mode of flexibility in their feeding and there are certain factors,
such as resource availability, food quality, and physiochemical parameters, that influence
their feeding behavior [4]. Analysis of larval gut content provides a descriptive illustration
of the presence, existence, and interactions of indigenous natural communities. However,
gut content using optical observations in chironomid is relatively time consuming and
requires enormous morphological identification expertise to be accurate when compared to
eDNA sequencing methods.

Earlier research reported microscopic examination-based gut content analysis with-
out information on the multi-compositional diet [5]. Lemes-Silva et al. (2014) [6] could
distinguish the food contents as organic matter, filamentous algae, and microalgae only to
the lowest taxonomic level in chironomids. A similar analysis, reported by Butakka et al.
(2016) [7], could categorize the food content as algae, fungal spores, and plant fragments
but there was inadequacy in diverse composition and high-taxonomic resolution. Certain
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observations could identify phytoplankton [5,8], mostly algae [9,10] and detritus [11,12], as
the major gut content in the chironomid. However, these results could not profile detailed
taxonomic specificity and diversity of food sources. eDNA metabarcoding altered the
perspective in terms of sampling range and increased resolution of taxonomic identification
targeting different species with wider community functionalities. Further, eDNA metabar-
coding has been successfully applied to demonstrate the status of rare and threatened
animals, including amphibians, mammals, insects, fish, and crustaceans, in the freshwater
ecosystem [13]. Recently, the technique has been employed to identify the biomass of fish
species in marine habitats [14], diversity in river systems [15], and also in enumerate phyla,
representing different birds, plants, and invertebrates from the terrestrial ecosystem [16].

The 18S rRNA gene has been used in eDNA metabarcoding mostly for its extensive
coverage of the eukaryotic domain. The 18S V9 region [17], relatively 240 bp short frag-
ments are the scalable feature to reveal most of the micro-eukaryotic diversity. Cordier et al.
(2022) [18] explored the assemblage of 0.24 million eukaryotic ASVs in 1.95 billion DNA
reads, representing the plankton diversity in deep-ocean sediments throughout the world.
The 18S V9 primers showed potency to locate different species exclusively from the larger
assemblage group to the minor fractions, including novel species of phytoplankton, fungi,
and zooplankton [19–21] and different faunal communities [22–24]. Gut content profiles
using eDNA analysis have dramatically increased in the context of taxonomic diversity
ecology. Dietary constituents from eDNA are a crucial research strategy to determine the
resources in the habitat and biodiversity in the ecosystem [25]. Meta-analysis of gut com-
position has been discussed in crustaceans, copepods, and other aquatic animals [25–28],
while only a few works have been reported on the chironomid diet. The initial works
of Jo et al. (2020) [29] on eDNA sampled 18S rRNA metagenomic sequencing indicated
the food content of chironomids with different phytoplankton at the species level. This
study represents the first eDNA-based diet composition information among generalist
Polypedilum midges. We aimed to analyze and identify the different gut contents of the
Polypedilum sp. between river stretches and large-scale weirs. eDNA metabarcoding was
used to explore the dietary profile of midges based on the hypothesis: (i) to identify the diet
profile of the larvae in both habitats, (ii) to scrutinize different food contents by comparing
both the study habitats, and (iii) to assess the relationship between food content and the
habitat condition.

2. Materials and Methods
2.1. Field Sampling and Measuring Factors

The study areas selected were the major water bodies located in the region of South
Korea (Figure 1). The portion of samples collected from the river Sunchang (SC) and Imsil (IS),
the main streams of the region, and the samples from four largescale weirs denoted Ipo (IP),
Sejong (SJ), Juksan (JS), and Gangjeong (GG). The gut samples were given the sample code of
the sites where the midges were collected. The sampling sites exhibit a complex hydrological
dynamic relating to different environments with geographical features.

The sampling was carried out quarterly from April 2019 to July 2019. Triplicates of samples
were collected vertically at depths of 10–50 m in weirs and less than 1 m in the river. Water quality
parameters, pH, water temperature (◦C), conductivity (µS/cm), turbidity (NTU), and dissolved
oxygen (DO, mg/L) were measured on site using portable equipment (Professional Plus, YSI,
Yellow Springs, OH, USA). In the laboratory, water samples were filtered through a 0.45 µm
pore-size membrane (Advantec MFS membrane filter, Irvine, CA, USA) for water nutrients. An
automatic water quality analyzer (AutoAnalyzer 3 HR, Seal Analytical Inc., Mequon, WI, USA)
was used for the estimation of total phosphorus, total nitrogen, and Chlorophyll-a concentration,
and the measurements of optical density were performed using a UV spectrophotometer
(GENESYS™, Thermo Fisher Scientific, Waltham, MA, USA). Dissolved organic carbon (DOC)
and total organic carbon (TOC) concentrations were measured using a TOC analyzer (Vario
TOC cub, Langenselbold, Germany) and determined through an 850 ◦C combustion catalytic-
oxidation method [24]. Further, 4th instar larvae of Chironomidae, Polypedilum sp. were collected
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using Surber net (25 cm × 20 cm), dredging (1 m × 1 m), Ekman grabs, and Ponar grab. The
larvae samples obtained were preserved immediately in 96% ethanol and maintained at 4 ◦C
for DNA meta-barcoding analysis.
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Figure 1. Sampling sites of the chironomid larvae from the rivers (SC—Sunchang and IS—Imsil,
marked in blue dot) and weirs (IP—Ipo, SJ—Sejong, JS—Juksan, and GG—Gangjeong, marked in red
triangle) in South Korea.

2.2. DNA Extraction and Metagenomic Sequencing

The gut samples were dissected from the 4th instar Polypedilum sp. larvae of each
sample site followed by a sample processing procedure after the complete volatilization of
ethanol (Jo et al., 2020 [29]). Genomic DNA was extracted using DNeasy Blood & Tissue
Kit (Qiagen, Düsseldorf, Germany) as per the manufacturer’s protocol. The quality and
integrity of the gDNA extracted were measured using PicoGreen (Thermo Fisher Scientific,
Waltham, MA, USA), VICTOR Nivo Multimode Microplate Reader (PerkinElmer, Waltham,
MA, USA) and were prepared for sequencing according to Illumina 18S Metagenomic
Sequencing Library protocols (San Diego, CA, USA).

The initial thermal cycle corresponds to the amplification of the adapter region using
the condition 95 ◦C for 3 min followed by 25 cycles of 95 ◦C for 30 s, 55 ◦C for 30 s, 72 ◦C
for 30 s, and a final extension of 5 min at 72 ◦C was carried out using the 18S V9 primers
including an adapter sequence (Table 1). The second set of amplification as an indexing PCR
was performed using the previous amplicon using conditions as follows: 95 ◦C for 3 min;
8 cycles at 95 ◦C for 30 s, 55 ◦C for 30 s, 72 ◦C for 30 s, and extension step for 5 min at 72 ◦C.
The final products were normalized to the concentration of DNA and then pooled using
PicoGreen (Thermo Fisher Scientific Waltham, MA, USA) and also the size of the libraries
was verified using LabChip GX HT DNA High Sensitivity Kit (PerkinElmer, Waltham, MA,
USA). The amplicon libraries were sequenced using the MiSeq™ NGS platform (Illumina,
San Diego, CA, USA).

Table 1. Oligonucleotide primer sequences with adapter regions (highlighted in bold) used to amplify
the V9 18S rRNA gene of eukaryotic content from the Polypedilum larvae gut content.

Primer Name Specificity Primer Sequence (5′-3′) Length (bp) Reference

1380F eukaryotic GCCTCCCTCGCGCCATCAGXXXXXCCC-
TGCCHTTTGTACACAC 43

[17]

1510R eukaryotic GCCTTGCCAGCCCGCTCAGCCTTCYG-
CAGGTTCACCTAC 39
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2.3. Bioinformatics Analysis of the Sequence Reads

Contiguous sequences were created from the sequence read data using the ‘make.contigs’
command of Mothur Miseq SOP (mothur, v.1.47.0; https://www.mothur.org/wiki [30]). Low-
quality sequences that contained any ambiguities, homopolymer runs of a length ≥ 8 bp,
and sequences < 275 bp for 18S V9 rRNA were removed using the ‘screen.seqs’ command.
The reference database for the specific hypervariable region for taxonomic identification was
prepared from the SILVA reference database, v.138.1 [31] using the ‘pcr.seqs’ command and
the alignment was attained using ‘align.seqs’ routine. Pre-clustered sequences were checked
for chimeric regions using VSEARCH [32] and we removed such sequences from the analysis.
The custom reference database mentioned above was used for the taxonomic assignment of
the sequences. Taxonomic classification was performed using the ‘classify.seqs’ command
and the unknown alignments were removed following further quality control steps. Pairwise
distances were calculated (‘dist.seqs’) and OTUs clustered (‘cluster’) using the distance threshold
of 0.03. OTU-based alpha and beta diversity measurements proceeded after the classifying
taxonomy towards OTUs, summarizing for analysis, respectively. A two-way and four-way
Venn diagram was created to visualize the OTUs shared between each combination of the
regions (https://bioinfogp.cnb.csic.es/tools/venny/index.html; accessed on 13 June 2022 [33]).

2.4. Statistical Analysis of OTUs and Environmental Factors

OTUs were defined by Mothur (v.1.47.0; Schloss et al., 2009 [30]) using a 0.03 cutoff
distance. The number of reads per sample was randomly subsampled to reduce sequence
bias, respectively. Using Mothur (v.1.47.0), Good’s coverage, alpha diversities including
Shannon index [34], and Chao richness [35] were calculated.

The relative frequency of the taxa with assigned OTUs in river and weir habitats was
calculated and used to describe the diet composition of the chironomid. We calculated the
diet breadth

B =

(
n

∑
i=1

p2
i

)−1

(1)

using Levin’s index (1968) [36] where pi is the proportion of food items i and n is the total
number of food items in the gut content. Standardized niche measures ranging from 0 to 1
were applied using Hurlbert’s formula (1978) [37]:

BA = (n− 1)−1
(
(∑n

i=1 p2
i )
−1 − 1

)
(2)

where pi is the proportion of food sources i in the diet and n is the total food content.
To demonstrate the relationship between the environmental condition and food con-

tents in the habitats we used the hierarchical clustering method [38]. The variables were
grouped using Ward (1963) [39] method after the ordination of beta diversity between
the relative OTUs of food items at the phylum level and environmental variables using
Bray–Curtis dissimilarity [40]. The two-way clustering analysis was performed using the
vegan package in R Statistical Software (v4.1.3; R Core Team 2022 [41]).

3. Results
3.1. Diversity of Polypedilum Larvae Gut Content Using V9 Metabarcoding

The gut content of Polypedilum larvae (Chironomidae) in the river and weir habitats
was demonstrated using OTU analysis. OTUs were assigned by calculating the 0.03 cut-
off distance. Total eukaryotic OTUs detected were 4066 in SC, 6361 in IS among river
chironomid and it was found to be 2004 OTUs in IP, 2031 in SJ, 2014 in JS, and GG with
1372 OTUs, respectively. Taxonomic classification using the SILVA reference database
revealed the composition of the food content. As such, 24 phyla (class (54), order (89),
family (105), genus (140)) from river chironomid and 25 phyla (class (62), order (104),
family (125), genus (188)) from weir chironomid gut contents were identified. Altogether,
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we grouped 29 phyla into phytoplankton, protozoa, fungi, zooplankton, and a few minor
OTU taxa as others.

The highest number of OTUs detected was associated with Chlorophyta, Diatomea,
and Ochrophyta (Figure 2). River chironomid gut profile was constituted of 60% phyto-
plankton, representing eight different taxa in IS (36%) and five taxa in SC (24%). Further,
21–23% of the weir midge diet composition, except for GG (15%), represented phyto-
plankton (82.4%). Among the OTUs assigned to phytoplankton-microalgae (diatomea),
Ochrophyta-golden algae (Chrysophyceae) and green algae (Chlorophyta) were the dom-
inant groups in the river chironomid gut profile while the green algae (Chlorophyta),
microalgae (diatomea), and Ochrophyta occupied the prominent clusters of weir midge
gut profiles. The phylum diatomea was assigned to 13% OTUs in IS, which was double
the proportion of SC and it was 12% (IP), 9% (SJ), and 6% (JS and GG) in the weir chi-
ronomid. The total composition of the group Ochrophyta was 16% in river chironomid
(8% in SC and IS) and with a range of 5% in IP among weir samples. The majority of
OTUs for microzooplankton identified in the gut samples was assigned to Cercozoa and
Euglenozoa in the river habitants’ diet while it was the least represented OTUs of diet in
weir chironomid, including other taxa, such as Ciliopora, Heterolobosea, Protalveolata, and
Amoebozoa. Approximately 12% of the food contents in river chironomids was delineated
to protozoa, whereas it was 4% in the weir gut samples. Mesozooplankton in the diet
profile was associated with Rotifera, Annelida, Arthropoda, Mollusca, Cnidaria, and Ne-
matozoa. The maximum OTUs among zooplankton were assigned to Rotifera with 7% in
river midges (SC > IS) and <1% in weir midges. In the gut profiles of both the river samples
and specifically in JS, GG (weir samples) Nucleariidae/Fonticula group, an unclassified
eukaryote was identified. Likewise, Euryarchaeota and Halobacterota were identified as
rare groups clustered in JS. Moreover, the taxa of minor OTUs with <1% coverage were
configured as others.

According to the OTU-based analysis, as in Table 2, the gut profile of IS was found
to be more diverse than SC among river chironomid and also more diverse than the weir
profile. Levin’s standardized niche breadth corresponds to diet breadth (B), determined
from the OTUs of the river and weir chironomid diet. Niche breadth (BA) was found to
be low and relatively proximal values, though the maximum was recorded in IS (0.27) in
the river gut profile. Among the weir midge diet profile, IP was recorded with 0.13 as the
maximum value. IS chironomid gut profile was recorded with the maximum measure of
Chao species richness (8023) for the abundance of each species. In the weir profile, GG
represented a high species richness of about 3024. Further, 100% sample coverage was
estimated in the study.

Table 2. Operational taxonomic units (OTUs), Good’s coverage, Chao1 (S), and niche breadth (BA)
estimated for the diet composition of chironomid.

Samples OTUs Good’s Coverage (%) Chao Index (S) Niche Breadth (BA)

River SC 4066 100 6341.05 0.25
IS 6361 100 8023.51 0.27

IP 2004 100 2646.82 0.13
Weir SJ 2031 100 2608.67 0.12

JS 2014 100 2027.55 0.06
GG 1372 100 3023.92 0.11
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Figure 2. Relative OTU frequency of V9 18S rRNA sequence reads at phylum level showing major
diet composition in the gut of chironomid. Unique/rare taxa comprising minor OTUs such as Annel-
ida, Arthropoda, Cnidaria, Marine Stramenophiles, Mollusca, Nematozoa, Nucleariidae/Fonticula,
Vertebrata, Neocallimastigomycota, Haptophyta (Prymnesiophyceae), Cryptophyta (Cryptophyceae)
grouped as Others.

3.2. Composition of Dominant and Unique OTUs in the Gut Profile

Among the taxa identified by the eDNA approach, 71% of the phyla was shared in
both IS and SC gut profiles (Figure 3A). Likewise, 46% of the taxa existed as common diet
content in the weir gut profile (Figure 3B). Further, 17 common taxa and 25% of the unique
OTUs of 6 exclusive taxa represented the diet composition of IS river chironomids whilst
4% in SC was Crytomycota as unique taxa and 46% of shared OTUs were recorded in the
weir midges gut profile.

OTUs of Arthropoda are shared between IP, SJ, and JS. Rotifera was the shared food
item in SJ, JS, and GG. Protalveolata was the common taxon in SJ and GG, Halobacterota in
IP and JS, Ciliophora, Cnidaria, and Nucleariidae/Fonticula were the common diet compo-
nents in JS and GG. Heterolobosea (IP), Annelida (SJ), Euryarchaeota, and Amoebozoa (JS)
were the unique food items in the weir gut profile. The common OTUs could be considered
to be the main food sources in the river and weir ecosystem. The unique OTUs could
represent the diversity in the habitats.

Accounting for the probability of common OTUs, we further extended the taxonomic
fingerprint analysis to exhibit dominant families. Chlorophyta groups multifurcated to
Chlorophyceae, Mamiellophyceae, Trebouxiophyceae, and Ulvophyceae. Maximum food
content belonged to the family Chlorophyceae in the gut samples from the rivers (13%) and
weirs (22.8%). Other families were identified with ≤1% in the dietary profile, respectively.
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Bacillariophyceae, Coscinodiscophytina, and Mediophyceae were the subsets of the Di-
atomea identified in the gut content. Bacillariophyceae and Coscinodiscophytina occupied
approximately 4% of the total gut profile of river chironomid, whilst it was Mediophyceae
and Bacillariophyceae at around 7% in the gut content of weir habitants. The maximum
ratio of phylum Ochrophyta was composed of Chrysophyceae with 4% in river midges,
whereas it was Eustigmatophyceae with 2% in weir organisms. Other subsets of Ochro-
phyta (Xanthophyceae and Raphidophyceae) were observed with a <1% contribution to
the profile. Cercozoa and Euglenozoa were the diverse groups of Protozoa in both habitat
gut samples. Almost >5% of food content was defined by protozoa in the river gut profile
and the weir gut profile was observed with <2% of protozoa.
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Figure 3. Venn diagram of shared and unique OTUs in the gut profile of river and weir midges.
OTUs were clustered using a threshold distance of 0.03. (A). Further, 17 common taxa in IS and
SC were Arthropoda, Ascomycota, Basidiomycota, Cercozoa, Chlorophyta, Ciliophora, Diatomea,
Dinoflagellata, Euglenozoa, Heterolobosea, Nematozoa, Nucleariidae/Fonticula, Ochrophyta, Per-
onosporomycetes, Phragmoplastophyta, Rotifera and Vertebrata. 6 unique food sources of IS midges
were Annelida, Chytridiomycota, Cryptophyta, Marine Stramenophiles, Mollusca, and Haptophyta
and a rare group in SC is Cryptomycota. (B). 12 common food content in IP, SJ, JS, and GG were
Ascomycota, Basidiomycota, Cercozoa, Chlorophyta, Chytridiomycota, Cryptomycota, Diatomea,
Euglenozoa, Ochrophyta, Peronosporomycetes, Phragmoplastophyta, and Vertebrata. OTUs of
Arthropoda were shared between IP, SJ, and JS. Rotifera was the shared food item in SJ, JS, and GG.
Protalveolata was a common taxon in SJ and GG, Halobacterota in IP and JS, Ciliophora, Cnidaria,
and Nucleariidae/Fonticula were the common diet components in JS and GG. Heterolobosea (IP),
Annelida (SJ), Euryarchaeota, and Amoebozoa (JS) were the unique food items shown.

3.3. Relationship of Environmental Factors and the Community Composition of Gut Contents

The environmental variables related to the distribution of food sources in the river
and weir habitats were demonstrated using hierarchical cluster analysis (HCA, Figure 4).

The food contents were grouped as phytoplankton, protozoa, fungi (aerobic, anaerobic,
and facultative anaerobic), zooplankton, and others (minor/rare OTUs). Two cluster
analyses showed the correlation pattern of environmental conditions with the specific food
source equivalently clustered in the habitats, shown in the dendrogram. The dominant
group of phytoplankton showed an association with conductivity. To this, an equivalent
correlated cluster of facultative anaerobic fungal groups was found associated with pH, DO,
turbidity, total nitrogen, chlorophyll-a, and water temperature. A second cluster pattern
indicated a correlation of protozoa, aerobic and anaerobic fungi, zooplanktons, and all
minor OTUs (others) with total phosphorus.
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Figure 4. The two-way clustering analysis shows the relationship between environmental parameters
with different food sources in the diet profile of river and weir chironomids. The vertical axis was the
environmental conditions and major groups of food sources. The horizontal axis indicates the study
habitats. Food sources—Phytoplankton was included with Chlorophyta, Diatomea, Dinoflagellata,
Ochrophyta, Phragmoplastophyta, Cryptophyta, and Haptophyta; Aerobic Fungi (Ascomycota,
Basidiomycota, Chytridiomycota, and Cryptomycota), Anaerobic Fungi (Neocallimastigomycota),
Facultative Anaerobic Fungi (Peronosporomycetes); Amoebozoa, Cercozoa, Ciliophora, Euglenozoa,
Heterolobosea, and Protalveolata were grouped to Protozoa, Annelida, Arthropoda, Cnidaria, Marine
Stramenophiles, Mollusca, Nematozoa, Nucleariidae/Fonticula, and Vertebrata were grouped as
others and Rotifera included as Zooplankton.

3.4. Assessment of the Habitat Sediment Condition through Fungi Communities

Additionally, we analyzed the detailed frequency of fungi grouped as aerobic and
anaerobic fungi to evaluate the habitat and sediment conditions. Feature fungal groups
(aerobic and facultative anaerobic) of the profile were represented in Table 3, with 10%
(IS) and 3.6% (SC) unique OTUs in the gut contents of the river chironomids. The ratio of
aerobic and facultative anaerobic fungi was about 0–2% in weir chironomids. Furthermore,
the anaerobic taxa, phylum Neocallimastigomycota, was observed as rare OTUs in GG.
The aerobic fungal groups showed maximum lineage to phylum Ascomycota in the gut
contents of larvae from river locales. The proportions of Basidiomycota were significantly
less and Peronosporomycetes were not identified in SC.
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Table 3. The fungal component of the gut contents of the Polypedilum.

Groups Phylum Class
River Samples Weir Samples

SC IS IP SJ JS GG

Aerobic Ascomycota Dothideomycetes 1.27 0.88 0.62 1 0.08 0.12
Eurotiomycetes 0.84 5.76 0.01 0.09 0.07 0.07
Leotiomycetes 0 0 0.01 0 0 0.08
Saccharomycetes 0.01 0.44 0.04 0.09 0.04 0.03
Sordariomycetes 0.12 0.41 - - - 0.01
Pezizomycetes - - - 0.01 - -
Unclassified
Ascomycota 0.51 0.3 0.11 0.31 0.03 0.07

Basidiomycota Agaricomycetes 0.21 0.82 0.05 0.04 0.04 0.16
Exobasidiomycetes 0.02 0.51 - 0.03 - -
Malasseziomycetes 0.29 0.48 0.27 0.32 - 0.3
Microbotryomycetes 0.31 - 0.05 0.28 0.05 0.04
Tremellomycetes - - - 0.12 - 0.07
Ustilaginomycetes 0.01 0.22 - 0.01 0.01 -
Unclassified
Basidiomycota - 0.36 0.09 0.18 - 0.12

Chytridiomycota Chytridiomycetes - 0.15 0.08 0.07 0.01 0.38
Cryptomycota Rozellidea 0.01 - 0.03 0.03 0.01 0.04

Subtotal 3.6 10.33 1.36 2.58 0.34 1.49

Facultative
Anaerobic Peronosporomycetes Peronosporomycetes - 0.58 2.28 1.31 0.7 0.13

Anaerobic Neocallimastigomycota Neocallimastigomycetes - - - - - 0.03

The table indicates the fungal groups categorized as aerobic, facultative anaerobic, and anaerobic based on fungal
taxon (Phylum: Class) and the relative frequency of operational taxonomic units (OTUs) at a distance of 0.03.

4. Discussion

Increasing urbanization leads to habitual alteration and quality deterioration in terms
of geographical features, mainly in the freshwater ecosystem [42]. Ecological studies
based on eDNA sequencing technologies acquire importance due to time efficiency and
high detection sensitivity [43,44]. The eDNA sampling approach increased the frequency
of interest in environment analogies by decrypting the data of complex nature [45,46].
Differential composition of food items was recorded in the diet profiles. The diverse array of
taxa in the gut content was obtained as an exceptional approach using eDNA metabarcoding
of the 18S V9 region. This study attempted to present the dietary profile of Polypedilum
in the river and weir habitats. The eDNA metabarcoding approach demonstrated the
representatives of phytoplankton, protozoa, fungi, and zooplankton groups of varied ratios
in the chironomid gut samples. According to the functional OTUs identified, the relative
frequency of the diet profile was determined. The diversity of the food resource in the
habitats and the diet of midges relied mostly on the phytoplankton corresponding to algae,
relating the observations of Jo et al. (2020) [29]. According to the predominant groups
and relative genus coverage to the assigned OTUs, we could categorize the algal groups
into Chlorophyta (green algae), Diatomea (microalgae), and Ochrophyta (golden algae—
Chrysophyceae). In addition, the minor OTU group (taxa) in the profile corresponded to
the multi-composition diet of midges. Niche breadth related to the environmental factors
persisted in the study sites, depicting the diet breadth of each food item in the gut.

4.1. Overview of the Gut Content and Diet Composition

As a result of Polypedilum gut content, algae were found to be the abundant component
in gut content. Chlorophyta and Diatomea were the other two major clusters recorded in
phytoplankton (Figure 2). In both river and weir chironomids, Chlorophyta was identified
to be the dominant taxon, representing the different groups of green algae. Filter feeder
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chironomid depends upon the food available in the habitats [47]. Chlorophyta is a dom-
inant food item [8,12]; specifically, green algae [11] and Diatomea [7] in the gut content
of chironomid have also been reported in previous studies based on microscopic observa-
tion. Certainly, these groups have been reported in water sample (eDNA) based content
exploring the biodiversity of the freshwater habitat [19]. Alongside the microalgal popula-
tion, the phylum Ochrophyta was identified as the third most common food item in both
river and weir chironomid guts. We observed outputs related to Rodríguez-Barreras et al.
(2020) [48] regarding the species variation and sample composition of phylum Ochrophyta
identified between study habitants. Phragmoplastophyta, Cryptophyta, Dinoflagellata,
and Haptophyta were the minor OTU-associated groups recorded as phytoplankton diet
sources. Gut content associated with coexisting food source community is still accorded
as a future hypothesis [45]. We could configure aerobic and facultative anaerobic fungal
groups in both river and weir chironomids. Further, there was a single cluster of anaerobic
fungi (Neocallimastigomycota) in weir chironomids. Fungi in the chironomid diet have
been reported based on optical observations [7,11] but could not provide a better resolu-
tion of taxa. However, investigations based on eDNA have reported such diverse fungal
groups in the gut content of Megaplatypus mutatus and mammals [49,50] and different
environments [51,52]. Rotifera occupied a unique proportion in the diet profile of river
chironomids. Likewise, the ratio of Protozoa content in the diet was the determining factor
of diet breadth associated with the OTUs of river chironomids. Similar information on
diet composition with rotifers and Protozoa has been provided by other authors, indi-
cating planktonic rotifers, Bacterivorous-Protozoa-associated chironomid diet [11], and
foraminifer protozoans in a diet of small isopods [53]. Certain observations have also
proposed that the higher proportion of meiofauna organisms in a system could be actively
preyed upon by chironomid larvae [11,54,55]. We categorized the meiofauna community
as others since this content was observed with a <1% ratio in the gut. Minor taxa were
found in the diet composition; the compositional food content <1% ratio was assumed to
be the ingested items like detritus portions, suspended particles in the water and bottom
layers [54], considered to be of marginal importance [11].

4.2. Diversity of Gut Content Associated with Food Sources in Habitats

The presence of phytoplankton in the diet profile of Polypedilum constituted Diatomea,
Chlorophyta, Ochrophyta, and Phragmoplastophyta as the major division and the Marine
Stramenopile, Prymnesiophyceae, Cryptophyceae, and Dinoflagellata as the minor con-
tents. Green algae identified in the gut content of chironomids belong to Chlorophyceae,
Mamiellophyceae, Trebouxiophyceae, and Ulvophyceae. These groups are most described
for the higher biomass in freshwater systems [56], exhibiting plankton biodiversity. Bacillar-
iophyceae, the raphid diatoms, were found to be prominent in the gut profile of both river
and weir chironomids. These diatoms have been reported to have conglomeration to live in
the plankton community [57]. Olefeld et al. (2020) [58] stated that the diversity pattern in
the freshwater system depends predominantly on diatoms (Bacillariophyceae), Ochrophyta
(Chrysophyceae, Eustigmatophyceae), and fungi. Notably, we recorded diverse fungal
groups in the diet profile (Table 3). Fungal content in the diet resembles the enzymatic
synthesis linked to metabolizing activities in the gut [59,60] by converting detritus into
more nutritious and readily digestible products [4,61].

4.3. Diet Contents Exhibiting the Habitat Condition

Abiotic factors are important drivers in the spatial distribution of the dominant com-
munities [48,62]. The relationship between the environmental factors and species in an
ecosystem is considered to be crucial. Environmental factors (conductivity, pH, water
temperature, DO, turbidity, total nitrogen, chlorophyll-a) in the river and weir habitats
showed a clustered pattern with phytoplankton and minor groups of fungi. Physiochemical
factors in the aquatic ecosystem relate the geographical proximity to species occurrence and
abundance [20]. Measurement of nutrients correlated with the occurrence and variability
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of fungal groups categorized (aerobic, anaerobic, facultative anaerobic). The enumer-
ated dietary composition in the gut has been reported to have functional importance as
planktonic/eukaryotic biodiversity in different ecosystems [18,19,21,63,64]. This was the
preferential group in the chironomid diet, whereas the predominant algal populations
could have a vast distribution from the bottom layers to the surface of the waters. An
increased algal content in the water column leads to the preferred feeding by aquatic organ-
isms among the other food sources [65]. Accordingly, the presence of diatoms matched the
observations of Shirey et al. (2008) [66] that it is an indicative factor of eutrophic conditions,
high biological oxygen demand, and low dissolved oxygen in the sediment layers. Consid-
ering Blazewicz-Paszkowycz and Ligowski, (2002) [67], the maximum microalgae-related
species in the weir gut profile means there could be a possibility that chironomids feed
on diatoms from the bottom zones in the water habitat. This positively induces the active
role of chironomid feeding and food sources in the sediment layers of rivers and weirs.
Likely, we identified diverse fungal groups as a plausible outcome. The fungal groups
in the gut content typically determined the sediment conditions since the diverse fungal
species in previous studies have been identified in the sediments of water habitats. This is
a critical interpretation of the coexistence of the fungal population in planktons and their
interaction distinctly in biogeochemical cycling in the water and sediment layers [61,68].
It was apparent that the presence of different planktonic fungal clusters denoted the in-
volvement of fungi in the decomposition of organic matter and aggregation. A similar
relation between fungi and sediments in the aquatic environment is inferred in other reports
also [61,63,69,70]. The ratio of protozoa in this study symbolizes the feeding of chirono-
mids at different layers in the habitats, even in the anoxic zones [53,71,72]. Gut profiling
study implied a low distribution of zooplankton relating to biodiverse populations in the
environment [27,73,74].

5. Conclusions

The multi-compositional diet profile of the Polypedilum larvae is an indication of the
various food contents in the two contrasting habitats accomplished as the first attempt
using eDNA metabarcoding of the V9 18S region. Altogether, the 29 different food content
taxa in the Polypedilum larval gut were categorized into phytoplankton, fungi, protozoa,
zooplankton, and others. Maximum coherence to food constituents corresponds to (i)
phytoplankton as the most common food source (higher composition in IS and JS) with
Chlorophyta as the abundant group, (ii) protozoa with more notable clusters in river
samples than in weir, (iii) fungi—aerobic fungal groups were distributed significantly
higher in both habitats with the maximum ratio in the diet of river chironomid (IS), and (iv)
zooplankton—maximum frequency in the river chironomid, particularly high in SC.

The species richness with maximum OTU cluster occurrence and diversity was ob-
served in the river chironomid (IS) as well as in GG and IP (weir chironomid). The functional
OTUs certainly expressed the traits of the larval diet profile defined by dominant groups
of Phytoplankton. The proportions of food items varied significantly between individual
chironomids in both habitats. The larvae obtained from the river sites, especially from IS,
revealed a generalized feeding reflected in the diet breadth values. Thus, demonstrating
the heterogeneity in food content diversity with notable species spectra among river and
weir habitats was made possible by eDNA metabarcoding.
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