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Abstract: Agricultural emission reduction is a key objective associated with sustainable agricultural
development and a meaningful way to slow down global warming. Based on the comprehensive
estimation of agricultural carbon emissions, this study applied the traditional spatial Durbin model
(SDM) to analyze the type of regional emission reduction interaction and explore whether it is a
direct or an indirect interaction caused by technology spillovers. Moreover, geographic, economic,
and technical weights were used to discuss the channels of emission reduction interactions. The
partitioned spatial Durbin model was applied to explore the realization conditions of regional emis-
sion reduction interactions. We found that: (1) comprehensive emission reduction interactions
were identified in various regions of China, including direct and indirect interactions, in which
geographic and technical channels were the major pathways for direct and indirect emission re-
duction interactions, respectively; (2) regions with similar economic development levels are more
likely to have direct interactions, whereas regions with low technical levels are more willing to
follow the high-tech regions, and the benchmarking effect is noticeable; (3) emission reduction re-
sults promoted by economic cooperation may be offset by vicious economic competition between
regions, and more emission reduction intervention measures should be given to regions with high
economic development levels; (4) to achieve better technological cooperation, regions must have
similar technology absorption capabilities and should provide full play to the driving force of
technical benchmarks.

Keywords: agriculture; carbon emission; regional emission reduction interaction; group effect;
technology spillover; the partitioned spatial Durbin model

1. Introduction

The increase in carbon emissions and consequent global warming threaten human
survival [1]. Carbon concentration in the atmosphere is increasing at an unprecedented
rate [2], leading to severe and irreversible consequences in the climate system [3,4]. There-
fore, carbon reduction has gathered the focus of global attention. Agriculture is the primary
source of global carbon emissions [5,6]. Studies have revealed that the worldwide food
systems are responsible for more than one-third of the global carbon emissions, with ap-
proximately two-thirds of the food system emissions originating from the agricultural sector
and methane from livestock production and rice cultivation accounting for approximately
35% of food system carbon emissions [7]. Furthermore, agricultural carbon emissions
increase by approximately 1% annually [8,9]. Therefore, conducting sustainable production
is not only a huge challenge in the agricultural sector, but also an inevitable choice for
agricultural development [10].

As a leading agricultural and a major emission country [5,11], China has always
considered regional cooperation a crucial way to efficiently decrease emissions. Since the
joint prevention and control mechanism of air pollution was proposed in 2010, various
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regions have started cooperating in decreasing pollution. In 2015, it was thus proposed to
rely on regional integration to attain green and low-carbon development among regions,
as well as further deepen regional coordination and cooperation to decrease emissions.
In 2020, the dual-carbon goal of “carbon neutrality and carbon peaking” also highlighted
the establishment of a regionally coordinated carbon reduction framework to create a
synergy of regional emission reductions. Driven by the national emission reduction policy,
China accomplished its carbon intensity reduction target ahead of schedule and exceeded
in 2018, with rapid momentum of low-carbon development. At the same time, carbon
emission reduction technologies are also developing in an orderly manner. On the one hand,
advances in new energy technologies and material technologies have greatly increased the
proportion of clean energy represented by nuclear energy. On the other hand, negative
emission technology has developed rapidly, and there are about 40 CCUS (Carbon Capture,
Utilization, and Storage) demonstration projects with a capture capacity of 3 million tons
per year. This study aims to demonstrate China’s experience in regionally coordinated
emission reductions and provide a reference for other countries to reduce carbon emissions.

Many studies in various countries and regions have supported a significant spatial
correlation of carbon emissions [12–14], indicating that reliance on the unilateral actions of
individual regions is impossible and, thus, cooperative regionally coordinated emission
reduction actions are vital [15]. Moreover, many studies have attributed regional correla-
tions between carbon emissions to economic, technological, and policy associations [16,17],
as well as similarities in the energy consumption behavior of micro-subjects and their
imitation of environmental behavior [18,19]. Alternatively, regional correlations are at-
tributable to the variation in cross-regional output resulting from the changes in the final
demand [20,21]. Some studies investigated the spatial correlation of agricultural carbon
emissions to determine whether total agricultural emissions, emission intensity, emission
efficiency, or net emissions have spatial spillover effects. The status of the agricultural
economy, production structure, technology innovation, labor force, and urbanization affect
the spatial correlation of agricultural carbon emissions [22,23], suggesting that “technology
spillover” can benefit more regions [24].

The spatial correlation of carbon emissions renders the interaction of regional emission
reduction a crucial way to enhance the efficiency of emission reduction. Some studies
examined the interaction of carbon emission reduction between countries and regions of
the aspects of policy coordination, technology coordination, and enterprise coordination.
Regarding policy coordination, establishing emission reduction targets beyond national
and domestic regions is the basis for implementing emission reduction cooperation [25],
and coordinated policies are more conducive to promoting carbon emission reduction and
the development of renewable energy at lower costs than single policies [26,27]. Zhou [28]
proposed establishing cross-regional environmental protection policy, thereby breaking the
administrative boundary of pollution control and promoting regional coordinated emission
reduction. Luqman [29] discussed about improving the implementation effect of the CDM
(Clean Development Mechanism) from the standpoint of the dynamic cooperative game,
reporting that the introduction of the Shapley value cost allocation scheme could improve
international cooperation in carbon emission reduction. Tapia [30] claimed that the carbon
trading policy plays a limited role in promoting emission reduction cooperation, and the
restriction threshold for carbon trading in developing countries can increase the effect of
the policy in promoting regional coordinated emission reduction [31].

Regarding technology coordination, most studies agreed that the development of
critical technologies to manage global warming is important to effectively mitigate climatic
hazards [32,33]. The spatial network connection of low-carbon innovative technologies
provides an opportunity to build a cross-regional synergy mechanism and green innovation
development [34], and cross-industry technology research and development (R&D) can
effectively enhance the efficiency of carbon emission reduction [21]. Nevertheless, regional
coordination of low-carbon technology innovation needs the cooperation of policies and
industries [35], and technological collaboration can only improve global collaborative
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emissions reductions under mean or pessimistic assumptions about the development of
key low-carbon technologies and when damage is severe [36].

Regarding enterprise coordination, Wang [37] and Wang [38] claimed that cooperative
carbon emission reduction strategy has more advantages than the independent carbon
emission reduction approach. This is because enterprises can rationally allocate emission
reduction investments, further rationalizing the emission reduction structure of the supply
chain. Hau [39] highlighted that external technology R&D cooperation can effectively break
through the limitations of internal resources and capabilities of SMEs, thereby exerting
a positive impact on carbon emission reduction and energy saving. Mao [40] reported
that optimal cooperation in emission reduction can be attained by entering into a revenue-
sharing agreement between manufacturers and service providers.

Generally, coordinated emission reduction between countries and domestic regions has
been recognized as a crucial way to decrease emissions. In addition, studies have discussed
specific methods of cooperative emission reduction from the aspects of policy coordination,
technology coordination, and enterprise coordination. However, two shortcomings persist.
First, although studies have examined the spatial correlation of carbon emissions, they
have not deeply examined the reasons for the regional coordination of carbon emission
reduction from a theoretical standpoint and, thus, cannot summarize the possible strategies
in regional coordinated emission reduction. Second, previous studies only proposed the
framework of coordinated emission reduction between countries or domestic regions, or
investigated the cooperation mechanism from the standpoint of micro-enterprises, but did
not deeply analyze the strategic choice of regional coordinated emission reduction—is it
the direct interaction of emission reduction behavior or the indirect spillovers of emission
reduction technologies? Besides this, these studies failed to answer the best channels and
possible conditions for inter-regional emission reduction coordination; thus, these cannot
provide practical suggestions for regional emission reduction coordination.

Using 2008–2018 panel data from China, this study not only discussed the interactive
strategies of regional direct emission reduction (imitation or opposition) and indirect
emission reduction (technology radiation and technology learning), but also examined the
conditions for coordinated emission reduction from the dimensions of economy, industry,
human capital, and technological R&D capabilities. The findings can provide references for
effectively promoting regional cooperation in reducing emissions, attaining carbon peaking
and carbon neutrality, and eventually decelerating global warming.

2. Theoretical Analysis

Regionally coordinated emission reduction can be performed in two ways: direct and
indirect emission reduction interactions (Figure 1).

On the one hand, there is a mutual alignment of emission reduction behaviors between
regions, which leads to “emission reduction imitation” or “emission reduction opposition,”
that is, direct emission reduction interaction. Due to the existence of the group effect, the
carbon emission decision of a region is not only affected by its own agricultural economic
development, policy environment, emission reduction potential, and other factors, but also
affected by the emission decision of neighboring regions. As a result, the carbon emission
behavior of each region presents a certain law. The geographically neighboring regions
face similar economic development policies and environmental regulatory measures. No
one wants to be a “poor student” in environmental assessment, and all want to be a
“good student” in economic assessment [41]. Therefore, when the emission level of a
certain region decreases, the other regions also have stricter emission levels, presenting the
emission reduction imitation. When a certain region relaxes its emission level and focuses
on economic development, the rest of the region also relax its own emissions. There is often
fierce economic competition between regions with similar economic development levels,
especially regions with higher economic development levels [42]. In order to compete
for or maintain their economic status, they always adjust their strategies according to the
actions of their opponents. When opponents slow down their economic development and
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reduce emissions, the region takes this opportunity to vigorously develop its economy,
thus presenting the emission reduction opposition. China takes technological innovation
as its development goal, and technological development is also an important direction
of emission reduction. Therefore, in order to be consistent with national goals, regions
with high R&D capabilities are used as benchmarks, and other regions focus on emission
reduction imitation.
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Figure 1. Strategic framework for regional coordinated emission reduction.

Indirect emission reduction interaction is a relatively smart and continuous emission
reduction interaction. Regions analyze the reasons for emission reduction in other regions
and then adjust their behavior to promote emission reduction. Technology radiation and
technology learning are the main indirect emission reduction interactive strategies between
regions. Due to the convenient transportation, the flow cost of production factors such
as human capital is lower in the neighboring regions of geographical distance, resulting
in knowledge spillover. In regions with close economic relations, technology is diffused
through industrial cooperation [43,44], and in regions with high economic and technological
levels, its strong radiation force promotes the diffusion of resources, technology, experience,
etc. to other regions, resulting in a “trickle-down effect” [45–47], while underdeveloped
regions take the initiative to learn advanced technologies to improve carbon productivity.
The existence of technological gaps between regions affects the diffusion and absorption of
technology, and the effect of technology diffusion and absorption between regions with
smaller technological R&D capabilities is better [48].

3. Materials and Methods
3.1. Agricultural Carbon Emission

Agricultural carbon emission sources include five categories: (1) CO2 produced by
energy consumption; (2) CO2 produced by farmland utilization; (3) CH4 produced by
growing rice and N2O produced from other crops; (4) CH4 and N2O produced by ruminant
feeding; and (5) CO2, CH4, and N2O produced by straw burning. The measurement
framework of agricultural carbon emission is shown in Figure 2.
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The emissions of each category can be calculated as follows:

Ei =
5

∑
i=1

Ej =
5

∑
i=1

(ej × f j) (1)

where Ei is the total emissions of a specific category; Ej is the emissions of source j belonging
to this category; and ej and f j represent the activity data and emission factor of source j,
respectively. The emission factors can be found in Liu [49], Min [50], Tian [51], and Yao [52].
The GHG effects caused by 1 t of N2O and 1 t of CH4 are equivalent to those caused by
298 t of CO2 (81.2727 t C) and 25 t of CO2 (6.8182 t C), respectively [53], upon conversion
into carbon equivalents. Activity data is shown in Table 1.

Table 1. Activity data description.

Category Indicator Source

Energy
consumption

Amount of coal, coke, crude oil, gasoline, kerosene,
diesel oil, fuel oil, electric power, and natural gas
used in agricultural production

China Energy
Statistics Yearbook

Farmland
utilization

Application amount of fertilizers, pesticides, and
agricultural film, plowing area

China Rural
Statistical Yearbook

Crop planting Planting area of rice, wheat, corn, soybeans,
and vegetable

China Rural
Statistical Yearbook

Ruminant
feeding

Annual average stock of cattle, horses, donkeys,
mules, pigs, goats, and sheep

China Rural
Statistical Yearbook

Straw burning Yield of rice, wheat, corn, soybeans, cotton,
and canola

China Rural
Statistical Yearbook

3.2. Spatial Correlation Test

Moran’s I was used to verify the spatial correlation of agricultural carbon emissions.
The global Moran’s I can be calculated as follows:

I =
∑n

i=1 ∑n
j=1 ωij(yi − y)

(
yj − y

)
s2 ∑n

i=1 ∑n
i=1 ωij

(2)

s2 =
1
n

n

∑
i=1

(yi − y) (3)
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y =
∑n

i=1 yi

n
(4)

The local Moran’s I can be calculated as follows:

Ii = zi

n

∑
j=1

ωijzj (5)

zi =
yi − y

s
(6)

where I and Ii are global and local Moran’s I, respectively; yi and yj are the total agricultural
carbon emissions of provinces i and j, respectively; y is the average carbon emission; ωij is
the element of row i and column j of the spatial weight matrix; n is the number of provinces;
and s2 is the variance of the total agricultural carbon emissions. According to the local
agglomeration characteristics of variables, the regions were divided into four categories:
high–high carbon emission agglomeration (H–H), low–low carbon emission agglomeration
(L–L), high–low carbon emission agglomeration (H–L), and low–high carbon emission
agglomeration (L–H).

3.3. Forms and Channels of Regionally Coordinated Emission Reduction—Classical SDM

To investigate the form of regionally coordinated emission reduction, the classical
SDM can be used:

ln(AEInt) = τnα + ρω ln(AEInt) + βpi ln(PInt) + θpiω ln(PInt) + β ln(xnt) + θω ln(xnt) + µn + υt + εnt (7)

εnt ∼ N(0, σ2 In)

where AEInt represents the intensity of the agricultural carbon emissions of the 30 provinces
for ten years and PInt represents agricultural technology innovations. As agricultural
patents directly affect agriculture [54] and patent data have strong time continuity [55],
the strength of agricultural patent authorization was used to measure agricultural tech-
nological innovation. xnt represents control variables, w represents spatial weight ma-
trix, εnt represents the random error term, µn represents individual-fixed effects, and
υt represents time-fixed effects. ρ represents the response coefficient of the emission in-
tensity of a province to the emission intensity of other provinces and θpi represents the
response coefficient of emission intensity of a province to the technology innovations of
other provinces. If ρ is significant, it implies that there is a direct interaction between
regional emission reductions. If θpi is significant, it indicates that there is an indirect
interaction in regional emission reductions.

To study the realization channels of the interaction of agricultural emission reduction
between regions, geographical (wijd), economic (wije), and technical difference (wijt) weights
were selected as follows:

wijd =

{
−1/dij

2 (i 6= j)
0 (i = j)

(8)

wije =


1

|GDPi−GDPj| (i 6= j)

0 (i = j)
(9)

wijt =


1

|Teci−Tecj| (i 6= j)

0 (i = j)
(10)

where dij is the spherical distance between the provinces i and j; GDPi and GDPj are the
agricultural added value of the provinces i and j, respectively; Teci and Tecj are the total
amount of agricultural patents granted by the provinces i and j, respectively.

Previous studies considered that the levels of agricultural economic development [56],
the urbanization process [57], government environmental supervision [58], and urban–rural
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income gap [59] affect agricultural carbon emissions. Therefore, the variables used in the
traditional SDM are defined in Table 2.

Table 2. SDM variables used in the study.

Variables Notation Calculation Data Sources

Agricultural carbon
emission intensity AEI

Ratio of agricultural carbon
emissions to agricultural
added value

Section 3.1

Agricultural patent
intensity PI Ratio of number of agricultural

patents to agricultural added value
China Patent
Database

Agricultural
economy AGDP Ratio of agricultural added value

to rural population
China Rural
Statistical Yearbook

Urbanization ratio UR Ratio of urban population to rural
population

China Rural
Statistical Yearbook

Urban-rural
income gap UIG Ratio of disposable income of

urban residents to rural residents
China Rural
Statistical Yearbook

The intensity of
investment in
environmental
governance

GER
Ratio of expenditure on
environmental protection to
agricultural added value

China Environmental
Pollution Statistics
Yearbook

3.4. Condition of Regional Direct Emission Reduction Interaction—Partitioned SDM for
Agricultural Carbon Emission Intensity

Facing agricultural carbon emission reduction behaviors in other regions, the responses
of different regions vary [60]. Different levels of economic development in various regions
prompt different agricultural economic development policies and environmental regulatory
measures by the region. Therefore, local governments adopt imitation or oppositive
strategies in agricultural emission reduction. Herein, the partitioned SDM for agricultural
carbon emission intensity (AEI) is introduced to analyze realization conditions of the
direct emission reduction interaction between regions, whether it is more likely to occur
in regions with similar levels of agricultural economic development or if it can also occur
in regions with significant differences in agricultural economic development levels, and
also to clarify whether it is an imitation or an oppositive strategy. The weight matrix was
divided according to agricultural value added per capita (H: regions of higher than the
national average; L: regions of lower than the national average). The model can be provided
as follows:

ln(AEInt) = τnα +[ρHHωHH ln(AEInt) + ρLLωLL ln(AEInt) + ρHLωHL ln(AEInt)
+ρLHωLH ln(AEInt)] + βpi ln(PInt) + θpiω ln(PInt) + β ln(xnt)
+θω ln(xnt) + µn + υt + εnt

(11)

where ρHH ,ρHL,ρLH , and ρLL, represent the interaction of emission reduction strategies
among the H–H (high–high agricultural value added per capita agglomeration), H–L
(high–low agricultural value added per capita agglomeration), L–H (low–high agricultural
value added per capita), and L–L (low–low agricultural value added per capita) regions,
respectively. The partitioned weight matrix can be expressed as follows:

ω =

[
ωHH ωHL
ωLH ωLL

]
(12)

3.5. Condition of Regional Indirect Emission Reduction Interaction—Partitioned SDM for
Agricultural Patent Intensity (PI)

The partitioned SDM for agricultural PI was introduced to analyze the conditions for
indirect emission reduction between regions. The weight matrix was divided according
to the aggregation level of the agricultural industry, human resource level, and R&D level
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in each region (H: Regions where the aggregation level of the agricultural industry or the
human resources level or R&D level is higher than the national average, L: Regions where
the aggregation level of the agricultural industry or the human resources level or R&D
level is lower than the national average). The model can be expressed as follows:

ln(AEInt) = τnα +ρω ln(AEInt) + βpi ln(PInt) + [θHHωHH ln(PInt)
+θLLωLL ln(PInt) + θHLωHL ln(PInt) + θLHωLH ln(PInt)]

(13)

where θHH and θLL represent the impact of technology spillovers on emissions reduc-
tions between regions with similar levels of the agricultural industry aggregation, hu-
man resources, R&D; and θLH and θHL represent the impact of technology spillovers on
emissions reductions between regions with gaps in the level of the agricultural industry
aggregation, human resources level, and R&D level. A negative coefficient implies that
technology spillovers can benefit more regions, bringing “positive effects”. In contrast, a
positive coefficient implies that technology spillovers cannot benefit other regions and cause
“negative effects”.

3.6. Model Selection

Since this paper focuses on the interaction of regional emission reduction actions, a
spatial econometric model is used. According to the general to special modeling ideas,
starting from the SDM, the LR and LM tests are used to judge whether it can be simplified
into the spatial lag model (SLM) and the spatial error model (SEM) [61].

From Table 3, the LR-lag and LR-error exhibit significance at 1% and 10% levels,
respectively, which implies that the SDM performed better than SLM or SEM. The p-values
of the LM-lag (robust) and LM-error (robust) tests are 0, indicating that the SDM could not
be reduced to the SLM or the SEM. Therefore, the SDM is considered appropriate.

Table 3. Results of spatial panel econometric model test.

Test Statistics p-Value

LR-lag 20.17 *** 0.0052
LR-error 12.18 * 0.0948
LM-lag (Robust) 32.58 *** 0.0000
LM-error (Robust) 101.61 *** 0.0000

Note: *** and * indicate significance at the 1% and 10% levels, respectively.

3.7. Data Sources

In this research, the primary data used, which spanned the 2008–2018 period, corre-
sponded to 30 provinces of China. Hong Kong, Macao, Taiwan, and Tibet were excluded
because of missing data. The activity data required for agricultural carbon emission es-
timation were obtained from the China Energy Statistics Yearbook and the China Rural
Statistical Yearbook. The variables for the establishment of the SDM model were obtained
from the China Rural Statistical Yearbook, the China Environmental Pollution Statistics
Yearbook, and China Patent Database. In 2008, China promulgated the “2008 China Energy
Conservation and Emission Reduction” report. The issue of energy conservation and
emission reduction was widely publicized, and national action began. Therefore, the data
began in 2008. After more than ten years of hard work, China accomplished its carbon
intensity reduction target ahead of schedule and exceeded in 2018, so the study period
from 2008 to 2018 is more representative for analyzing the effect of regional coordinated
emission reduction.

4. Results
4.1. Analysis of Agricultural Carbon Emissions and Agricultural Technology Innovations

The agricultural carbon emission intensity exhibited a fluctuating downward trend,
from 4.38 ton/104 CNY in 2008 to 2.44 × 104 ton/CNY in 2018 (Figure 3). In contrast,
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agricultural patent intensity exhibited an upward trend, from 0.26 items/108 CNY in 2008
to 1.82 items/108 CNY in 2018.
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From the development stage, carbon emission intensity and patent intensity could be
divided into two stages. First, during 2008–2011, the carbon emission intensity declined
rapidly, and patent intensity increased slowly, with mean growth rates of −9.65% and
15.44%, respectively. During this period, under the dual influence of China’s “Eleventh
Five-Year Plan” agricultural energy conservation and emission reduction targets and the
commitment to reducing carbon intensity, agriculture actively enhanced the use efficiency
of energy, chemical fertilizers, pesticides, and other input factors. The average annual
growth rate of total carbon emissions is just 2.1%. Moreover, the proposal of the modern
agricultural development strategy brought agriculture into a period of rapid development,
the average annual growth rate of added value is as high as 12.8%, and the agriculture
carbon intensity has declined rapidly.

In the second stage (2012–2018), carbon emission intensity declined slowly, and the
patent intensity increased rapidly, with mean growth rates of −3.38% and 22.45%, respec-
tively. During this period, China’s economic growth slowed down. Augmenting the quality
of economic development and the level of agricultural science and technology became the
focus of development. The growth rate of agriculture declined, and the average annual
growth rate declined to 5.4%, while the total amount of agricultural carbon emissions
continued to increase slowly. The contribution of scientific and technological progress in
the agricultural economy has increased rapidly. The contribution rate of scientific and
technological progress in the agricultural economy in 2018 increased by 6 percentage
points compared with 2012. Hence, agricultural carbon intensity decreased slowly, and the
agricultural patent intensity increased rapidly.

Figure 4a shows that the emission intensities in northeast, northwest, and middle
reaches of the Yellow River were relatively high. In contrast, those of the eastern and
southern coasts were relatively low, exhibiting a characteristic decreasing trend from north
to south and west to east. Nonetheless, the regional differences in emission intensity
gradually narrowed.
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Figure 4b shows the regional differences in agricultural technology innovation levels
were expanding. The technological innovation level of Beijing and Tianjin on the north-
ern coast and Shanghai on the eastern coast was considerably higher than that of other
provinces. The technological innovation exhibited a decreasing trend from south to north
and from east to west. The level of agricultural technology innovation gradually improved
in all provinces.
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4.2. Spatial Correlation Test

Table 4 shows that the global Moran’s I index of agricultural carbon emission intensity
and technology innovation were positive within 2008–2018 and significant at a 99% confi-
dence level. These results indicate that the spatial distribution of emission intensity and
technological innovation was not random but crossed regional restrictions and exhibited
significant spatial agglomeration characteristics. The global Moran’s I index of agricultural
carbon emission intensity exhibited a decreasing and then increasing trend, with a mean
value of 0.259. Moreover, the global Moran’s I index of technological innovation was
relatively stable, fluctuating from 0.260 to 0.319.

Table 4. Global Moran’s I index.

Year
Agricultural Carbon Emission Intensity Agricultural Patent Intensity

Moran’s I z-Value Moran’s I z-Value

2008 0.312 *** 3.771 0.309 *** 3.857
2009 0.302 *** 3.681 0.274 *** 3.509
2010 0.272 *** 3.336 0.283 *** 3.600
2011 0.275 *** 3.355 0.315 *** 3.949
2012 0.253 *** 3.111 0.306 *** 3.818
2013 0.217 *** 2.730 0.319 *** 3.939
2014 0.178 ** 2.304 0.304 *** 3.740
2015 0.147 ** 1.964 0.292 *** 3.609
2016 0.271 *** 3.297 0.286 *** 3.536
2017 0.316 *** 3.767 0.264 *** 3.310
2018 0.313 *** 3.733 0.260 *** 3.959

Note: ***, and ** indicate significance at the 1% and 5% levels, respectively.

As shown in Figure 5a,b, agricultural carbon emission intensity formed two clustering
categories in the regional spatial distribution. The number of provinces with hotspot
clusters (H–H) and coldspot clusters (L–L) increased, with the hotspot clusters of AEI being
located in the northwest and middle reaches of the Yellow River. Some coastal provinces,
such as Fujian, Guangdong, Guangxi, and Hainan, exhibited coldspot clustering.

Compared with clusters formed by agricultural carbon emission intensity, the scale of
PI clusters was substantially smaller (Figure 5c,d). Comparing data from 2008 and 2018, the
number of provinces with hotspot clusters decreased. In 2008, two hotspot clusters were
formed, one in Beijing and Tianjin, and another in Shanghai and Zhejiang. In 2018, only
one hotspot cluster remained.
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4.3. Coordinated Emission Reduction Strategies and Channel Selection
4.3.1. Choice of Regional Agricultural Coordinated Emission Reduction Strategies

To test which coordinated emission reduction strategy was active in each province,
the results of SDM, SAR, SEM, and ordinary panel model (OPM) were evaluated.

Table 5 shows that the SDM, SAR, and SEM coefficients were more significant than the
OPM. The spatial econometric model extracted the influence of the independent variable on
the dependent variable and the spatial effect of the independent and dependent variables;
therefore, the spatial model was better than the OPM. Moreover, the SDM comprehensively
analyzed the interaction of emission reduction strategies between regions, exhibiting
significant direct and indirect emission reduction interactions between regions. Therefore,
the SDM is more suitable.

Table 5. Estimation results of the OPM, SEM, SAR, and SDM.

Variables Coefficient OPM SEM SAR SDM

ln(PI) βPI
0.00002
(−0.00)

0.005
(0.36)

0.011
(0.79)

0.008
(0.59)

ln(AGDP) βAGDP
0.853 ***
(−7.96)

−0.847 ***
(−17.04)

−0.865 ***
(−17.98)

−0.854 ***
(−17.46)

ln(UR) βUR
−0.390
(−1.25)

−0.244 *
(−1.69)

−0.270 *
(−1.83)

−0.081
(−0.52)

ln(GER) βGER
0.130 ***
(−3.37)

−0.134 ***
(−6.66)

−0.129 ***
(−6.45)

−0.116 ***
(−5.72)

ln(UIG) βUIG
−0.139
(−0.63)

−0.215 **
(−2.22)

−0.181 **
(−2.20)

−0.085
(−0.77)

ω × ln(PI) θPI
−0.096 **
(−2.42)

ω × ln(AGDP) θAGDP
0.448 ***

(3.13)

ω × ln(UR) θUR
0.051
(0.13)

ω × ln(GER) θGER
0.049
(0.93)

ω × ln(UIG) θUIG
0.336
(1.42)

λ
0.523 ***

(7.10)

ρ
0.353 ***

(5.74)
0.514 ***

(7.08)
Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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From the estimated results of the SDM, the spatial autocorrelation parameter “ρ” was
significantly positive, indicating a direct emission reduction imitation between regions.
A 1% intensity reduction (increase) in the agricultural emissions of a region led to a
0.514% intensity reduction (increase) in the emissions of the surrounding regions. Due to
the institutional arrangement combining political centralization and regional economic
decentralization in China [62,63], regions face similar agricultural economic development
policies and environmental regulatory measures and exhibit “strategy convergence”. When
the emission of a region increases and the economy develops rapidly, government officials
in other regions face tremendous economic assessment pressure. Subsequently, local
officials prefer economic growth to increase their chances of promotion. Conversely, when
the emissions in a region decrease, government officials in other regions face greater
environmental assessment pressure, which leads to the prioritization of environmental
protection over economic growth [64].

Agricultural technology innovation exhibited spatial effects at p < 0.05 (θPI). If the
technological innovation level increased by 1%, the agricultural emission intensity of the
surrounding regions were reduced by 0.096%. This shows an indirect strategic interaction
between regions and that technology spillovers can benefit more regions.

4.3.2. Analysis of the Interaction Channels of Regionally Coordinated Emission Reduction

Herein, geographic, economic, and technical weights were used to examine the coordi-
nated emission reduction channels.

As shown in Table 6, the coefficients of the spatial lag term (ρ) were all significantly
positive. The coefficient was the largest under geographic weight, indicating that the agri-
cultural carbon emission reduction behavior in one region has direct strategic interaction
with other regions through three channels, namely, geography, economy, and technology,
exhibiting a mimic behavior of emission reduction, with geographic distance being the
main channel for strategy imitation. The natural conditions and resource endowments
of geographically adjacent regions had high similarities, and the “linkage effect” of car-
bon emission reduction was noticeable [65–67]. Regions with similar levels of economic
development face relatively similar economic development policies and environmental
regulatory measures given by the state. To become the “top students” in the development
of the agricultural economy, local governments observe each other, causing economic
competition and emission reduction competition to coexist [42], so that emission reduction
behaviors converge. Regions with relatively small technological gaps have two-way ex-
changes, one-way support, and purchase services centered on technology, rendering the
relationship between agricultural carbon emissions closer [41].

The spatial lag coefficients of agricultural technological innovation (θPI) is significantly
negative under the geographical and technical weights, indicating that the agricultural
carbon emission reduction behavior has indirect strategic interactions with other regions
through geographical and technological channels. Moreover, industrial and technology clus-
ters in neighboring regions strengthen the geographic spillover of knowledge. The spillover
costs control the scope of spillover [68], rendering technology spillover effects more likely to
occur between neighboring regions. In addition, because technology spillovers are closely
related to regional technology absorption capabilities [69], regions with small technological
gaps have similar technology R&D capabilities and technology absorption capabilities. It is
easier to achieve emission reduction interactions through technology learning. The spatial
lag coefficients of agricultural technological innovation under technological weight was larger,
indicating that the technological channel is the primary channel for indirect strategic interaction.
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Table 6. Estimation results of the SDM model under three weight matrices.

Variables Coefficient Geographic Matrix (wijd) Economic Matrix (wije) Technology Matrix (wijt)

ln(PI) βPI
0.008
(0.59)

0.003
(0.20)

0.016
(1.01)

ln(AGDP) βAGDP
−0.854 ***
(−17.46)

−0.862***
(−16.38)

−0.871 ***
(−16.83)

ln(UR) βUR
−0.081
(−0.52)

−0.346***
(−2.32)

−0.599 ***
(−3.88)

ln(GER) βGER
−0.116 ***

(−5.72)
−0.129***
(−6.07)

−0.127 ***
(−6.02)

ln(UIG) βUIG
−0.085
(−0.77)

−0.144
(−1.44)

−0.186 *
(−1.78)

ω × ln(PI) θPI
−0.096 **
(−2.42)

−0.055
(−1.05)

−0.125 **
(−2.42)

ω × ln(AGDP) θAGDP
0.448 ***

(3.13)
−0.150
(−0.76)

−0.186
(−1.06)

ω × ln(UR) θUR
0.051
(0.13)

0.328
(0.79)

0.823 *
(1.81)

ω × ln(GER) θGER
0.049
(0.93)

−0.080
(−1.31)

−0.133 **
(−2.81)

ω × ln(UIG) θUIG
0.336
(1.42)

−0.547 *
(−1.91)

−0.437
(−1.52)

ρ
0.514 ***

(7.08)
0.365 ***

(4.11)
0.200 **
(2.21)

Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

4.4. Analysis of Conditions for the Interaction of Emission Reduction Strategies
4.4.1. Conditions for Direct Emission Reduction Strategies Interaction

As shown in Figure 6, under the geographical weight matrix, ρHH , ρHL, ρLH and
ρLL were all positive at the 1% significance level, indicating that, no matter how the
agricultural economy develops, all regions imitated the emission reduction behavior of
their surrounding regions. Because regions with low agricultural economic levels face
both economic and environmental pressures to prevent becoming laggards, the mimicking
behavior of emission reduction among these regions was more prominent.
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Under the economic weight matrix, only ρHH and ρLL were significant, indicating
that from the perspective of economic channel, regions with similar levels of agricultural
economic development were more likely to have direct emission reduction strategic inter-
actions. ρHH was significantly negative, indicating that the high economic level regions
adopted opposed strategies. This is because in the competition of political performance,
when one region focuses on environmental protection, other regions promote economic
development, thereby relaxing environmental control [70].

Under the technology difference weight matrix, ρHH , ρHL, and ρLH were all signifi-
cantly positive, indicating that the imitation strategy was still the mainstay among regions
under the technology channel. Furthermore, ρLH was the largest, indicating that the regions
with lower economic development levels had the highest degree of mimicking emission
reduction to regions with higher economic development levels. The “benchmarking ef-
fect” should be fully utilized in the emission reduction interaction to drive more regional
emission reductions by setting benchmark regions.

4.4.2. Conditions for Indirect Emission Reduction Strategic Interaction

As shown in Figure 7, from the perspective of industrial agglomeration conditions,
under the geographic and technological channels, the indirect strategy interaction oc-
curred both in regions with similar agricultural industrial agglomeration and in regions
with differences in agricultural industrial agglomeration. The effect of industrial coop-
eration drives technology sharing, and thus promotes more regions to achieve emission
reduction. Under the geographic channel, the spillover effect of agricultural technology
innovation in regions with similar industrial agglomeration levels was more prominent
(θHH > θLL > θLH > θHL). Among them, technology spillovers between regions with high
industrial agglomeration levels had the strongest inhibitory effect on agricultural emissions
due to the high agricultural industry clusters being primarily concentrated in the central
and western regions of China, where agricultural production is relatively large. To achieve
green development of agriculture, these regions are more proactive in reducing emissions
through technological learning. Under the technology channel, the technology spillover
effect of low industry agglomeration regions on high industry agglomeration regions was
more robust. The effect of suppressing emissions was the greatest (θLH was the largest).
The main reason is that, under the background of industrial integration, the central and
western regions with a high degree of agricultural industry agglomeration have increased
cooperation with the eastern regions where the agricultural industry clusters are lower by
building cross-regional agricultural industry chains. Thus, through cooperation, they can
incorporate advanced technology into agricultural production and improve their level of
sustainable agricultural development.

From the perspective of human capital conditions, under the three channels, indirect
emission reduction strategy interaction was affected by the differences in human capital
levels between regions. However, indirect strategic interaction enabled more regions to
achieve emission reductions (θ are all negative). Under the geographic channel, both
θHH and θLL were negative at 1% significance, whereas θHL and θLH were not significant,
indicating that the difference in the level of human capital in geographically adjacent
regions affected the regional sharing of technical emission reduction results driven by the
“knowledge spillover effect” with human resources as the carrier. Under the economic
and technology channels, θLH was significant, indicating that the low human capital accu-
mulation region produced knowledge spillovers to the high human capital accumulation
region with close economic and technological relations. This is because people always
seek better development opportunities and conditions. Under the “Matthew effect,” the
tendency of people to move to better places is evident. Moreover, technical cooperation
was also performed between regions with high human capital, resulting in a strong alliance
(θHH = −0.134).

From the perspective of R&D conditions, under the geographic channel, indirect strate-
gic interactions occurred between regions with similar R&D capabilities and regions with
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large gaps in R&D capabilities (the four coefficients were all significant). The coefficients
are all negative, indicating that technology played an active role in reducing emissions.
θHL was greater than θLH , indicating that technology spillovers from regions with high
R&D capabilities to regions with low R&D capabilities had a strong inhibitory effect on
agricultural emissions. This is because Beijing, Tianjin, and the eastern coastal regions
have provided technical assistance to many central and western regions to jointly increase
agricultural productivity, reduce agricultural pollution levels, and create a phenomenon of
mutual assistance between the strong and the weak. As the regions with low technological
R&D capabilities are the central and western regions, where the agricultural production
scale is relatively large, agricultural emissions were also higher. The emission reduction
effects of mutual technology spillovers were more pronounced (θLL was greater than θHH).
Under the technology channel, only θHH was significantly negative, indicating that the
regional technology absorption capabilities of high R&D capabilities were also relatively
similar from the perspective of technological cooperation. Mutual technology spillovers
were more likely to occur, thereby presenting a strong cooperation situation.
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Figure 7. Conditions for indirect emission reduction interaction. Note: These coefficients are
the estimated results of the spatial lag term (θ) of agricultural technological innovation in the
partition SDM. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
Hi: regions where the aggregation level of the agricultural industry is higher than the national average,
Li: regions where the aggregation level of the agricultural industry is lower than the national average.
Hh: regions where the human resources level is higher than the national average, Lh: regions where
the human resources level is lower than the national average. Ht: regions where R&D is higher than
the national average, Lt: regions where R&D is lower than the national average.

5. Discussion

(1) Unlike previous studies focusing on the reasons for the spatial correlation of car-
bon [12,20,21,23], this study analyzed and summarized the regional emission re-
duction interaction strategies and found two ways for the interaction of emission
reduction between regions in China: (i) direct interaction of emission reduction, in-
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cluding imitation strategy and opposing strategy, and (ii) technical interaction. From
the standpoint of direct interaction, owing to China’s relatively strict environmental
assessment mechanism, to avoid administrative penalties, regions imitate each other’s
carbon emission reduction behavior, but for regions with a high level of agricultural
economic development, the more similar the level of economic development, the
more likely it is to adopt the opposite emission reduction strategy, which differs
from positive spatial correlation of carbon emissions found by some scholars [71–74].
This is because regions with a higher level of agricultural economic development
have relatively fierce economic or environmental competition to compete for political
performance, either choose the development idea of “economy first, environment sec-
ond,” or choose the development idea of “environment first, economy second,” to take
the lead in economic assessment or environmental assessment. From the viewpoint
of technological interaction, scholars unanimously agreed on the existence of a tech-
nological interaction between regions [75–77]. Nevertheless, few studies examined
the realization conditions of technological interaction. We discussed three condi-
tions of industry, human capital, and R&D capabilities, and deduced three modes of
technological interaction. First, “industrial agglomeration leads to technological inter-
action”. Cross-regional industrial agglomeration brings technology-sharing between
regions. Geographically adjacent regions are dominated by industrial specialized
agglomeration, and regions with similar technological development levels are dom-
inated by industrial synergy agglomeration. Second, “knowledge spillovers lead
to technological interaction,” which primarily occurs between regions with similar
economic or technological levels, and is characterized by the cross-regional flow of
human capital, but human capital does not flow from high-level regions to low-level
regions. Third, the “technological R&D capability leads to technological interaction,”
which is manifested as “the strong and the strong cooperating” between regions with
high-tech R&D capabilities. The large gap in technological R&D capabilities affects the
technology spillover between regions, and the technology threshold effect is apparent.

(2) Many studies have discussed the ways of enterprise cooperation and its impact on
carbon emission reduction [78–80] but the improvement of enterprise cooperation
awareness is inseparable from the government’s guidance [81]. Apart from this,
when the region implements the coordinated joint carbon reduction model, the car-
bon emission reduction efforts of enterprises can also reach the peak [82], showing
that the interaction of carbon emission reduction between regions can send signals
to enterprises, and then promote the interaction and cooperation between regional
economy, industry, and enterprises. In this study, we focused on exploring what
emission reduction interaction strategies have been adopted by various regions in
China under the background of regional coordinated emission reduction policies, and
used geographic weight, economic weight, and technical weight to comprehensively
consider whether regional emission reduction interaction is “vicious interaction” or
“benign interaction”. Our findings can lay the foundation for promoting the benign
interaction between enterprises in the region. For regions that implement the imi-
tation strategy, it is crucial to guide the development of low-carbon technologies of
enterprises, drive the low-carbonization of the industry, and establish a “benchmark
region for emission reduction”. For regions that implement opposing strategies, it is
essential to regulate the competition of enterprises, guide the benign interaction be-
tween regions, and evade the increase in carbon emissions due to vicious competition.
For regions where industrial agglomeration leads to technological interaction, it is
essential to promote cooperation between cross-regional enterprises, further promot-
ing technology-sharing and transfer through economy of scale and industrial chain
extension. For regions where knowledge spillovers lead to technological interaction,
it is essential to guide the wider flow of human capital and promote the sharing of
regional emission reduction experience. For regions where technical level leads to
technical interaction, it is essential to improve the overall technical R&D ability of the
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region by augment the technical R&D capabilities of enterprises, thereby decreasing
the problems of technical barriers to regional technical interaction.

(3) In the field of cooperative emission reduction, unlike most scholars who focused on
the interaction of emission reduction between countries, we focused on the interac-
tion of emission reduction between regions. Li [83] pointed out that Belt and Road
countries can achieve economic and environmental win–win through international
trade, while infrastructure investment and energy cooperation can improve energy ef-
ficiency and reduce carbon emissions by promoting advanced technologies and funds
transfer [84]. Mina [85] and Shin [86] analyzed the international cooperation of REDD+
projects and found that partnerships are less likely to be created between different
organization categories (across-type bridging), but tend more towards cooperation
with the same types (within-type bridging). Li [87] emphasized reducing emissions
through energy-related aid from high-income countries to low-income countries.
Scholars all believed that cooperation is beneficial to emission reduction. Compared
with regional cooperation, international cooperation obviously faces more difficulties.
Therefore, regional cooperation is more important for a country to achieve emission
reduction goals. By studying the emission reduction interaction between regions in
China, we found that in order to stimulate emission reduction potential, it is necessary
to form emission reduction benchmark regions, to drive adjacent regions to reduce
emissions through the “imitation effect,” and to promote technology spillovers and
technology learning. Spillover should take full advantage of industrial agglomeration
and human capital flow, and technology learning should reduce technical barriers.
These conclusions provide more comprehensive and feasible recommendations for
inter-regional emission reduction synergies in other countries.

(4) This study discussed the coordinated strategies for low-carbon emission reduction
of Chinese local governments. Currently, China’s agriculture is characterized by
large-scale, industrialized, and small-scale farmers. Thus, it is not only crucial to ex-
amine the implementation path of low-carbon development from a macro-perspective
but also perform comprehensive analysis from the farmers’ perspective. The better
realization of regional agricultural coordinated emission reduction also warrants the
cooperation of farmers. To investigate the low-carbon coordination between farmers
from a micro-perspective will be the direction of future research. In addition, pre-
dicting agricultural carbon emissions under coordinated regional emission reduction,
judging whether China’s carbon peaking goal can be achieved, and then guiding
regions to adjust emission reduction interaction strategies, are also issues worthy
of study.

6. Conclusions

This study analyzed the forms, channels, and conditions of China’s regional emission
reduction interactions to extend China’s emission reduction experience to other countries.
The conclusions are as follows: Overall, relatively comprehensive emission reduction
interactions, including direct and indirect interactions caused by technology spillover,
were identified in various regions of China, for which the geographic channel was the
main pathway for direct emission reduction interactions and the technical channel was
the main channel for indirect emission reduction interactions. The differences in eco-
nomic development levels did not significantly hinder direct emission reduction inter-
actions between regions. The differences in industrial agglomeration levels were not
related to indirect emission reduction interactions between regions. In contrast, differences
in human capital levels and technological R&D capabilities impacted indirect emission
reduction interactions.

Finally, the following suggestions are made: (i) Improve the top-level design of emis-
sion reduction policies, establish a regional coordinated emission reduction mechanism,
and augment emission reduction cooperation. Relying on the coordinated development
strategy, enhance the balance of agricultural economic development among regions and
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prevent the adverse impact of vicious economic competition on carbon emission reduction.
In addition, advocate the “rich neighbor” strategy, break down barriers to regional coop-
eration in emission reduction, and share experience in energy conservation and emission
reduction through technical cooperation or financial cooperation. (ii) Establish benchmark
regions and take full advantage of the industrial integration strategy to promote technology
absorption to its radiation effect on carbon emission reduction. In addition, establish an
“economic benchmark” and promote the horizontal integration or vertical integration of
industries between benchmark regions and other regions, and then share emission reduc-
tion experience and technologies. Besides these, establish “emission reduction benchmark”
and use the government’s environmental assessment system to guide regions to learn from
emission reduction benchmark, thereby stimulating the emission reduction potential of
more regions. (iii) Create an excellent technology R&D environment to promote regional
technology spillover and absorption. Upgrade the intellectual property protection sys-
tem, encourage enterprises, universities, and other scientific research entities to carry out
technology R&D through preferential policies, such as tax relief, financial subsidies, and
financial discounts, and integrate talents, capital, information, and other resources to hasten
the promotion and application of technology. Furthermore, regions with low-technology
R&D capabilities should increase investment in technology-intensive industries, and make
full use of the industrial integration strategy to promote technology absorption, thereby
driving emission reductions. (iv) Guide the flow of agricultural technical talents and exerts
the “knowledge spillover” effect. Increase government guidance, improve the rate of return
of production factors in regions with low human capital through preferential policies, such
as taxation, to attract technical talents to flow to regions with low human capital through
the “Retain talent through preferential policies” method. Finally, establish a long-term
mechanism for talent flow, build a career platform, illustrate the development potential of
the region, and attract technical talents to flow to regions with low human capital through
the “Retain talent through career development” method.
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