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Abstract: The main purposes of this study were to explore the spatial distribution characteristics
of H7N9 human infections during 2013–2017, and to construct a neural network risk simulation
model of H7N9 outbreaks in China and evaluate their effects. First, ArcGIS 10.6 was used for spatial
autocorrelation analysis, and cluster patterns ofH7N9 outbreaks were analyzed in China during
2013–2017 to detect outbreaks’ hotspots. During the study period, the incidence of H7N9 outbreaks
in China was high in the eastern and southeastern coastal areas of China, with a tendency to spread
to the central region. Moran’s I values of global spatial autocorrelation of H7N9 outbreaks in China
from 2013 to 2017 were 0.080128, 0.073792, 0.138015, 0.139221 and 0.050739, respectively (p < 0.05)
indicating a statistically significant positive correlation of the epidemic. Then, SPSS 20.0 was used
to analyze the correlation between H7N9 outbreaks in China and population, livestock production,
the distance between the case and rivers, poultry farming, poultry market, vegetation index, etc.
Statistically significant influencing factors screened out by correlation analysis were population of the
city, average vegetation of the city, and the distance between the case and rivers (p < 0.05), which were
included in the neural network risk simulation model of H7N9 outbreaks in China. The simulation
accuracy of the neural network risk simulation model of H7N9 outbreaks in China from 2013 to 2017
were 85.71%, 91.25%, 91.54%, 90.49% and 92.74%, and the AUC were 0.903, 0.976, 0.967, 0.963 and
0.970, respectively, showing a good simulation effect of H7N9 epidemics in China. The innovation of
this study lies in the epidemiological study of H7N9 outbreaks by using a variety of technical means,
and the construction of a neural network risk simulation model of H7N9 outbreaks in China. This
study could provide valuable references for the prevention and control of H7N9 outbreaks in China.

Keywords: H7N9; GIS; spatial analysis; risk factors; risk simulation model

1. Introduction

The first avian influenza A(H7N9) human case was found in China in early 2013,
followed by the discovery of the virus in local live poultry markets [1]. Since then, avian
influenza A (H7N9) outbreaks in humans (abbreviated to H7N9 outbreaks in this study)
became a very important issue during H7N9 epidemics for Chinese health [2]. The avian
influenza A (H7N9) virus is a form of influenza A caused by the H7N9 bird flu virus [3].
The body temperatures of most H7N9 human cases are above 38.5 °C, and symptoms such
as cough and expectoration may develop into severe pneumonia and death within one
week [4]. In 2017, a mutant strain was considered to be highly pathogenic to birds and
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could lead to multiple H7N9 outbreaks in China [2]. Since the first H7N9 human case
emerged in early 2013, there have been six H7N9 outbreaks in 29 provinces and cities in
China, infecting about 1600 people [5]. H7N9 outbreaks have posed great challenges to
public health and social and economic stability in China, and the study on the spatial and
temporal distribution and the outbreak risk simulation of H7N9 human infections has
become a research hotspot in the public health field in recent years.

In 2017 Chen et al. believed that the high pathogenicity and the rapid development of
the H7N9 virus might be caused by frequent gene recombination and easy mutation in the
breeding process [6]. In order to address the severe challenges posed by H7N9 outbreaks,
a large number of experiments and vaccine studies were carried out in 2015 and 2016. In
the fifth H7N9 outbreaks in humans in China, the number of people infected with H7N9
virus was increasing continuously, which attracted extensive attention from the public and
public health departments [7]. In order to control H7N9 outbreaks, many areas along the
southeast coast of China (such as Shanghai), gradually closed all live poultry markets after
4 April 2013 [8]. At present, studies have found that outbreaks and transmission of H7N9
outbreaks are liable to be related to poultry trade, vegetation cover, population density,
temperature, rainfall and humidity [9]. Since 2013, H7N9 outbreaks in the Yangtze River
Delta region and eastern China have been reported repeatedly [10,11]. Studies showed that
as one of the three major migratory bird routes through China, the risk of transmission of
H7N9 outbreaks in eastern China, including the Yangtze River Delta and Pearl River Delta,
was particularly high [12,13]. In addition, the spatial distribution of H7N9 human cases in
China showed that the density of H7N9 human cases was the highest from the vicinity of
the Yangtze River Delta to the south of the pearl River Delta, forming a large space-time
aggregation area [14].

H7N9 outbreaks have posed a serious threat to public health and social stability in
China. Therefore, it is quite necessary to study the spatial distribution and transmission
characteristics of H7N9 outbreaks. With the continuous development of computer tech-
nology, machine learning has been widely used in medical and public health research.
Previous studies confirmed that neural network, random forest, support vector machine
and other models were better than traditional statistical models in disease assessment to
some extent [15,16]. One study suggests that using epidemiologically and environmentally
dependent transmission rates can potentially generate more practical simulation results [17].
The main purposes of this study were to carry out epidemiological study and explore spa-
tial distribution characteristics of H7N9 outbreaks based on the spatial autocorrelation
analysis during 2013–2017, and to construct a neural network risk simulation model of
H7N9 outbreaks in China by considering environmental factors and evaluate their effects.
The research results could provide valuable references for the prevention and control of
N7H9 outbreaks in China.

2. Materials and Methods
2.1. Data Collection

Data of H7N9 human cases from 2013–2017 were obtained by applying to the Chinese
CDC (Centers for Disease Control) Information Center. The poultry data, breeding data and
livestock production value data were from the Chinese National Bureau of Statistics (http://
www.stats.gov.cn, accessed on 11 August 2020), and the market data and output value data
of poultry in different provinces of China Rural Statistical Yearbook from 2013–2017 were
downloaded online. Stream vector data were obtained from the Institute of Geographic
Sciences and Natural Resources Research of the Chinese Academy of Sciences (http://www.
resdc.cn/data.aspx?DATAID=221, accessed on 11 August 2020). The vegetation index data
came from the National Data Center for Tibetan Plateau Science (http://data.tpdc.ac.cn,
accessed on 11 August 2020).

http://www.stats.gov.cn
http://www.stats.gov.cn
http://www.resdc.cn/data.aspx?DATAID=221
http://www.resdc.cn/data.aspx?DATAID=221
http://data.tpdc.ac.cn
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2.2. Research Methods
2.2.1. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis includes global spatial autocorrelation and local spatial
autocorrelation. Global spatial autocorrelation and local spatial autocorrelation reflect
the correlation of research objects at global and local scales respectively. Global spatial
autocorrelation analysis can be used to determine whether cases are clustered or discrete at
the domestic observation scale [18]. Local spatial autocorrelation analysis can reflect the
spatial variation characteristics of cases. Four types of clusters can be obtained through
local spatial autocorrelation, the distribution of these four types of clusters respectively
reflects the H-H cluster (H-H, high value surrounded by high value), the H-L cluster (H-L,
high value surrounded by low value), the L-H cluster (L-H, low value surrounded by high
value) and the L-L cluster (L-L, low value surrounded by low value) [19]. In this study,
ArcGIS 10.6 was used for spatial autocorrelation analysis, and H-H cluster patterns of
H7N9 outbreaks were analyzed in China during 2013–2017, in order to explore hotspots
of outbreaks.

2.2.2. Neural Network Risk Simulation Model of H7N9 Outbreaks
Sample Collection

As shown in Figure 1, sample collection rules adopted in this study were as follows:
(1) a total of 1474 H7N9 human cases in China were collected from 2013 to 2017, (including
155 cases in 2013, 326 cases in 2014, 196 cases in 2015, 243 cases in 2016, and 554 cases in
2017); (2) a map of China (1: 4,000,000) was regularly divided into 100 km × 100 km grids,
and the center of gravity of the grids was extracted. Each grid center of gravity that did not
coincide with any case point was used as a control sample [20], and a total of 223 control
sample points were obtained.
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Figure 1. Sample collection results.

First, SPSS 20.0 was utilized to analyze the correlation of population, livestock produc-
tion value, poultry farming, poultry market, vegetation index, distance between case sites
and rivers and other influencing factors of H7N9 outbreaks in China. The quantitative data
were described by mean ± standard deviation (X ± S). Qualitative data were described in
relative numbers, and the χ2 test was used for comparison between groups, and p < 0.05
was considered statistically significant.

In this study, the collected sample points were divided into training set and test set by
7:3, and the risk factors related to the epidemic in the correlation analysis were incorporated
into the neural network model, then a neural network risk simulation model of H7N9
outbreaks in China was constructed iteratively through neural network fitting. The neural
network adopted in this study had four layers, with the number of neurons in each layer
being 100, 50, 10 and 1 respectively. The activation functions of the first three layers are
all rectified linear units (ReLUs). For fully connected neural networks, the ReLU function
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can ensure the global convergence of gradient descent [21], thus avoiding the problems of
gradient explosion and gradient disappearance. The ReLU formula is the following [22]:

f (x) =
{

0, x ≤ 0
x, x > 0

where x is the output vector of the neural network of the upper layer into the neuron. Since
the purpose of this study was a binary classification, only one neuron was required for the
last layer, so the sigmoid function was selected as the activation function. This function can
map a real number in the interval (0,1), which is very suitable for dichotomy problems [23].
The sigmoid formula is the following [24]:

S(x) =
1

1 + ex

where, x is the output vector of the neural network of the upper layer into the neuron, and
e is the natural logarithm.

Since the learning rate might be controlled by the output error, the binary cross entropy
loss function was selected as the loss function of the neural network model in this study, so
that the sigmoid function could avoid the problem of the decrease in the learning rate of
the mean square error loss function during the gradient descent [25]. The formula for the
binary cross entropy loss function is the following [26]:

J(θ) = −
m

∑
i=1

y(i) log hθ

(
x(i)

)
+

(
1 − y(i)

)
log

(
1 − hθ

(
x(i)

))
where x represents the output vector of the neuron’s calculation results, y represents the
label of the sample, 0 or 1, and h represents the activation function. The learning rate in
this study was set to 0.01, and the number of iterations was 50. TensorFlow 2.1 was used to
construct a neural network risk simulation model of H7N9 outbreaks in China in this paper.

3. Results
3.1. Spatial Pattern of H7N9 Outbreaks in China

In 2013, Shanghai had the highest number of H7N9 human infections (34 cases); in
2014, Guangzhou had the highest number of H7N9 human infections (25 cases), followed by
Shenzhen (24 cases); in 2015, Shenzhen had the highest number of H7N9 human infections
(12 cases); in 2016, Suzhou had the highest number of H7N9 human infections (48 cases); in
2017, Ningbo and Taizhou had the highest number of H7N9 human infections (15 cases in
both cities), followed by Suzhou (14 cases) and Beijing (13 cases), as shown in Figures 2–6.
During the study period, the incidence of H7N9 outbreaks in China was high in the eastern
and southeastern coastal areas of China, with a tendency to spread to the central region.
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3.2. Spatial Autocorrelation Analysis
3.2.1. Global Spatial Autocorrelation Analysis of H7N9 Outbreaks

Global Moran’s I statistics were used to evaluate whether the cumulative number
of confirmed H7N9 human cases in each region is spatially relevant. Moran’s I statistics
test significance based on a Monte Carlo simulation of a stochastic permutation process,
and I ranges from −1 (dissimilar value clustering) to +1 (similar value clustering), with
0 indicating that there is no spatial autocorrelation [27]. Table 1 shows results of global
spatial autocorrelation analysis and significance test of H7N9 outbreaks in China from 2013
to 2017. Moran’s I values of global spatial autocorrelation of H7N9 outbreaks in China from
2013 to 2017 were 0.080128, 0.073792, 0.138015, 0.139221 and 0.050739, respectively, which
were statistically significant (p < 0.05). Therefore, the spatial distribution of cases during the
5-year study period was not random, but there was obvious spatial autocorrelation during
the epidemics in these five years. In the global spatial autocorrelation analysis, Moran’s
I values of H7N9 outbreaks were all greater than 0, indicating that the epidemic was
positively correlated in space, and the epidemic occurrence had a spatial clustering trend.
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Table 1. Results of global spatial autocorrelation analysis and significance test of H7N9 outbreaks in
China from 2013 to 2017.

Year Moran’I p

2013 0.080128 0.047867
2014 0.073792 0.000089
2015 0.138015 <0.01
2016 0.139221 <0.01
2017 0.050739 0.042006

3.2.2. Local Spatial Autocorrelation Analysis of H7N9 Outbreaks

In order to specifically identify where the H7N9 epidemic clusters and outliers oc-
curred, this study further conducted local spatial autocorrelation analysis of H7N9 out-
breaks in China from 2013 to 2017 to obtain the visual clustering distribution map of the
epidemic, as shown in Figures 7–11. As can be seen from figures, local spatial autocor-
relation analysis of H7N9 outbreaks further confirmed the high-risk areas of the study
area, and found that the hot spots with high incidence were relatively concentrated. There
were four kinds of outbreak clusters or outliers during the study period: the high-high
(H-H) cluster, the high-low (H-L) outlier, the low-high (L-H) outlier, and the low-low (L-L)
cluster. The H-H cluster was a high value cluster pattern of outbreaks that needed to be
paid attention to, indicating that both H-H and its surrounding areas had high incidence
numbers. Local spatial autocorrelation analysis of H7N9 outbreaks in China from 2013
to 2017 showed that: the locations of high value clusters were relatively concentrated,
and the H-H cluster region was the high-risk area of the epidemic, mainly distributed
in Jiangsu, Hunan, Zhejiang, Guangdong, Beijing and Shanghai during the study period.
Specifically, in 2013 the H-H cluster areas were in Shanghai, Jiaxing, Suzhou and Wuxi;
in 2014, the H-H cluster areas were in Taizhou, Zhaoqing, Foshan, Guangzhou, Jiangmen
and Zhongshan; in 2015, the H-H cluster areas included Zhangzhou, Chaozhou, Meizhou,
Heyuan, Haifeng, Jieyang, Zhaoqing, Foshan, Guangzhou, Dongguan, Shenzhen, Jiangmen
and Zhongshan; in 2016, the H-H cluster areas included Nantong, Taizhou, Wuxi, Suzhou,
Huzhou, Jiaxing and Shanghai; in 2017, theH-H cluster areas included Chengde, Beijing,
Baoding, Langfang, Tianjin, Yancheng, Nantong, Wuxi, Shaoxing, Loudi and Hengyang,
as shown in Figures 7–11. These H-H cluster areas with high concentrations of H7N9
outbreaks during the study period were characterized by spatial hot spots, which should
be focused on in future epidemic prevention and monitoring.
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In addition, the H-L outlier areas mainly occurred in part of Jiangsu, Anhui, Hunan,
Chongqing and other places during the study period, indicating that the number of cases
in the relevant areas was high, but the number of cases in the surrounding areas was
low. The L-H outlier areas mainly occurred in part of Zhejiang, Guangxi, Hunan, Jiangxi,
Shanxi, Jiangsu and Guangdong, indicating that the cases number in the relevant regions
was low, but the cases number in the surrounding areas was high. The L-L cluster areas
was the low value clustering pattern of the epidemic, which mainly occurred in part
of Liaoning, Shandong, Guizhou, Guangxi, Beijing, Jiangsu, Anhui, Hunan, Shandong,
Hubei and Jiangxi, showing that the related areas and their surrounding areas had the
characteristics of low cases number. Although these H-L, L-H and L-L regions did not have
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a high concentration of outbreaks, they still need to be paid attention to in the epidemic
prevention and control work.
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3.2.3. Neural Network Risk Simulation Model of H7N9 Outbreaks in China

In the data collection stage, we collected eight additional influencing factors, which
were: urban population, provincial animal husbandry output value, provincial poultry
breeding, provincial poultry market, NDVI, and distance between case points and rivers.
In addition, we also considered the impact of the city on cases. Therefore, a total of nine
risk factors were included in this study.

The reason for selecting the above factors was that the source of H7N9 outbreaks
was still unclear, and it was presumed that the infection is mainly avian. The high-risk
population was mainly workers engaged in avian-related work, so relevant data and
information on agriculture and animal husbandry were needed. At the same time, wild
birds in cities might also be carriers of the virus, and wild birds mainly lived in areas
covered with vegetation, so the NDVI was taken into consideration. The main route of
transmission of H7N9 outbreaks was avian secretions and excreta, so it could not be ruled
out that this material might enter rivers and cause human infection.

Cities and urban populations were considered because it had been demonstrated
that H7N9 outbreaks were the result of genetic recombination between wild birds from
Southeast Asia and chickens from Shanghai, Zhejiang, and Jiangsu provinces in China. In
addition, cattle and sheep were mainly eaten in northwestern and North China, which
might also be risk factors for the diagnosis of H7N9 outbreaks. After confirming the above
nine factors, we used the independent sample t-test in SPSS to determine whether these
nine factors were correlated with confirmed cases (p < 0.05), and finally found that only
three factors had a significant correlation with the diagnosis: urban population, urban
average vegetation, and the distance from the case to the river.

For the construction of the neural network, after confirming the above three factors, we
took the above three factors as independent variables and the diagnosis as the dependent
variable to form a matrix of N*4 (N rows and four columns) and input it into the neural
network. The goal of our model is to judge whether case data are confirmed or not, so our
output is binary classification by a sigmoid function.

Given the above, an independent sample t-test was used to conduct a correlation
analysis on possible epidemic influencing factors in this study, as shown in Table 2. The
statistically significant epidemic influencing factors screened out by correlation analysis
were population of the city, average vegetation of the city, and distance between case sites
and rivers (p < 0.05), finally, these influencing factors were included in the neural network
risk simulation model of H7N9 outbreaks in China.
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Table 2. Correlation analysis results.

Independent
Variable

p t
Mean Value ±

Standard
Deviation

95%CI

Lower Upper

population <0.001 −5.535 −0.70 ± 0.012 −0.094 −0.045
animal husbandry

output value 0.359 1.780 0.041 ± 0.023 −0.004 0.086

poultry farming 0.871 −0.513 −0.011 ± 0.022 −0.055 0.032
poultry market 0.184 −4.685 −0.704 ± 0.015 −0.105 −0.043

mean vegetation 0.009 1.691 0.028 ± 0.016 −0.004 0.061
distance between

case and river <0.001 4.376 0.047 ± 0.010 0.026 0.068

city 0.181 −2.534 −0.062 ± 0.024 −0.111 −0.141

In this study, the assessment of consistency rate and AUC (area under the ROC
curve, as shown in Figure 12) were used to evaluate indicators of the neural network risk
simulation model of H7N9 outbreaks in China. This risk simulation model was established
based on the neural network algorithm in the epidemic training set samples, and the risk
simulation was conducted on the epidemic test set from 2013 to 2017. The simulation
accuracy of the neural network risk simulation model of H7N9 outbreaks in China from
2013 to 2017 were 85.71%, 91.25%, 91.54%, 90.49% and 92.74, respectively, and the AUC
were 0.903, 0.976, 0.967, 0.963 and 0.970, respectively, the results show that the model
constructed in this paper has relatively good accuracy, as shown in Table 3.
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In this study, sample data sets of H7N9 outbreaks in China from 2013 to 2017 were
randomly divided into a training set and a test set (7:3). The training set was used to
establish the neural network risk simulation model of H7N9 outbreaks in China, and the
test set was used to test the risk simulation effect of the model. The probability simulation
value of H7N9 outbreaks was calculated by the model, and the outbreak risk map of the
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test set was obtained based on the probability simulation value and inverse distance weight
spatial interpolation method.

Table 3. Simulation results of the neural network risk simulation model of H7N9 outbreaks in China.

2013 2014 2015 2016 2017

simulation accuracy 85.71% 91.25% 91.54% 90.49% 92.74%
AUC 0.903 0.976 0.967 0.963 0.970

It can be seen from Figure 13 that in the epidemic risk map generated by the neural
network risk simulation model of H7N9 outbreaks in China in 2013, the simulated areas
with high risk of H7N9 outbreaks are mainly in Shanghai, Beijing and Hebei Province.
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It can be concluded from Figure 14 that in the epidemic risk map generated by the
neural network risk simulation model of H7N9 outbreaks in China in 2014, the simulated
areas with high risk of H7N9 outbreaks were mainly concentrated in Beijing, Jiangsu,
Zhejiang, Fujian and Guangdong provinces.
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Figure 15 shows that in the epidemic risk map generated by the neural network
risk simulation model of H7N9 outbreaks in China in 2015, the simulated high-risk areas
of H7N9 outbreaks were mainly concentrated in Beijing, Jiangsu, Zhejiang, Fujian and
Guangdong provinces of China, and the higher-risk areas did not change much since 2014.
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It can be concluded from Figure 16 that in the epidemic risk map generated by the
neural network risk simulation model of H7N9 outbreaks in China in 2016, the high-
risk areas of H7N9 human infections were mainly concentrated in Heilongjiang, Jiangsu,
Zhejiang, Hubei, Henan, Jiangxi, Guizhou and Guangdong provinces, and the risk in
Anhui, Shanghai and Jiangsu was more serious.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 16. Risk simulation results of H7N9 outbreaks in China in 2016. 

Figure 17 shows that in the epidemic risk map generated by the neural network risk 
simulation model of H7N9 outbreaks in China in 2016, the high-risk areas of H7N9 human 
infections were mainly concentrated in Heilongjiang, Jiangsu, Zhejiang, Hubei, Jiangxi, 
Guizhou and Guangdong provinces; among them, the risk in Hubei, Anhui, Shanghai and 
Jiangsu was more serious. 

 
Figure 17. Risk simulation results of H7N9 outbreaks in China in 2017. 

4. Discussion 
In this paper, the epidemiological study of H7N9 outbreaks in China was conducted 

based on multiple methods. Firstly, this study used the complete case data of H7N9 out-
breaks in China from 2013 to 2017 to analyze the spatial distribution and clustering of 
H7N9 outbreaks based on ArcGIS 10.6 software. Secondly, this paper used correlation 
analysis and a neural network model to simulate the risk of H7N9 outbreaks in China 
during the study period, so as to obtain the high-risk areas of the epidemic. 

This study revealed that H7N9 outbreaks appeared in a total of 34 cities in China in 
2013, among which Shanghai was the initial area of the epidemic and had the largest num-
ber of cases. By the end of 2017, a total of 143 cities had H7N9 outbreaks, among which 
Ningbo, Taizhou and Suzhou had the highest number of human cases. Since 2013, the 
epidemic had gradually spread spatially, with most cases occurring in 2017 and showing 
a trend of accelerating spread. In the global spatial autocorrelation analysis, Moran’s I 
values of H7N9 outbreaks were all greater than 0, and p values were all less than 0.05, 
indicating that the distribution of H7N9 outbreaks in China had a positive correlation. 
According to the cluster outlier analysis, the number of H-H regions of H7N9 outbreaks 
increased from four cities at the beginning to eleven cities in 2017, showing an obvious 
tendency of growth. It is suggested that high-risk areas of H7N9 outbreaks in China 

Figure 16. Risk simulation results of H7N9 outbreaks in China in 2016.

Figure 17 shows that in the epidemic risk map generated by the neural network risk
simulation model of H7N9 outbreaks in China in 2016, the high-risk areas of H7N9 human
infections were mainly concentrated in Heilongjiang, Jiangsu, Zhejiang, Hubei, Jiangxi,
Guizhou and Guangdong provinces; among them, the risk in Hubei, Anhui, Shanghai and
Jiangsu was more serious.
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4. Discussion

In this paper, the epidemiological study of H7N9 outbreaks in China was conducted
based on multiple methods. Firstly, this study used the complete case data of H7N9
outbreaks in China from 2013 to 2017 to analyze the spatial distribution and clustering
of H7N9 outbreaks based on ArcGIS 10.6 software. Secondly, this paper used correlation
analysis and a neural network model to simulate the risk of H7N9 outbreaks in China
during the study period, so as to obtain the high-risk areas of the epidemic.

This study revealed that H7N9 outbreaks appeared in a total of 34 cities in China
in 2013, among which Shanghai was the initial area of the epidemic and had the largest
number of cases. By the end of 2017, a total of 143 cities had H7N9 outbreaks, among which
Ningbo, Taizhou and Suzhou had the highest number of human cases. Since 2013, the
epidemic had gradually spread spatially, with most cases occurring in 2017 and showing a
trend of accelerating spread. In the global spatial autocorrelation analysis, Moran’s I values
of H7N9 outbreaks were all greater than 0, and p values were all less than 0.05, indicating
that the distribution of H7N9 outbreaks in China had a positive correlation. According
to the cluster outlier analysis, the number of H-H regions of H7N9 outbreaks increased
from four cities at the beginning to eleven cities in 2017, showing an obvious tendency of
growth. It is suggested that high-risk areas of H7N9 outbreaks in China gradually increased
during the study period and showed a trend of spreading from southeast to western and
northern regions.

In view of the neural network model’s ability to accurately evaluate in data-based
simulation and evaluation, this study used the model to simulate H7N9 outbreaks in China.
Studies have shown that the evaluation ability of the neural network model is superior
to random forest and logistic regression models and other modeling methods [28]. Some
researchers have compared and analyzed artificial neural network with random forest and
other classification models. For example, in terms of epidemic research, Wang et al. [29],
Guo et al. [30], and Oliveira et al. [31] compared the efficiency of neural network, random
forest and support vector machine models in the auxiliary diagnosis of AIDS and COVID-
19, and results showed that the accuracy of the neural network model is higher than that
of other models. In studies on other diseases, Yu et al. [32], Choi et al. [33], Lai et al. [34],
Shh et al. [35] all made a comprehensive comparison among neural network, random forest
and support vector machine in their respective studies, and concluded that the neural
network model was more accurate than random forest and support vector machine models.
Based on these research results and considering that the original data of this study were
continuous data, the neural network model which might achieve better simulation effects
was finally selected for modeling and simulation in this paper. Therefore, variables such as
population, output value of animal husbandry, poultry breeding, poultry market, vegeta-
tion index, distance between case sites and river, and city were integrated, and statistically
significant factors (city population, city average vegetation, and distance between case sites
and river) in epidemic correlation analysis were incorporated into the neural network risk
simulation model of H7N9 outbreaks in China (p < 0.05) in this study. The neural network
risk simulation model of H7N9 outbreaks in China was constructed to simulate the risk
areas of H7N9 outbreaks in China; the simulation accuracy was 73.12%, and the AUC was
0.812. The results show that the model established in this study has a good simulation
effect on the risk of H7N9 outbreaks in China.

The neural network risk simulation model of H7N9 outbreaks in China established in
this paper showed that the eastern and southeastern coastal areas of China were high-risk
areas for H7N9 outbreaks, and the trend of spreading to southwest and north China was
also shown. Shanghai and parts of Guangdong were always high-risk areas. Shanghai was
the city with the first H7N9 outbreak, and although the cases had decreased during the
study period, the risk continues to be high [36]. Parts of eastern China, including Anhui,
Jiangxi, Henan, Shandong and Hubei, also contained relatively few localized high-risk
areas. The outbreak of H7N9 outbreaks in southeastern coastal areas (Shanghai, Guangzhou,
Shenzhen, etc.) might be due to the local climatic conditions suitable for the survival of
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H7N9 virus. In addition, there are many live poultry processing factories and farms in
some areas along the southeast coast, and their live poultry breeding system generally
adopts a semi-mixed breeding method. As poultry was the traditional carrier of the H7N9
virus, this live poultry breeding system may offer an ideal environment for the spread of
the epidemic. All this increases the likelihood of local residents infected by the H7N9 virus
through contact with poultry [37]. The region around the Yangtze River Delta also shows a
high risk of infection. Most of the above regions were home to migratory birds and had
high vegetation coverage, which was very suitable for wild birds, providing a good natural
environment for the spreading of H7N9 virus.

5. Conclusions

The strengths of this paper were that the spatial distribution characteristics and the
spread regularity of H7N9 outbreaks were studied from 2013 to 2017 in China based
on GIS spatial analysis, correlation analysis and a neural network model, and finally a
neural network risk simulation model of H7N9 outbreaks in China was established to
simulate the outbreak of high-risk areas. Because the spread of H7N9 outbreaks was quite
a complex process, some factors were difficult to be included and quantified in the model
(such as government policy), and this might influence the model’s accuracy to a certain
extent. Further studies are also required to delineate the mechanisms of H7N9 outbreaks’
transmission. Above all, the results show that the model established in this study achieved
a good simulation effect of H7N9 outbreaks in China, which could provide a valuable
reference and auxiliary decision support for the prevention and control of H7N9 human
infections in China.
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