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Abstract: This paper aims to apply the time-varying Granger causality test (TVGC) and the DY
Spillover Index (Diebold and Yilmaz, 2012) to measure the Granger causality and dynamic risk
spillover effects of the international crude oil futures market on China’s agricultural commodity
futures market from the perspectives of return and volatility spillovers. Empirical evidence relating
to the TVGC test suggests the existence of unidirectional Granger causality between crude oil futures
and agricultural product futures. This relationship shows a strong time-varying property, in particular
for sudden or extreme events such as financial crises and natural disasters. On the other hand, the
volatility spillover in crude oil and agricultural product futures markets responds asymmetrically and
bidirectionally according to the result of the DY Spillover index, and the periodicity of total volatility
spillover correlates closely with the occurrence of global economic events, which indicates that the
spillover effect between crude oil and agricultural commodity futures markets will be exacerbated
in turbulent financial and economic times. Such findings are expected to help in formulating policy
recommendations, portfolio design, and risk-management decisions.
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crude oil price goes up. Higher oil price brings extra costs to production, processing, and
transportation. Correspondingly, suppliers will increase the price of agricultural products
in order to keep their own profits. (3) Biofuel development. The Chinese government
attaches primary importance to the growing climate problem and has encouraged the
development of a green economy over the years. Biofuels produced from agricultural raw
materials are gradually replacing oil and being supplied in various fields with their own
advantages, such as recyclability and environmental protection. Once the crude oil price
rises substantially, China will reduce the demand for oil and turn to biofuels instead. As
a result, the increased consumption of raw materials such as soybean meal and corn will
promote agricultural prices to rise, especially in cases when demand exceeds supply.

It is therefore critical to find out the impact of the crude oil price changes on agricultural
product markets. The objective of this paper is to explore the internal mechanism of
volatility in the agricultural futures market and crude oil futures market so that the latter
can be monitored to improve the early warning mechanism for oil prices. The major
contributions are as follows: First, our research takes both the Granger causality of returns
and the spillover effect of volatilities into consideration, while most previous studies focus
only on the relationship of different return series. Second, the sample size covers almost
20 years and reveals the dynamics of causality and spillover during stable and volatile
periods, so that risk managers and investors can predict returns and volatilities of one
market based on the other market. Third, we find that the current decrease in the net
spillover of crude oil futures to agricultural futures is mainly attributed to the promotion of
biofuel energy. These findings will play a supportive role in enabling the macro-department
of the Chinese government to formulate relevant policies that contribute to controlling
risks and stabilizing the agricultural product market.

The remainder of this paper is organized as follows. Section 2 presents the relevant
previous literature. Section 3 introduces the methodology. Data and empirical results are
analyzed in Sections 4 and 5, respectively. Section 6 concludes the paper.

2. Literature Review

Previous works use different models for various financial assets and time scales to
investigate the futures price relationship between crude oil and agricultural products. With
the continuous improvement in econometrical methods, research on the aspects of the
Granger causality test and risk-spillover effects has become increasingly in-depth.

It has been reported in many empirical studies that the international crude oil price
has a significant impact on the prices of agricultural products. Further research even
found mutual influence between the two. Specifically, by using the panel VAR and the
Granger causality test to examine the relationship between crude oil prices and agricul-
tural prices, a study documented a bidirectional causal relationship between the two [1].
Meanwhile, such a relationship was also pointed out by some scholars, where the long-
term correlation and causal relationship were tested by Granger causality analysis [2]. By
applying the ARDL method combined with Granger causality to examine the dynamic
relationship among crude oil, biofuels, and agricultural prices, the results showed that
there is a strong dependence in both long and short terms [3]. By adopting the panel
method and cointegration test to analyze the dynamic relationship between crude oil and
agricultural products during 2006-2015, the study showed that the rise of oil prices could
correspondingly push agricultural prices higher [4]. Linear and Non-linear Autoregressive
Distributed Lag (ARDL) Models are often used by scholars to investigate the impact of
oil price shocks on agricultural prices, and a large number of research results suggest that
agricultural products and crude oil are co-moving in the long run [5-7]. By applying the
Panel-VAR model to energy prices and food prices during the years 2000-2016, the results
of the impulse response function demonstrated a positive response to any shock to oil
prices [8]. Some references considered using the time-varying rolling window technique
to explore the causal relationship in prices between oil and agricultural products. The
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research showed the existence of a time-varying positive bidirectional causal relationship
in a certain period of time [9].

On the other hand, some scholars hold the opposite view that there is no correlation
with respect to prices between international crude oil and agricultural products. The Copula
model was employed to study the co-movement of prices in crude oil and several typical
agricultural products (corn, soybeans, and wheat), where no extreme market dependence
was found between crude oil and agricultural product prices, indicating that the impact of
agricultural product markets on crude oil was neutral [10]. A SVAR, along with a direct
cyclic graph, was employed to decompose how supply/demand structural shocks affect
food and fuel markets. Empirical results supported the hypothesis that fundamental market
forces of demand and supply are the main drivers of food price volatility, while the shocks
from oil, gasoline, and ethanol markets did not spill over into grain prices in the long
run [11]. The study argued that the price of agricultural products in South Africa is neutral
to the fluctuation of oil price based on the results of the structural mutation cointegration
test and nonlinear causality test [12].

The existence of spillover effects will help investors, risk managers, manufacturers,
and policymakers to capture the demand for commodity futures prices dynamically [13,14].
Since the outbreak of the 2008 global financial crisis, various sorts of data and econometric
models have been selected to investigate the spillover effects between crude oil and agri-
cultural products. For instance, by using the causal variance test and impulse response
function to examine the volatility transmission between oil and agricultural prices from
1986 to 2011, research found that despite there being no volatility spillover before the
financial crisis, oil volatility transmitted to agricultural products was detected after the
financial crisis [15]. Three different GARCH models were employed to catch the correlation
between crude oil and energy crops by some scholars. Results from such dynamic models
exhibit a strong correlation of about 20 percent in regard to daily returns. Furthermore, they
further used the frequency-dependent spillovers measure to explore return spillovers from
crude oil to ethanol, corn, soybean, and wheat and showed return spillover is stronger only
during periods of energy and food crisis [16,17]. A multifractal detrended cross-correlation
analysis approach was utilized to analyze the cross-correlations between the Brent crude
oil and agricultural futures. The experimental results indicated that the multifractal cross-
correlation was stronger under the influence of the COVID-19 pandemic [18]. A relational
measurement based on Markov-switching GRG copula was constructed to analyze the
dependence structure between futures prices of WTI crude oil and 12 kinds of Chinese agri-
cultural commodities. The degree of correlation with crude oil futures prices varies under
different agricultural commodity futures prices [19]. Some scholars examined the nature
and dynamics of volatility spillovers during the period of the 2008-2009 financial crisis
via the bivariate heterogeneous autoregressive model, from which bidirectional spillovers
were observed between crude oil and agricultural commodity markets [20].

Along with the improvement in related models and methods, Diebold and Yilmaz
proposed a DY spillover index in 2009 to measure the spillover effect of return and volatility
spillovers. Such an index was based on the forecast-error variance decompositions and
was improved later by them with a generalized variance decompositions framework to
avoid the sequence-dependence problem in 2012. By using this approach in the US stock,
bond, foreign exchange, and commodity markets, they concluded that with the deepening
of the financial crisis, volatility spillover effects also increased subsequently. Moreover,
they proposed several connectedness measures and focused on the average and daily
time-varying connectedness of major US financial institutions’ stock return volatilities in
recent years, including during the financial crisis of 2007-2008 [21-23]. Some scholars used
the spillover index method to describe the relationship between the volatility of corn and
energy prices in 2018 [24]. By combining a multivariate heteroscedastic autoregressive
(HAR) model with the DCC-GARCH model to analyze the connectedness characteristics
between US crude oil futures and China’s agricultural commodity futures, the results
verified the existence of leverage volatility transmission across markets [25].
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Spillover effects include the mean spillover effect and the volatility spillover effect. The
former refers to the impact of a specific commodity price change on the price level of other
commodities, while the latter represents the impact of volatility for one certain commodity
on other commodities [26]. A number of studies on the spillover effect between crude oil
and agricultural commodities started with these two perspectives. Against this background,
a fractionally integrated VAR model was employed to capture the long-memory behavior
of the implied volatilities alongside the Markov Switching Autoregressive model to extract
the regimes of crude oil. Evidence showed that the net volatility spillover effect from
crude oil to all agricultural commodities tends to decrease when crude oil remains in its
low-volatility regime. Conversely, this effect experienced an increasing trend when crude
oil remained in its relatively high-volatility regime [27]. An analysis of the spillover effect
and time-frequency connectedness between crude oil prices and agricultural commodity
markets was conducted by some scholars. Via the DY spillover index and the wavelet
coherence model, a more apparent mean spillover was revealed during the COVID-19
pandemic [28]. Some references examined spillover effects by employing the DY spillover
index to returns and volatilities. The findings indicated an asymmetric and bidirectional
flow of information among crude oil and agricultural commodities that intensifies during
periods of financial and economic turmoil [29].

It is important to research the relationship between energy and agricultural commodity
markets, especially for investors’ portfolio optimization, risk management, and asset
allocation. Despite the fact that many existing studies have explored such an issue, their
conclusions are not consistent with each other. Methodologically, VAR, MGARCH, and
Copula are frequently used in the current literature to analyze volatility spillover. These
models, however, failed to provide information with respect to the direction of volatility
spillover, which therefore may lead to opaque dynamic spillover effects. To cope with these
problems, this paper applies the time-varying Granger model and the DY spillover index
model to examine the dynamic Granger causality that exists in crude oil and agricultural
futures and identify the direction of volatility spillover of the investigated markets.

3. Methodology
3.1. Time-Varying Granger Causality Tests

The fundamental idea of the Granger causality test is to determine whether one
sequence is useful in terms of forecasting another sequence. That is, if the prior values
have an explanatory ability to predict the future values of another time series, there should
be a causal link between the two variables. The Granger causality test is directly related
by sample period so that data in different time spans may result in different conclusions;
we therefore alternatively use the time-varying Granger causality test to test the causal
relationship between crude oil and agricultural futures markets.

A brief introduction to the Granger causality framework is as follows. We can consider
a VAR(m) model including two variables:

m m

yir = <P(()1) +) 4’5?}/1,#1( +) ¢§i>yz,t7k + e 1)
k=1 k=1
m m

Yor = ‘P(()z) +) ¢§i)y1,t—k +) qbéi)yz,t_k + €t )
k=1 k=1

where y1; and yy; stand for two different time series. Variable y; is referred to as the Granger
cause of a variable y if the current value of y, can be predicted by the historical values of

y1. The Wald test is used for testing the joint significance of parameters (/)ﬁ) (k=1,---,m),
whose null hypothesis is no Granger causality between 17 and y,. The matrix structure for
VAR(m) can be expressed as

yr = Ilx; + & 3)
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where yi = (y1r, y2), e = (L1 Yi_g - ¥i_i)s Mo ams1) = (@0, 41, -+, ¢m), and

M
$o = (cp((,l),gi)(()z)) /, Pr = (Z%sz) g%%) ,k=1,2,---,m. The null hypothesis of the Granger

1k 2k
causality test for variables y; and y; is R1_,p7m = 0, where R;_,, is the coefficient restriction

matrix, and 77 is the row-vectorized vec(IT).
The Wald statistic modified for heteroscedasticity wj_,, is defined as

N

N -1 R
Wiy = T(Rla2ﬁ)/[R1%2(V712V 1) le} (R1527) 4)

where V = I, ® Q, Q = T’lztxtx;, S = T’thCAté;, and ét =€ ®x, €& =Y — fIxt.

3.2. Spillover Index Frameworks

Diebold and Yilmaz (2009) proposed the DY spillover index, which is based on the
decomposition of the forecast-error variance of the VAR model, to measure the spillover
effect for different variables. Such an approach was improved later in Diebold and Yilmaz
(2012) using a generalized variance decompositions framework in which forecast-error
variance decompositions are invariant to the variable ordering. This paper implements the
advanced index for measuring the spillover effect over crude oil and agricultural futures.

The VAR(p) model, including N variables, takes the form of

|4
Xt =

Pixi_i+ &t %)
i=1

Random variables are assumed to be independent and identically distributed, i.e.,
g ~ 1.i.d.N(0,X). Through a moving average, Equation (5) can be rewritten as given below.

xp =Y Aig (6)
i=0

where A; denotes the N x N identity matrix and satisfies the following expression.
Ai=@rAia + QA2+ -+ 9pAiyp @)

Particularly, A; = 0if i < 0. This moving average coefficient is the key to the VAR
model. Variance decomposition attributes the forecast-error variance decomposition of
the respective variables to the shocks of other variables within a specific system. Variance
decomposition requires orthogonalized information. The information in the VAR model,
however, is contemporaneously correlated. Although Cholesky decomposition can realize
orthogonalization, the result of variance decomposition depends on variable ordering. For
this purpose, a generalized VAR model is constructed to cope with the ordering problem.
The DY dynamic spillover index is based on the generalized variance decomposition. By
calculating the variance component, it is possible to obtain the total spillover, the directional
spillover, the net spillover, and the net pairwise spillover, respectively.

The variance component is defined as the score of the H-period forecast-error variance
with respect to the shock of variable x; to itself, while the covariance component or spillover
represents the score of the H-period forecast-error variance with respect to the shock of
variable x; to variable Xj, wherei,j=1,2,--- ,Nand i # j.

Let 0;%. (H) be the H-period forecast-error variance decomposition obtained from the KPPS

method under the generalized VAR framework. For H =1,2,- - -, Glgj (H) is calculated by

0 Ly (e Arze;)”
Ty (€AZA )

0% (H) = ®)
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where X is the variance—covariance matrix of the error vector ¢, 0jj is the standard deviation
of the error term ¢;, and ¢; is a vector whose i-th element is 1 and the remaining elements are
0. Then, normalizing the variance decomposition matrix by row so that they sum to unity:

2 05 (H)
0%(H) = Wg() ©)

j=1"ij

Accordingly, Z]N 1 05( ) =1and Zf\g 1 05( ) = N.

Therefore, the total volatility spillover index used to measure the contribution of
spillovers from all market shocks to the total forecast-error variance in a generalized VAR
can be constructed as follows, given the variance contribution rate computed by KPPS

variance decomposition.

N A8 g
Z,‘]‘ 1j7é]‘91‘]'(H) %100 — 21] 1,i#j U(H)

8 =
S(H) 21] 1 ( ) N

x 100 (10)

In view that the generalized impulse response and variance decomposition are in-
variant to variable ordering, we use the elements of the normalized generalized variance
decomposition matrix to calculate the directional spillover effect. In a measurement sys-
tem, Equation (11) describes the directional spillover received by variable i from all other
variables j.

s¢ (H )72?11#95(1{)
a Zz] 1 ( )

Similarly, the directional spillover transmitted from variable i to all other variables j
can be expressed as

x 100 (11)

N A
it j;éi 9?,' (H)
Zl =1 ji ( )

Thus, a set of directional spillovers can be recognized as spillovers with specific sources
decomposed from the total spillover.

In addition, the net volatility spillover effect from variable i to the other j variables
identifies whether 7 is a source or recipient of spillovers.

8 —
S5, (H) = x 100 (12)

SS(H) = S5 (H) - S5_(H) (13)

The net volatility spillover provides aggregated information with respect to the net
contribution of a specific variable to the other variables. The net pairwise volatility spillover
effect between variables i and j measures the difference between the total volatility shock
transmitted from variables i to j and variables j to i.

2 ég( ) ég( )
S;(H) = x 100 (14)
YN 05 (H) Y1 0% (H)

4. Data
4.1. Variable Selection and Data Sources

This section applies the returns and volatilities of the WTI crude oil futures, the agri-
cultural futures index, and three representative Chinese agricultural futures consisting
of wheat hard futures, cotton futures, and soybean meal futures for empirical analy-
sis. The datasets provided by NYMEX, iFinD, and RESSET are during the periods of
June 2004-May 2022, and the sample sizes are all 2825. It is noticeable that this paper only
focuses on the overlapping parts of trading time to guarantee the availability of data, and
the missing values are filled by the linear-interpolation method.
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Suppose that the close prices of specific futures at day t — 1 and day ¢ are P;_; and P,
respectively. Based on daily transaction prices data, the return of day t without considering
the dividend can be calculated by r; = In(P;/P;_1) x 100. Let WTI, AFI, WHF, CF, and
SMF be the logarithm of the return series of the WTI crude oil futures, the agricultural
futures index, the wheat hard futures, the cotton futures, and the soybean meal futures,
respectively. The counterpart volatilities denoted as WT'I-0, AFI-c, WHF-o, CF-0, and
SMF-o are obtained by fitting the ARMA(1,1)-GARCH(1,1)-t distribution model.

4.2. Descriptive Statistics

Table 1 summarizes the descriptive statistics of log daily returns and log volatilities
for the respective futures, where JB is the p-value of Jarque—Bera statistics. The standard
deviation results suggest that the largest fluctuations appeared in the cases of SMF, WTI,
SMF-0, and WTI-c, followed by CF and WHF. The fluctuation of AFI is relatively low.
Despite the fact that the skewness of CF is not significantly different from zero, such a
measure shifts to left or right in the other returns data, while all the volatilities are right-
skewed. The kurtosis indicates the return distributions are leptokurtic, as is commonly
observed in financial returns. The skewness and kurtosis imply that the investigated data
are not distributed in a Gaussian fashion, and the Jarque-Bera statistics reject the null
hypothesis of normality, even at the 1% significance level with respect to all variables.
Furthermore, the null hypothesis of the Augmented Dicky—Fuller (ADF) unit root test is
rejected at the 1% significance level, except for WHF-o. Nevertheless, all series perform
stationary at the 10% significance level.

Table 1. Descriptive statistics.

Variable Mean Std.Dew. Min Max Skewness Kurtosis ADF JB
AFI —0.001 0.781 —4.582 4.172 —0.175 5.799 —57.742 *** 0.000
WHF 0.042 1.608 —19.671 25.271 2.958 65.267 —54.172 *** 0.000
CF 0.008 1.050 —9.228 8.376 0.000 10.957 —50.763 *** 0.000
SMF —0.056 2.120 —20.887 10.362 —1.744 17.650 —37.780 *** 0.000
WTI 0.004 2.506 —34.082 24.001 —1.210 28.869 —57.371 *** 0.000
AFl-o 0.746 0.245 0.404 2.217 1.807 8.035 —4.737 *** 0.000
WHF-o 2.095 0.361 1.607 3.381 1.065 3.301 —3.247 % 0.000
CF-o 1.087 0.513 0.600 5.373 2.431 11.730 —12.600 *** 0.000
SMF-o 1.883 1.268 1.111 17.042 4.289 31.761 —28.094 *** 0.000
WTI-o 2.185 1.173 1.076 14.102 4.493 32.382 —6.159 *** 0.000

Note: * and *** denote the rejection of the null hypotheses of ADF test at the 10%, and 1% significance levels,
respectively. ]B provides the p-values from Jarque-Bera normality test.

5. Empirical Analysis
5.1. Time-Varying Granger Causality between Return Series
5.1.1. Lag Order and Stability Discrimination for VAR Model

Determining a proper lag order is essential to the establishment of the VAR model. In
general, the selection standards usually follow the LR, FPE, AIC, SC, and HQ information
criteria. Tables 2-5 calculate that the lag orders for AFI, WHF, CF, and SMF should be 1,
3, 3, and 4, respectively. Moreover, as plotted in Figure 1, all eigenvalues of the established
models are within the unit circle, which indicates these VAR models are stable.
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Table 2. Lag order test for WTI and AFI.

Lag LL LR df p FPE AIC HQIC SBIC
0 —9867.17 3.7478 6.9969 6.9985 7.0011
1 —9816.69 100.96 * 4 0 3.6263 6.9640 6.96854 * 6.97662 *
2 —9812.21 8.9568 4 0.062 3.6251 * 6.96364 * 6.9712 6.9847
3 —9809.3 5.8101 4 0.214 3.6279 6.9644 6.9751 6.9939
4 —9805.57 7.4616 4 0.113 3.6286 6.9646 6.9783 7.0025

Note: * represents the optimal lag order conducted by the corresponding test method.
Table 3. Lag order test for WTI and WHF.

Lag LL LR df p FPE AIC HOQIC SBIC
0 —11,937.8 16.2679 8.4650 8.4665 8.46916 *
1 —11,928.1 19.417 4 0.001 16.2022 8.4609 8.46546 * 8.4735
2 —11,923.4 9.3592 4 0.053 16.1944 8.4604 8.4680 8.4815
3 —11,912.2 22.391 * 4 0.000 16.112 * 8.45532 * 8.4660 8.4848
4 —11,909.4 5.7009 4 0.223 16.1251 8.4561 8.4698 8.4941

Note: * represents the optimal lag order conducted by the corresponding test method.
Table 4. Lag order test for WTI and CF.

Lag LL LR df p FPE AIC HQIC SBIC
0 —10,721.2 6.8667 7.6024 7.6040 7.6067
1 —10,689.3 63.88 4 0.000 6.7320 7.5826 7.5872 7.59528 *
2 —10,683.9 10.836 4 0.028 6.7253 7.5816 7.5892 7.6027
3 —10,667.5 32.845 * 4 0.000 6.6663 * 7.57282 * 7.58346 * 7.6023
4 —10,664.1 6.6854 4 0.153 6.6694 7.5733 7.5870 7.6112

Note: * represents the optimal lag order conducted by the corresponding test method.
Table 5. Lag order test for WTI and SMF.

Lag LL LR df p FPE AIC HQIC SBIC
0 —12,711.7 28.1580 9.0136 9.0151 9.0178
1 —12,538.7 345.96 4 0.000 24.9789 8.8938 8.8984 8.9064
2 —12,483.9 109.64 4 0.000 24.0949 8.8578 8.8654 8.8788 *
3 —12,473.1 21.545 * 4 0.000 23.9795 8.8530 8.8636 * 8.8825
4 —12,468.4 9.3239 4 0.053 23.9682 * 8.85248 * 8.8662 8.8904

Note: * represents the optimal lag order conducted by the corresponding test method.
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Figure 1. Stability test for VAR models.

5.1.2. Granger Causality Test

The Granger causality test on the return series is implemented in advance to clarify
the transmission direction between the returns of international crude oil and China’s
agricultural futures. Table 6 shows that WT1I is the Granger cause of AFI, WHF, CF, and
SMEF. In the meantime, SMF is also the Granger cause of WTI, while the other three futures
are not. The existence of the bidirectional Granger causality between WTI and SMF means
these two futures are mutually influenced by each other. In contrast, price changes in AFI,
WHF, and CF are not supposed to affect WT1.

Table 6. Results of Granger causality test.

Hp WTI does not Granger-cause AF] AFI does not Granger-cause WTI
Lag Chi-Sq.Statistic Prob Chi-Sq.Statistic Prob

1 50.559 0.000 1.413 0.235
Hp WTI does not Granger-cause WHF WHF does not Granger-cause WTI
Lag Chi-Sq.Statistic Prob Chi-Sq.Statistic Prob

3 14.397 0.002 1.264 0.738
Hyp WTI does not Granger-cause CF CF does not Granger-cause WTI
Lag Chi-Sq.Statistic Prob Chi-Sq.Statistic Prob

3 42.207 0.000 0.902 0.825
Hyp WTI does not Granger-cause SMF SMF does not Granger-cause WTI
Lag Chi-Sq.Statistic Prob Chi-Sq.Statistic Prob

4 9.782 0.044 10.767 0.029
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5.1.3. Time-Varying Granger Causality Test

The Granger causality test relies directly on time periods so that different time series
samples may lead to different results. Therefore, this paper further implements the time-
varying Granger causality test to verify whether crude oil and agricultural futures returns
have time-varying Granger causality.

The window scale is set to 250, and the lag orders with regard to the respective
sequences are set to be equal to those obtained in the conventional Granger causality
test. By assuming the error terms to be identically distributed, this paper performs three
types of window forms, including forward, rolling, and recursive ones, to test the Granger
causality in agricultural and crude oil markets. In terms of specification, the forward
expanding (FE) window test first calculates the Wald statistics with the minimum window
size, then expands the window length by one observation in succession until the entire
sample is used to compute the statistics. The rolling (RO) window test also moves forward
by one observation at a time, whereas each window is rolled with a fixed sample size
and acquires one Wald statistic. As an extension to the aforementioned approaches, the
recursive evolving (RE) window test relies on repeated estimation on a forward-expanding
sample sequence and is only restricted by the minimum window size.

Table 7 gives the Wald test results for time-varying Granger causality. The null hypoth-
esis is rejected at the 10% significance level for WTI — SMF and at the 5% significance
level for the others, demonstrating that correlations between crude oil and agricultural
commodities exist over time. Moreover, test results against WT'I — AFI are particularly
depicted in Figure 2 for a more detailed analysis with respect to the changes of the Granger
causality between crude oil and agricultural futures. Figure 2a—c exhibit the forward,
rolling, and recursion procedures under the condition that error terms are homoskedastic,
while the corresponding Figure 2d-f take the heteroskedasticity into account. As shown in
Figure 2, the unidirectional Granger causality test for WTI — AFI is time-varying.

2005 2010 2015 2020 2005 2010

40

2008 2010 2015 2020 2005 2010 2015 2020

Figure 2. Results of time-varying Granger causality test (WTI — AFI). Note: The 90% and 95%
confidence intervals are displayed with dotted and solid lines, respectively.
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Table 7. Wald test results for time-varying Granger causality.

Direction of Causality Max Wald FE Max Wald RO Max Wald RE

60.996 25.44 68.812

WTI S AFI (1) (6.560) (6.850) (7.327)
[9.163] [8.890] [9.256]

46.716 19.305 52.418

WTI S AFI (11) (6.543) (6.923) (7.206)
[8.109] [8.805] [9.016]

23.873 25.543 45.032

WTI S’ WHE (1) (12.389) (11.749) (12.393)
[14.503] [15.799] [15.799]

15.355 12.844 21.799

wTI S’ WHE (I1) (12.852) (12.726) (12.948)
[15.784] [15.288] [15.784]

44.097 49.011 60.895

WTI < CF (1) (5.824) (6.443) (7.022)
[7.930] [8.815] [8.835]

21.607 37.744 38.143

WTI <5 CF (11) (5.747) (6.824) (7.043)
[8.016] [8.333] [8.802]

11.607 13.402 22.749

WTI 95" SMF (1) (8.351) (8.301) (8.351)
[11.642] [11.653] [11.653]

10.711 23.804 24.024

WTI <5 SMF (11) (6.698) (7.217) (7.647)
[9.694] [9.477] [9.853]

Note: x &5’ y shows whether variable x is the Granger cause of variable y. (I) and (II) stand for homoskedasticity
and heteroskedasticity. Values below in parentheses and square brackets are the 90% and 95% percentiles of the
Wald statistics, respectively.

Specifically, Figure 2a—c plot the Wald statistics sequences based on three different
windows, from which the time-varying property can be obviously captured. In the rolling al-
gorithm, WTT is the Granger cause of AFI during three separate time periods of 2008-2009,
2012-2013, and 2015-2018, while in the forward and recursive algorithms, the time periods
are 2008-2022 and 2007-2022, respectively.

Counting the major world events along the respective timeline, we found that Hurri-
cane Katrina hit the Gulf of Mexico and caused tremendous damage in August 2005. The
subprime mortgage crisis broke out in 2008 and led to stock markets plunging around
the world in the following years. The European debt crisis continued during the years
2008-2011. Additionally, recent years have witnessed the widespread economic shocks
brought by the COVID-19 pandemic since the first case was reported at the end of the
year 2019. From the time nodes, we can conclude that the prices of the agricultural futures
index fluctuate only when the prices of crude oil are affected by sudden financial events or
natural disasters. That is, crude oil is the Granger cause of the agricultural futures index.
This dynamic analysis suggests that the relationship between WTI and AFI is sensitive
to the sample period. Only under certain conditions, the WTT crude oil could be the
Granger-cause of the agricultural futures index. In addition, Figure 2d—f present the Wald
test results considering heteroskedasticity as a robust test for the homoskedasticity cases,
in which virtually all time periods that show significant results for the Granger causality
test are consistent with Figure 2a—c.
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5.2. Empirical Analysis of Volatility Spillover

This paper applies the volatility spillover index model to estimate the information
transfer effect along with the dynamic process across different futures markets between
crude oil and agricultural commodities.

5.2.1. Total Spillover Index

The spillover effect explains the variance component of different futures in the market.
Information given by a spillover index matrix reveals the varying contribution rates of the
forecast-error variance decomposition with respect to all variables, in which the diagonal
and non-diagonal elements reflect the spillover effects caused by internal changes and
cross-market changes, respectively.

Table 8 illustrates the total static volatility spillovers based on vector autoregressions
of order two (determined by the AIC and FPE criteria) and generalized variance decom-
positions of 10-day-ahead forecast errors, where “From” and “To” compute the degrees
of spillovers received from and transmitted to other markets. “NS” represents the net
spillovers that measure the difference between “To” and “From”, and a negative value
indicates a net spillover receiver, while a positive value means a net spillover transmitter.
The total spillover displayed in the lower-right corner of the table is estimated to be 7.57,
showing that, on average, 7.57% of the forecast-error variance is attributed to other markets.

Table 8. Static volatility spillover between crude oil and agricultural futures.

WTI-o AFI-o WHF-o CF-0 SMF-o From
WTI-o 97.00 1.81 0.09 1.03 0.07 3.00
AFIl-o 0.66 86.25 0.49 6.39 6.21 13.75
WHF-o 0.60 0.19 96.15 0.37 2.69 3.85
CF-o 1.46 5.63 0.23 91.69 0.99 8.31
SMF-o 0.08 5.35 2.11 1.41 91.05 8.95
To 2.80 12.99 291 9.20 9.96 757
NS —0.20 —0.76 —0.95 0.89 1.02 )

According to the estimation results, several conclusions can be drawn: (1) The own-
variable spillovers are generally higher than the cross-variable spillovers with respect to
both crude oil and agricultural futures markets, especially for the case of WTI-0, where
97% of the spillover is caused by its own volatility. (2) Regarding the bidirectional volatility
spillover effects, AFI-c is the largest transmitter and receiver to the other futures with
respective contribution rates of 12.99% and 13.75% on average. In contrast, volatility
spillovers from crude oil to agricultural futures is 2.80%, and the reverse transmission
is 3.00%, demonstrating the fact that crude oil is a net volatility-spillover-receiver from
agricultural futures markets. (3) The interconnection among the agricultural sector plays an
important role in affecting volatilities. For example, the largest net transmitter of volatility
spillovers to the other agricultural futures is SMF-o, whose net contribution is 1.02%,
followed by CF-c, with a net spillover of 0.89%, while the remaining agricultural futures
are net receivers of volatility spillovers.

5.2.2. Temporal Spillover Analysis

Static spillover measures the average spillover effects of crude oil and agricultural
commodities markets during the sample period. This index, however, is not capable of
capturing the time-varying property in the spillover effect. Empirically, market uncer-
tainties usually affect the dependency structure across the markets over time. In terms
of specification, volatility spillover will change during periods when volatilities change
dramatically (e.g., financial crisis, European debt crisis, etc.); thus, it is necessary to select
time spans incorporated with such events to dynamically measure the spillover.
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Total volatility spillovers
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This paper assumes that the rolling window equals 250 and the spillover duration
equals 10. The volatility spillovers varying within the range of 5-63% are plotted in Figure 3,
during which four representative economic periods can be identified. Period 1: 2005-2006.
Hurricanes landfall in the Gulf of Mexico resulted in the shutdown of most crude oil
production as well as a rapid decline in refining capacity. Oil prices briefly spiked from
USD 36.2 to 79.15 per barrel and led to a sharp increase in volatility spillover, reaching
the highest point of 63%. Period 2: 2007-2009. Return spillovers during this time period
fluctuated between 8% and 20%. The global financial crisis triggered by the bankruptcy
of the Lehman Brothers caused the volatility spillovers to skyrocket and then plummet
drastically. In the meantime, crude oil also experienced price booms (USD 52.67 to 146.12)
and subsequent busts (USD 146.12 to 40.06). Period 3: 2011-2018. Volatility spillovers
swung between 10% and 30%. The European debt crisis spread to the entire eurozone
in 2011 and provoked a rise in volatility spillovers. Thereafter, oil prices collapsed as
the Organization of Petroleum Exporting Countries (OPEC) provided the market with
excess supply in early 2015, while a reduction agreement was subsequently reached in
the following year. Period 4: 2019—Present. COVID-19 has brought unexpected shocks
to the global economy since the end of 2019. As the adverse impacts spread to all sectors,
oil prices dropped to a low of USD 18.69 per barrel. Volatility spillovers stayed at an
elevated level during this special stage until a new uptrend emerged in 2022. Two possible
explanations for such radical changes refer to the Russian—Ukrainian war and the carbon
neutrality target. On the one hand, risk aversion among investors has risen in line with the
continuation of the Russian-Ukrainian war. As a major energy exporter, Russia’s crude oil
export has been greatly restricted, due to which oil, as well as overall consumer prices, have
been pushed up to record. On the other hand, all industrial countries are reducing their
dependence on crude oil and promoting the development of green energy (e.g., solar energy,
nuclear energy, tidal wave energy, etc.). In the international context of carbon neutrality,
OPEC is cautious about building new production lines, and crude oil prices will be kept at
a relatively high level as long as the current production is maintained. To conclude, the
periodicity of total volatility spillovers is closely linked to the occurrence of global financial
and economic events, indicating that the turmoil of the latter will exacerbate the spillover
effects between crude oil and agricultural futures markets.

Hurricanes

vi

W

— Total volatility spillovers

T
140

—  WTlprice

120

0\ European debt crisis CGOVID-19 r

T
100

80
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680

40
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Figure 3. Total volatility spillovers and crude oil prices. Note: The shaded gray areas describe four
specific intervals when major financial events happened during the sample period.
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5.2.3. Net Spillovers

Although the dynamic spillover provides information on the overall connectivity
structure, it is not available to identify whether a variable is a net transmitter or a net
receiver. Practically, this paper estimates the net spillovers to reveal the direction of
volatility spillovers between crude oil and agricultural futures.

The rolling net volatility spillover effects over time are shown in Figure 4, from which
the asymmetric and bidirectional properties can be detected by different responses to
shocks. The net spillovers of WTI-o fluctuated mildly between —2.5 and 2.5 in the early
stage. The positive net spillovers appeared in 2013 when the European debt crisis happened
and in 2017-2018 when developing economies rebounded steadily, which are two periods
that observed a growth in the demand for crude oil. These results imply that the crude oil
futures is a volatility transmitter, and a sudden economic event may lead to an increase in
volatility spillover effects. The negative net spillovers are around 2015 and after 2020. In
the year 2015, the price of WT crude oil futures plummeted by 8% with the announcement
of a cut-down on production made by OPEC. Late in 2021, major industrial economies,
including China, the United States, Europe, Japan, and South Korea, basically reached a
consensus on climate target plans to peak carbon emissions by 2030 and achieve carbon
neutrality by 2060. The negative net spillovers suggest that WTI-c has turned into a net
receiver, and a sudden drop in crude oil prices may bring about an increase in spillovers
from agricultural futures markets to the crude oil futures market. Additionally, among the
agricultural futures market, the agricultural futures index, cotton, and soybean meal are
the main volatility transmitters, while wheat and crude oil are the main volatility receivers.
One hypothesis is that agricultural commodities such as soybean meal—the raw materials
for biofuels and bioproducts—can be considered substitutes for crude oil to a certain extent.
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SMF- 0O

h,,uhm * L ,k,m- bl

- WTI-0

MJ‘A "

Figure 4. Net volatility spillovers.
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6. Conclusions

This paper examines the time-varying Granger causality and the spillover effects
between WTI crude oil futures and four sequences related to China’s agricultural futures,
including the agricultural futures index, wheat hard futures, cotton futures, and soybean
meal futures. Empirical evidence shows that crude oil futures are the time-varying Granger-
cause of China’s agricultural futures during turbulent times such as financial crises, wars,
and natural disasters. Moreover, the dynamics of volatility spillovers reveal the direction
and degree of transmission during financial crises and economic turbulence over time.

Our empirical results are as follows. First, the linear Granger causality test results
indicate that the Granger causality between international crude oil and soybean meal
futures is bidirectional, whilst the others are unidirectional. In comparison, the time-varying
Granger causality test shows significant results only when encountering special situations,
such as major economic events and extreme natural disasters, and is also supported by
a robust test under heteroskedasticity conditions. Second, the existence of bidirectional
volatility spillovers in crude oil and agricultural futures is verified by the results of the DY
spillover index. Such spillovers were exacerbated when the market or the international
economic environment was undergoing a dramatic change.

The results of this research are expected to provide useful suggestions for many
economic agents, such as international investors, speculators, and policymakers. With a
comprehensive understanding of dynamic spillovers, investors can establish more effective
risk-hedging models for the commodity futures markets, while policymakers can formulate
appropriate policies to deal with financial risks and improve early warning capabilities. As
mentioned above, the time-varying Granger causality test and dynamic spillover effects are
highly dependent on the selected sample interval. An examination of the connectedness
network and risk spillovers between crude oil and Chinese agricultural futures under short
and long terms awaits future research.
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