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Abstract: Musculoskeletal disorders are an unavoidable occupational health problem. In particular,
workers who perform repetitive tasks onsite in the manufacturing industry suffer from muscu-
loskeletal problems. In this paper, we propose a system that evaluates the posture of workers in the
manufacturing industry with single-view 3D human pose-estimation that can estimate the posture
in 3D using an RGB camera that can easily acquire the posture of a worker in a complex workplace.
The proposed system builds a Duckyang-Auto Worker Health Safety Environment (DyWHSE), a
manufacturing-industry-specific dataset, to estimate the wrist pose evaluated by the Rapid Limb
Upper Assessment (RULA). Additionally, we evaluate the quality of the built DyWHSE dataset using
the Human3.6M dataset, and the applicability of the proposed system is verified by comparing it with
the evaluation results of the experts. The proposed system provides quantitative assessment guidance
for working posture risk assessment, assisting the continuous posture assessment of workers.

Keywords: WMSDs; RULA; dataset; deep learning; pose estimation

1. Introduction

Work-related musculoskeletal disorders (WMSDs) are an unavoidable occupational
health problem for workers and significantly affect their quality of life. Damage caused by
exposure to problematic work environments can negatively affect the employment potential
of workers [1], and this is emerging as a significant social problem in that it can lead to
high costs for businesses and society as a whole [2]. The Eurostat Labour Force Survey ad
hoc module “Accidents at work and other work-related health problems”, reported that
60% of the population had musculoskeletal disorders [3]. The World Health Organization
estimated that approximately 1.71 billion people worldwide suffer from musculoskeletal
disorders and predicts that the incidence of these disorders will continue to increase [1].

To solve this problem, the industry sector has endeavored to prevent musculoskeletal
disorders by developing and adopting various assessment methods with the goal of im-
proving work conditions, such as the workloads, postures, work time, and task-performing
methods, by analyzing risk factors of the workplace. Ergonomic assessment tools developed
to analyze the risk factors of musculoskeletal disorders include the Ovako Working-posture
Analysis System (OWAS) [4], rapid upper-limb assessment (RULA) [5], and rapid entire
body assessment (REBA) [6], which are typically applied in industries where whole-body
postural loads are assessed [7]. The OWAS was developed in 1977 to assess the improper
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working postures of workers in the steel industry, where heavy materials are often han-
dled. This assessment tool examines the work-performing postures of the waist, arms,
and legs and the load and force of the work materials handled, but it is fundamentally
limited for the analyses of the posture of the whole body, effectively because it simplifies
one’s posture significantly. The RULA method was developed in 1993 to analyze work
in the manufacturing industry and focuses on the analysis of upper limbs, such as the
shoulders, elbows, wrists, and neck. Additionally, REBA was developed in 2000 to perform
an analysis of the service sector, where workers assume various unpredictable postures,
such as the upper-limb postures of nurses in patient care. These assessment tools capture
the snapshot of work pose and code the postures defined for each body part according
to visual measurements, and they are capable of quickly and easily analyzing postures
without disturbing the worker [8,9].

As sensors and image-processing technology have advanced substantially, many stud-
ies have been conducted to improve visual measurement methods quantitatively [10–28].
In one of these methods, wireless Inertial Measurement Units (IMUs) sensors can be at-
tached to the worker’s body to obtain movement data [10–13,17–19,26]. However, wearable
devices are inconvenient because they must be worn by workers in all processes that require
assessments [14,29], and a calibration procedure for the sensors is needed to maintain the
accuracy [10,13,18,19].

Research is actively underway to overcome these drawbacks of wearable devices
by using cameras, which are noncontact sensors. Furthermore, as keypoint datasets
have been released for image-based human pose-estimation and its scope has been ex-
panded from two dimensions [30,31] to three dimensions [32–34], various methods based
on depth [14–16], multiple-view [20,21], and single-view [22–25] human pose-estimation
models have been studied.

An RGB-D camera represented as Microsoft’s Kinect can obtain depth information in
addition to the color information of the RGB camera. In previous studies, this technology
was used to capture human activity recognition and assess postures [14–16,35–39], and it is
also used to build datasets [40].

Although motion-capture systems can provide accurate data in ergonomic risk assess-
ments [41], single-view three-dimensional (3D) pose estimation is a method of estimating
3D human pose from the input of a single RGB image. Because of a difficulty to attach
motion-capture systems to manufacturing workers, single-view 3D pose estimation is
attractive for acquiring and analyzing human motions with a simple image-capturing
system. Therefore, we present a single-view 3D pose-estimation model that allows worker
images to be captured more simply in complex and various onsite environments in the
manufacturing industry.

In addition, previous studies [27–29] have a limitation that they excluded wrist analysis
in accessing a worker’s posture with RULA. On the contrary, we construct a dataset from
images obtained in onsite environments in the manufacturing industry to infer a worker’s
wrist posture in a conventional 3D pose-estimation model. It is used in experiments to
verify that the model’s estimation performance has been improved so that it can be used
for all assessment items, including wrist postures in RULA.

This paper is structured as follows. In Section 2, we summarize the requirements of
the OWAS, RULA, and REBA, which are ergonomic precision-assessment tools. We use
OpenPose [42–46] to analyze the postures of workers obtained from an automobile cockpit
module assembly site and derive problems. Section 3 introduces a method of building a
dataset from images obtained in an uncontrolled onsite environment, and Section 4 presents
a performance comparison between the model trained using the in-house-built dataset and
the assessments of ergonomics experts. Section 5 describes the pose-estimation model and
posture evaluation method. Section 6 discusses the validity and importance of the results,
and Section 7 presents the conclusions and suggests directions for future research.
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2. Requirements of Ergonomics Assessment Tools

Table 1 summarizes the classifiable posture parameters and risk levels of the OWAS,
RULA, and REBA, which are typical assessment tools for the risk-factor analysis of muscu-
loskeletal disorders of workers, where the number in the parentheses indicates the number
of postures that can be classified in each body part. We can observe that the OWAS is
more specialized for lower-limb analysis than RULA and REBA. RULA and REBA classify
upper and lower arms to assess arm postures and investigate wrist postures; thus, they
considerately evaluate the upper-limb pose.

Table 1. Classification criteria for major working-posture-assessment tools.

Tool Posture * Parameter Risk Levels

OWAS Back (4), arms (3), and legs (7) Force/load 4

RULA Trunk (6), upper arm (6), lower arm
(3), legs (2), neck (6), and wrist (4, + 2)

Force/load,
muscle use 4

REBA Trunk (5), upper arm (6), lower arm
(2), legs (4), neck (3), and wrist (3)

Force/load,
coupling,
activity

5

* The number in parentheses refers to the number of postures classified in each assessment tool.

Although RULA and REBA are specialized for upper-limb analysis and wrist postures
are included as illustrated in Figure 1, previous studies [27–29] based on RGB images ex-
cluded wrist postures in their methods despite evaluating the worker’s posture with RULA.
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Figure 1. Located wrist positions assessment items options in RULA and REBA: (a) locate wrist
position; (b) lateral deviation; and (c) twisted.

To address the worker’s postures, including their hand posture, and examine whether
environmental effects occurred in the representative images of the targeted assembly pro-
cess sites in the manufacturing industry, we used a representative human pose-estimation
model. OpenPose can perceive the pose of the face, hand, and other body parts of multiple
persons via a bottom-up approach [42–46]. The OpenPose 1.7.0 Whole Body Python API
was used for the experiment, with the Body_25 and hand models.

We also used the postures of the cockpit module-assembly process workers in automo-
bile manufacturing as inputs in OpenPose to estimate postures. The results indicate that
the body pose estimation of the workers can be performed properly, as shown in Figure 2.
However, problems arose when inferring the hand poses of the workers. As shown in
Figure 3, OpenPose clearly estimates from the image representing the finger joint, but the
estimation can be failed in continuous motion when holding the assembly tool in hand.
We identified that this happens when workers wear gloves, and it causes a problem with
hand-posture estimation. To verify this, we conducted an experiment in which images of
bare hands and of gloves were captured, as shown in Figure 4. In the results, the same
estimation problem occurred. The hand-posture estimation result was perfect, even when
various postures were taken with bare hands, but the hand-posture estimation failed for
full-fist hands wearing gloves. In particular, the hand-posture estimation was unstable in
the state where the knuckles were bent.
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We also examined the images of workers captured at the automobile cockpit mod-
ule manufacturing process site and found that all workers were wearing gloves and in
some cases aprons or sleeve protectors, depending on the process. In a manufacturing
environment where wearing personal protective gear is unavoidable for the safety of work-
ers depending on the characteristics of the workplace, it is essential to estimate the hand
posture of workers wearing gloves when assessing the workers’ pose using RULA or REBA.

3. Building Extra Dataset

The open datasets used in pose-estimation models are produced by capturing images
of professional actors acting in a studio or capturing images of postures taken in daily
living. Thus, most key-point datasets do not contain the environmental information of
our target manufacturing site and do not specialize in data for workers wearing various
types of personal protective gear. Hence, in this study, we constructed a dataset with
images of the automobile cockpit module manufacturing site to assess the poses of workers
using all the pose assessment items required in the ergonomic musculoskeletal risk factor
assessment tools.

The constructed dataset was based on the key-point structure of COCO [30]—a dataset
typically used for training two-dimensional (2D) human pose-estimation models. We used
the same index structure employed by the COCO dataset and added the required fingertip
and tiptoe information. The dataset structure is shown in Figure 5.
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Figure 5. Definitions of joints.

First, we captured videos of workers performing unit tasks in the automobile cockpit
module production plant. A total of 154 tasks were captured on video for more than nine
hours, and all videos were recorded at 30 frames per second. Sixty of those tasks have a
resolution of 720 × 480 and are compressed with MPEG-2, while the remaining 94 tasks are
1440 × 1080 and H.264 compressed. Then, to build the dataset from the videos, we used a
web browser-based training data builder developed in-house.

As shown in Figure 6, when the videos captured onsite are uploaded for each unit
process; the system samples and saves images at one-second intervals. After that, an
extracted image can be selected to annotate the bounding-box area and taggable joints for
workers through the user interface, as illustrated in Figure 7. According to the annotator’s
subjective judgment, joints that were invisible but could be clearly identified were recorded
with the invisible attribute, and their information was added so that they could be used
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in training. To ensure that the data were not biased owing to the annotator’s personal
judgment, an ID was assigned to each annotator, and the DB was designed to allow multiple
annotators to tag joint information in the same image.
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Using this system, a number of annotators created 33,302 cases, and a DyWHSE dataset
was finally built after validating the data using the DyWHSE dataset builder, as shown in
Figure 8. The DyWHSE dataset builder overlays the joint information recorded by multiple
annotators on the image so that the status of the data can be checked visually. As a tool
with the function of confirming joint information created by annotators as a part of the
dataset according to the inspector’s judgment, it provides coordinates highlighted in cyan
for each joint as the recommended value based on the joint information recorded by the
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annotators. We developed the dataset builder with a simple interface consisting of two
buttons—“Drop” and “Confirm”—so that the inspector could use this information to make
a confirmation decision quickly.
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If it is determined that the modification of the recorded information is unnecessary,
the recommended value is recorded as-is in the dataset with the “Confirm” button. This
is a method of obtaining a large amount of data in a limited time. If it is necessary to
modify the coordinates of the recommended value, this can be done by dragging the joint
with the mouse and then recording. Furthermore, a specific annotator selection function is
provided so that only the data of highly reliable annotators can be used, at the discretion of
the inspector.

The recommended value refers to a function of the system that refines the joint lo-
cation information recorded by multiple annotators and presents it on the image to help
the inspector make a judgement. The coordinate information of the joint selected with the
median value and the bounding box of the minimum region is obtained from the infor-
mation recorded by multiple annotators. The mean value is provided as a recommended
value to meaningfully use all the joint information recorded by the annotators; however, as
shown in Figure 9, the recommended values are affected by the data of the annotator who
mis-entered, among a number of annotators, the median value provided to the inspector.

Another function of the dataset builder is to link the recommended value with the
pose-estimation model, as presented in Figure 10, and provide the inspector with the
information obtained from the model. This is a method of generating more data, but in the
present study, we built the dataset using only the data recorded and inspected by humans,
to increase the data accuracy.
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4. Pose Model and Posture Assessment

Our objective is to develop an ergonomic WMSDs risk-assessment system that can be
used continuously in manufacturing sites. To acquire images of assessment target work
from the site quickly and easily, we used a single-view 3D human pose-estimation model
for pose estimation and evaluated its performance by building an environment in which
the DyWHSE dataset and existing datasets could be used together for training, as follows.

4.1. Modified Pose Model and Datasets

We used 3D-multi person pose estimation (3DMPPE) as a base model—a ResNet-
152 [47]-based model proposed by Moon [23]—to validate the constructed DyWHSE dataset.
This model comprises three modules: DetectNet [23], which estimates the bounding box of
a person in an image; RootNet [23], which estimates the root coordinates centered on the
camera; and PoseNet [23], which estimates relative poses according to the root. 3DMPPE
used DetectNet, which was based on Mask-RCNN, and DetectNet required 120 ms to
process a single frame in a single TitanX GPU. In the proposed system, YOLOv3 [48] was
selected to detect workers as fast as possible. Among various versions of YOLO, YOLOv3-
608 was chosen in the proposed system, requiring 51 ms to process a single frame in a
single TitanX GPU. Furthermore, because we aim to assess the posture of a single worker,
we changed the 3DMPPE’s multi-person pose estimation function to single person pose
estimation (SPPE).

This model was trained by combining Human3.6M [32] and COCO, which are 3D and
2D datasets, respectively, to infer 17 joints in three dimensions. Human3.6M is a dataset
built with 3D annotations that is widely used in human pose-estimation research. The
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actions of 11 professional actors were acquired indoors with a marker-based motion-capture
system according to 15 scenarios, resulting in approximately 3.6 million images. We used
two protocols of this dataset for the quantitative assessment of the model. In Protocol 1,
subjects S1, S5, S6, S7, S8, and S9 were used for model training, and S11 was used for testing.
In Protocol 2, S1, S5, S6, S7, and S8 were used for model training, and S9 and S11 were used
for testing. In addition, we used the in-house-built 2D dataset DyWHSE as an extra dataset
along with the K-pop dance video dataset [34], which is a 3D key-point dataset provided
by AIHub [49].

4.2. Extra Datasets

The DyWHSE dataset specializes in environmental factors of the manufacturing
process and was built with the goal of improving the hand-posture estimation of workers
wearing protective gear such as gloves. However, because it was built on a 2D coordinate
system and does not have the depth information of the newly added hand joints, the joint
estimation results of 3DMPPE trained with this dataset cannot be used to assess the risk
factors of musculoskeletal disorders. Therefore, to supplement this, we additionally used
the K-pop dance video dataset for training. The K-pop dance video dataset is a 3D dataset
that was constructed by motion capturing K-pop cover dances of professional dancers in
studios. In addition, the DyWHSE dataset provides wrist, thumb, and hand keypoints
for hand-posture estimation. For instance, the wrist angle can be calculated by using a
plane consisting of wrist, thumb, and hand keypoints. However, the K-pop dance video
dataset has keypoints, including wrist, thumb, and ring fingers. Thus, the mid-finger point
is generated and used to match the hand keypoint in out experiment.

Figure 11 shows the defined joint and reproduced joints of the K-pop dance video
dataset, and the 3D coordinate information of each hand and foot is provided as thumb–
ring finger and big toe–little toe. To match DyWHSE and K-pop dance video datasets, we
generated the joints of hand and foot by calculating the thumb–ring finger midpoint and
the big toe–little toe midpoint; finally, we matched 25 joints used in training the model in
the WMSDs risk-assessment system. The 3D datasets used to train DyWHSE-3DSPPE were
Human3.6M, MuCo-3DHP [33], and K-pop dance video, and the 2D datasets were COCO,
MPII [31], and the DyWHSE.
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4.3. Posture Assessment

In order to assess the posture of workers easily in various computing environments,
we designed the WMSDs risk-assessment system with the structure shown in Figure 12.
The user uploads the video of the worker via a web browser to the WMSDs web service,



Int. J. Environ. Res. Public Health 2022, 19, 9803 10 of 19

and when the analysis is requested, the system provides the result of the analysis. The
following describes the internal operation of the system.
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The image loader reads the downloaded image, and the image is entered into the
pose-estimation model after image preprocessing. The pose estimation module finds a
person from the input image and estimates the joint within that area. According to the
results, the whole-body measurement module calculates the angle and distance for the
joints required in posture assessment. The whole-body measurement module calculates the
angle and distance for all the joints required by the assessment module and preprocesses
them to minimize redundant calculations in each posture-assessment tool. The joint angle
is calculated by Equations (1)–(4) as three points in the 3D coordinate system, as shown in
Figure 13, and the calculated distance information is used for the joint processing of the
lower extremity state and the occluded image.
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According to the situation on-site, occlusion can occur in a part of the body if taking a
video of the whole body has been difficult. When posture is analyzed using the captured
image, an incorrect joint coordinate is provided. This part is determined in an incorrect
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posture by using the length and angle value of the leg joint, providing the result value that
only analyzes the upper body after assuming the posture legs and feet are supported.

→
BA = B− A (1)

→
BC = B− C (2)

→
BC ·

→
BA = ‖

→
BC‖‖

→
BA‖ cos θ (3)

θ = cos−1

 →
BC ·

→
BA

‖
→
BC‖‖

→
BA‖

 (4)

The calculated angle and distance information are used as inputs in the WMSDs’
risk-assessment tools, and only the information of the joints that each assessment tool
references is reconstructed and matched, according to the assessment tool’s rules. Finally,
the assessment tool calculates the score for each part of the worker’s posture and determines
the action level.

We developed the DyWHSE assessment tool, which uses the web-based graphical
user interface (GUI) to display the assessed worker’s pose information and the estimated
joint information based on the WMSDs’ risk-assessment system. In this program, the
user can modify the items in the table interface to recalculate the score for the errors in
the pose-assessment model, and the program has the function of outputting the pose-
assessment report. Furthermore, it provides an interface for a quick review of high-risk
postures by providing a sorting function based on the scores of the analysis images, as
shown in Figure 14.
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5. Results

We used work-performing images of workers in the manufacturing industry to record
the posture of one representative worker per image in the dataset. Through the validation,
we constructed a 2D DyWHSE dataset for 15,849 images and expanded it to a DyWHSE-



Int. J. Environ. Res. Public Health 2022, 19, 9803 12 of 19

3DSPPE model to facilitate the inference of wrist poses in the 3DMPPE model by matching
the joints in the hand area with the 3D K-pop dance video dataset.

To evaluate the performance of the model quantitatively and verify the quality of the
dataset built in-house, we compared the performance of different models using the test
protocols of Human3.6M, as shown in Table 2. As metrics for evaluating the similarity of
postures, we used the mean per joint position error (MPJPE) [32] and procrustes analysis
(PA) [50] MPJPE, which are widely used in 3D pose estimation. The unit for the MPJPE and
PA-MPJPE was mm.

Table 2. Quantitative comparisons with the base model on the Human3.6M under Protocol 1 (PA-
MPJPE). Best results are in bold.

Methods Dire. Disc. Eat Greet Pho. Pose Purc. Sit SitD. Smo. Phot. Wait Walk W.D. W.T. Avg.

With ground truth information in inference time

Sun [25] 1 36.9 36.2 40.6 40.4 41.9 34.9 35.7 50.1 59.4 40.4 44.9 39.0 30.8 39.8 36.7 40.6
Moon [23] 1 31.0 30.6 39.9 35.5 34.8 30.2 32.1 35.0 43.8 35.7 37.6 30.1 24.6 35.7 29.3 34.0

Ours 2 29.8 30.4 38.9 35.7 34.0 29.4 30.4 33.0 41.1 35.0 37.3 29.8 24.1 35.4 27.8 33.1
Ours 3 30.0 30.3 38.6 35.2 33.5 31.7 30.8 33.7 41.4 34.1 37.8 30.0 24.5 36.2 28.1 33.3
Ours 4 29.7 30.3 36.1 32.6 32.7 27.9 29.8 31.2 39.6 34.0 36.0 28.3 23.4 33.2 27.2 31.8

Without ground truth information in inference time

Moon [23] 1 32.5 31.5 41.5 36.7 36.3 31.9 33.2 36.5 44.4 36.7 38.7 31.2 25.6 37.1 30.5 35.2
Ours 2 29.6 30.0 39.1 35.0 35.2 29.9 31.0 36.4 41.8 37.3 37.7 29.4 24.1 35.5 28.4 33.8
Ours 3 29.3 30.0 39.0 35.6 34.6 30.7 30.7 36.7 42.5 36.1 38.3 29.0 24.4 35.7 28.6 33.7
Ours 4 29.5 30.6 36.8 32.7 33.6 28.2 29.7 35.3 40.7 35.2 35.9 28.4 23.9 33.3 27.6 32.5

1 Used Human3.6M and MPII synthetic data for training. 2 Used DyWHSE, Human3.6M, and MPII synthetic
data for training. 3 Used DyWHSE, Human3.6M, and COCO synthetic data for training. 4 Used DyWHSE,
Human3.6M, MuCo-3DHP, MPII, COCO, and K-pop dance video synthetic data for training.

The MPJPE was calculated using Equation (5), i.e., the Euclidean distance between the
ground truth and the inferred joint was evaluated as the mean error.

MPJPE =
1
J

J

∑
j=1
‖Estj − GTj‖2 (5)

Here, j represents the sample index, J represents the number of joints (J = 17), Estj
represents the estimated joint, and GTj represents the ground truth. Because the structures
of the reference dataset and the DyWHSE dataset were not identical, only the 17 matching
joints between the two datasets are compared.

As indicated by Equation (6), PA-MPJPE is calculated using the ground truth after
aligning the estimated joints using PA before the MPJPE calculation.

PA−MPJPE =
1
J

J

∑
j=1
‖alignedEstj − GTj‖2 (6)

Here, alignedEstj refers to the alignment of the estimated joints and shows the posture
difference more purely than MPJPE by removing misalignments.

We employed the widely used Human3.6M dataset’s evaluation protocols to evaluate
the model trained with DyWHSE. Under Protocol 1, six subjects—S1, S5, S6, S7, S8, and S9—
were used for model training, and S11 was used for testing, as an PA-MPJPE assessment
metric. Under Protocol 2, five subjects—S1, S5, S6, S7, and S8—were used for training, and
two subjects—S9 and S11—were used for testing. They were used as MPJPE assessment
metrics, and in accordance with previous works [23–25], every 5th frame and 64th frame in
each video were used for training and testing, respectively. Furthermore, in accordance
with [23–25], Human3.6M and MPII—a 2D dataset—were mixed (50:50), and the resulting
dataset was used for training.

Using the foregoing evaluation method, we evaluated the DyWHSE-3DSPPE model
and obtained the results shown in Tables 2 and 3. When the model was trained by adding
the DyWHSE dataset to the training dataset of 3DMPPE, the PA-MPJPE was 33.8 mm, and
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the MPJPE was 53.3 mm. In contrast, when the model was trained with all the datasets
(COCO, Human3.6M, MPII, MuCo-3DHP, K-pop dance video, and DyWHSE), the PA-
MPJPE was 32.5 mm, and the MPJPE was 46.3 mm.

Table 3. Quantitative comparisons with the base model on the Human3.6M under Protocol 2 (MPJPE).
Best results are in bold.

Methods Dire. Disc. Eat Greet Pho. Pose Purc. Sit SitD. Smo. Phot. Wait Walk W.D. W.T. Avg.

With ground truth information in inference time

Sun [25] 1 47.5 47.7 49.5 50.2 51.4 43.8 46.4 58.9 65.7 49.4 55.8 47.8 38.9 49.0 43.8 49.6
Moon [23] 1 50.5 55.7 50.1 51.7 53.9 46.8 50.0 61.9 68.0 52.5 55.9 49.9 41.8 56.1 46.9 53.3

Ours 2 47.0 50.7 47.0 49.9 49.3 44.8 47.3 58.1 60.9 49.0 53.8 47.0 38.7 50.8 43.6 49.5
Ours 3 45.4 52.8 49.5 49.3 51.7 45.1 50.1 64.9 68.8 51.7 54.4 48.8 40.4 55.5 45.8 52.0
Ours 4 41.1 45.9 44.9 44.1 47.5 39.2 42.8 55.4 59.1 46.0 50.4 41.9 37.3 48.2 41.8 46.1

Without ground truth information in inference time

Rogez [51] 5 55.9 60.0 64.5 56.3 67.4 71.8 55.1 55.3 84.8 90.7 67.9 57.5 47.8 63.3 54.6 63.5
Moon [23] 1 51.5 56.8 51.2 52.2 55.2 47.7 50.9 63.3 69.9 54.2 57.4 50.4 42.5 57.5 47.7 54.4

Ours 2 48.7 55.8 49.3 50.9 56.1 47.1 48.5 63.2 68.6 52.6 57.4 50.0 39.7 55.2 45.2 53.3
Ours 3 49.6 55.0 49.9 51.2 54.3 47.5 50.1 63.5 63.5 53.2 58 49.1 40.9 54.7 45.3 53.0
Ours 4 42.4 47.7 43.8 44.1 48.9 40.9 43.7 54.7 56.3 47.3 49.1 42.6 36.3 47.1 41.2 46.3

1 Used Human3.6M and MPII synthetic data for training. 2 Used DyWHSE, Human3.6M, and MPII synthetic
data for training. 3 Used DyWHSE, Human3.6M, and COCO synthetic data for training. 4 Used DyWHSE,
Human3.6M, MuCo-3DHP, MPII, COCO, and K-pop dance video synthetic data for training. 5 Used Human3.6M,
MPII, COCO, and CMU Mocap synthetic data for training.

We used the 3DMPPE and DyWHSE-3DSPPE models and obtained the pose estima-
tion of the worker, as shown in Figure 15. The 3DMPPE model provided only the joint
information for the back of the hand, whereas the DyWHSE-3DSPPE model provided infor-
mation for the thumb and back of the hand to judge wrist twists. The worker images used
for the comparison were sampled at five frames per seconds (FPS) from work-performing
images of a tile manufacturing company, which were not used when building the DyWHSE
dataset.
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Figure 15. 3DMPPE (MuCo-3DHP, COCO) and DyWHSE-3DSPPE (MuCo-3DHP, COCO) (Dy-
WHSE, Human3.6M, MuCo-3DHP, MPII, COCO, and K-pop dance video) pose-estimation results for
each model.

To evaluate the similarity between the proposed system and the expert assessment,
the worker’s posture was inferred using DyWHSE-3DSPPE, and the posture score was
extracted using the RULA assessment tool. The image used for assessment was obtained by
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acquiring work images of workers taking various working postures at three manufacturing
plants and extracted at one FPS, and the sample images are shown in Figure 16.
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The images used in the assessment were obtained from three manufacturing plants,
and 200 images were provided to three ergonomics experts, who assessed the postures
of the workers. Here, we used the common assessment results of 30 images as ground
truths (GTs) and compared them with the system’s assessment results. For comparing the
two systems, we performed a quantitative evaluation using Cohen’s kappa [52] coefficient
to check whether the system’s pose-assessment result matched the GT. This coefficient
represents the level of agreement between two evaluators and is defined as follows:

κ = (po − pe)/(1− pe), (7)

where po represents the degree of agreement between the observers, and pe represents the
probability of the results of two evaluators matching by coincidence.

We obtained results for the upper arm, lower arm, wrist, neck, trunk, and leg, as
shown in Table 4. Cohen’s kappa coefficient ranges from –1 to 1, and –1 corresponds to a
complete discrepancy and 1 corresponds to a complete agreement. The degree of agreement
based on the kappa coefficient is presented in Table 5.

Table 4. Comparison between the results of the system and expert assessments.

Upper Arm Lower Arm Wrist Neck Trunk Leg

K 0.698 0.636 0.456 0.587 0.704 0.516
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Table 5. Strength of agreement using the kappa coefficient.

Kappa Range Strength of Agreement

κ ≤ 0 Poor
0.01 ≤ κ ≤ 0.2 Slight
0.21 ≤ κ ≤ 0.4 Fair
0.41 ≤ κ ≤ 0.6 Moderate
0.61 ≤ κ ≤ 0.8 Substantial
0.81 ≤ κ ≤ 1 Almost perfect

6. Discussion

Workers in manufacturing factories often wear gloves. By using OpenPose Whole
Body Python API, hand-feature points cannot be detected when workers wear gloves, as
shown in Figures 3 and 4. That is why the DyWHSE data set is built in the proposed
research, which includes factory workers with gloves.

According to our experimental results, DyWHSE-3DSPPE was verified to be effective
for worker pose-estimation. When the DyWHSE dataset, which was built using images
of workers producing automobile cockpit modules, was used with Human3.6M and MPII
to train an RGB image-based 3D pose-estimation model, the results exhibited differences
of 1.4 mm for PA-MPJPE and 1.1 mm for MPJPE, compared with the base model. This
indicates that the DyWHSE dataset had equal precision to the datasets used for training.
Furthermore, the COCO, MuCo-3DHP, and K-pop dance video datasets were combined
and used to train the model, which resulted in a higher inference performance of 2.7 mm in
the PA-MPJPE assessment and 8.1 mm in the MPJPE assessment. Although the DyWHSE
dataset that we built was a 2D dataset with a size of approximately 15,000, it was used
as an additional training dataset in the existing models, and as shown in Figure 15, the
pose-estimation results of manufacturing process workers were reliable compared with
those of the existing models.

However, for the wrist posture estimated by the DyWHSE-3DSPPE model, a quantita-
tive performance evaluation could not be conducted, owing to the absence of an assessment
dataset for matching the added joints. The Cohen’s kappa coefficient between the pose-
assessment results of experts and RULA was also not of a high enough degree of agreement,
but it is interesting that the k values ranged between 0.636 to 0.704 for the upper arm,
lower arm, and trunk. The k value of 0.56 for the leg indicates that it is difficult to judge
the worker’s leg support state only with the estimated joint information due to the floor
structure of the site. In the case of the wrist, which was our target in this study, the degree
of the agreement shows moderate performance. This joint has higher freedom of movement
than other joints because the shape of the hand was affected by the use of tools.

Because of this problem, the WMSDs’ risk-assessment system cannot be fully auto-
mated. Nevertheless, it appears to be adequate for use as a support tool that can reduce the
fatigue of experts that arises when they analyze the motions of numerous workers directly
for WMSDs’ risk assessment. To this end, we provide a sorting interface to allow experts to
focus on specific sections by setting a threshold for the assessed worker posture based on
the action category. Furthermore, an intuitive interface is provided, where the assessment
table can be modified directly so that the worker’s posture can be re-assessed depending on
the judgment of an expert to cope with the inadequate performance of the pose-assessment
model. In our assessment system, parameters such as the load information and repeated
pose information, which cannot be received as inputs from the image, can be manually
entered and reflected in the score calculation. We identified the strengths and limitations of
the proposed method through a quantitative evaluation, and to overcome the limitations,
we will expand and refine the datasets and improve the model in follow-up studies.

It is important to note that our contribution is not to improve the accuracy of the
posture assessment with a posture assessment model or high-resolution sensors. Rather,
we aimed to build a feasible system that collects video images of the worker and assesses
work-related musculoskeletal disorders with a low-cost and easy-installation method in the
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manufacturing industrial environment. This is why the proposed system uses a single-view
3D pose-estimation model that can easily obtain the image despite lower accuracy than
IMU or motion-capture system. We identified that existing solutions cannot include the
wrist posture of workers and the high error of workers with gloves, although most workers
wear gloves in the workplace. Unlike existing solutions, we built the training dataset of
the wrist posture of the workers with gloves to enable the accurate pose assessment of
workers in an industrial environment, as shown in Figure 15. Therefore, we can conclude
that the contribution of this paper is to provide a feasible solution that can be applied to
the manufacturing industrial environment, and to improve the pose assessment by adding
the wrist posture with gloved workers.

It is also noticeable that the task at the workplace is recorded as a 2D image, and
the 2D images are provided to the expert for the pose assessment, as with the traditional
method. The proposed system also uses the same image but it applies a 3D joint estimation
model in order to improve the joint-angle estimation and the posture assessment as well.
We adopted Moon’s model [23] for the 3D joint estimation, and all the figures in the paper
are the results of the projection of 3D posture estimation onto the 2D images. The proposed
system can also convert the 3D posture estimation to the 2D image from the viewpoint of
the left or right side.

7. Conclusions

We propose a DyWHSE-3DSPPE-based worker posture assessment system to support
the wrist-posture assessment of the RULA assessment tool (an ergonomic work pose
assessment tool) with a single-view 3D human pose-estimation model. We identified the
problems associated with the difficulty of estimating wrist poses due to the gloves worn
by workers in the manufacturing industry through OpenPose. To solve this problem, we
developed a web browser-based data annotation system and DyWHSE dataset builder to
build a dataset from images of manufacturing sites. Using these tools, we built a DyWHSE
dataset with 2D coordinates containing 15,849 images of workers performing tasks in
the automobile cockpit-module-producing process. Then, to compare the quality of this
dataset with that of 3DMPPE (the base model), we trained the model using DyWHSE-
3DSPPE, which extended the data to include hand joints. We evaluated the performance
of the DyWHSE-3DSPPE model with the Human3.6M dataset. The results indicate an
improvement of 2.7 mm in the PA-MPJPE compared with 3DMPPE. Furthermore, the
MPJPE was 46.3 mm, corresponding to an improvement of 8.1 mm compared with that
of 3DMPPE (54.4 mm). These results prove that the constructed dataset can improve the
posture estimation performance, together with Keypoint datasets such as Human3.6M,
MuCo-3DHP, MPII, and COCO. Finally, we used Cohen’s kappa coefficient to analyze the
degree of agreement in the assessment results of 30 images of worker postures between our
system and the RULA method used by experts. Although the performance of the proposed
system is inferior to that of the expert assessment, the system can be employed to assist
expert analysis using the DyWHSE assessment tool’s action-level-based pose classification
interface and intuitive score-modification function.
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