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Abstract: The aim of this study was to assess the effect of long-term fertilization with manure and
mineral fertilizers on the content and distribution of selected polycyclic aromatic hydrocarbons
(PAHs)—the content of a sum of 16 polycyclic aromatic hydrocarbons, light and heavy PAHs in two
soil layers (0–30 cm and 30–60 cm). The material for the study was composed of soil samples collected
from the sixth rotation in a long-term, controlled field experiment, conducted in Bałcyny since 1986.
The content of 16 polycyclic aromatic hydrocarbons was determined on a gas chromatographer
coupled with an FID detector. In order to evaluate the significance of differences between the mean
effects on the tested characteristics, a non-parametric Mann–Whitney U test for two independent
samples was applied. A higher content of the sum (16) of PAHs was found in the 0–30 cm than in the
30–60 cm soil layer. The research results also demonstrated a higher content of the sum of light PAHs
in the 30–60 cm than in the 0–30 cm soil layer. The content of heavy PAHs, in turn, was significantly
higher in the upper than in the deeper soil layer. This dependence appeared in both the soil fertilized
with manure and soil nourished only with mineral fertilizers.

Keywords: PAHs; soil layers; long-term experiment; fertilization N; P; K; Mg; Ca; manure

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs), polynuclear aromatics (PNAs), or polycyclic
organic matter (POM) are widespread organic pollutants, mainly originating from the
incomplete incineration of organic matter and from some natural processes [1,2]. They
are contaminants [2] that have a toxic impact on organisms, acting as carcinogens and
mutagens, in addition to which they are very persistent in the soil environment [3–5].

The content of PAHs in soil is greater in the surface soil layers and decreases deeper
into the soil profile [6–8]. According to Farahani et al. [9], the biodegradation of PAHs
diminishes with the depth of the soil profile. Removal of PAHs from clay soils can be
more difficult than from sandy ones [10]. The aging of contaminants favors the formation
of stronger bonds with soil components and their diffusion into soil micropores. Poly-
cyclic aromatic hydrocarbons are much more readily adsorbed by organic than by mineral
substance [11,12].

Wang et al. [13] proved that PAHs with a smaller number of rings appeared in
higher quantities in the 0–10 cm soil layers, while those with a greater molecular mass
(4 to 6 rings) were more abundant in deeper layers. This can be explained by the fact that
compounds with fewer rings have higher biodegradability [14]. The results obtained by
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Liao et al. [15], in turn, confirmed that most ‘light’ PAHs tend to be accumulated in the
surface soil layers. Additionally, Cousin et al. [16] reported that PAHs accumulated in
the upper soil layer and their content decreased deeper into the soil profile. The study
completed by Czop and Wandrasz [17] showed that sorption of PAHs (fluorene, anthracene,
pyrene) could take place in soils with a high content of organic matter in the surface layers,
and that these compounds could travel within soil only due to mechanical motions or soil
cracks caused by drought. In mineral soils, however, PAHs continually move downward,
which is a consequence of the low content of mineral substance and good permeability of
the substrate.

Long-term studies on changes in the PAH content in agricultural soils as a function
of long-term fertilization in an unchanged system, both with mineral fertilizers and in
combination with manure, are very scarce in the literature. The previously published
findings by Krzebietke et al. [18] and Mackiewicz-Walec and Krzebietke [19] confirmed
that manure was also a source of PAHs, especially in an area with a relatively low PAH
contamination from air pollutants accumulating in the dust and eventually depositing
on the soil surface [20]. Most studies, mainly of a monitoring nature, concern the impact
of large urban agglomerations on the contamination of neighboring soils [21–23] or the
management of waste containing PAHs. The main source of pollutant emissions in the
vicinity of the research area is the municipal and residential sector followed by transport,
while the least contribution comes from the point emission of pollutants. The municipal and
residential sector is responsible for approximately 90% of benzo(a)pyrene (BaP) emissions.
In 2018, the average annual concentration of benzo(a)pyrene in the PM10 suspended dust
was 1.5 ng m−3 in the city of Olsztyn, approximately 45 km in a straight line from the
experiment’s location, and 2 ng m−3 in the city of Elbląg, approximately 65 km from the
experiment’s location [24].

The aim of this study was to assess the effect of long-term fertilization with manure and
mineral fertilizers on the content and distribution of the selected PAHs (the content of ∑16,
light and heavy PAHs) in two soil layers (0–30 cm and 30–60 cm). Long-term studies based
on controlled experiments allowed us to capture the current state of pollution irrespective
of changes in the climatic conditions (precipitation, temperature, wind) and plants grown
under such conditions. They also provide the background for further considerations
regarding the pollution of agricultural soils with PAHs.

2. Materials and Methods
2.1. Description of the Field Experiment

The research material consisted of soil samples collected in 2006–2009 from a long-term,
controlled field experiment carried out in Bałcyny (Poland), 53◦35′34.045′′ N; 19◦50′54.671′′ E
(Figure 1), since 1986. More detailed information about the design of the experiment and
applied fertilization can be found in Krzebietke et al. [18] and Mackiewicz-Walec and
Krzebietke [19] (Tables S1 and S2). The experiment was set up in three replications on
a Haplic Luvisol soil [25]. According to the texture classification (USDA—United States
Department of Agriculture), the soil was identified as sandy loam [19,26]. This study
included soil samples taken from the sixth crop rotation cycle (sugar beet, spring barley,
maize, spring wheat) [25] (Table S2). The content of PAHs was determined in two soil layers
(0–30 cm and 30–60 cm) in order to trace the vertical distribution of these compounds. Soil
was sampled with a soil sampler, obtaining around 1 kg of the soil material. After being air
dried, the soil was sifted through a 2 mm mesh sieve. The soil samples were stored in the
air-dry state, in tightly closed dark glass bottles, at a temperature of up to 4 ◦C.

The content of 16 polycyclic aromatic hydrocarbons was analyzed using a Trace GC
Ultra ITQ900 (Fisher Scientific THERMO, Austin, TX, USA) gas chromatographer coupled
with an FID detector. The 1 h extraction of each 20 g of soil sample with 20 cm3 of ace-
tonitrile was conducted using an ultrasonic cleaner and horizontal shaker. The analysis
was carried out on a 30 m long Rxi-5ms column. Quality control measures included the
analysis of a reference material (BNAs in Soil—R.T. Corporation, Laramie, WY, USA),
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duplicate matrix samples, and the solvent blank sample. The recovery of PAHs from the
soil ranged from 84% to 93%, and was considered separately for each of the compounds
analyzed. The detailed procedure was described in Mackiewicz-Walec and Krzebietke [19].
The sum of light PAHs was composed of naphthalene, acenaphthene, acenaphthylene, fluo-
rene, anthracene, phenanthrene, fluoranthene, pyrene, chrysene, and the heavy ones con-
sisted of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene,
benzo(g,h,i)perylene, indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene.
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2.2. Statistical Calculations

In order to verify the significance of differences between the mean effects of the
analyzed variables (sum of 16, sum of light and sum of heavy PAHs) in the two soil layers
of 0–30 cm and 30–60 cm, the data were checked for normality with the Shapiro–Wilk test. It
confirmed that the data were not normally distributed, so a non-parametric Mann–Whitney
U test for two independent samples was applied. The analyses were performed on the
non-transformed data.

3. Results

The research was performed on soil samples collected in 2006–2009, that is, spanning
one full crop rotation cycle. Generally, a significantly higher content of the sum (16) of
PAHs was determined in the 0–30 cm soil layer than in the 30–60 cm one (Figure 2A).
Regardless of the two different fertilization regimes (i.e., with manure or with mineral
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fertilizers alone), the content of the sum (16) of PAHs in soil was higher in the 0–30 cm
than in the 30–60 cm soil layer (Figure 2B). Generally, a lower PAH content was recorded in
the 30–60 cm soil layer (Table S3). The 30–60 cm soil layer had a higher average content of
2- and 4-ring PAHs than the 0–30 cm soil layer, while more 3-, 5-, and 6-ring PAHs were
found in the surface layer of the soil.
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Figure 2. The content of the sum (16) of PAHs in the soil in the years 2006–2009 depending on the
soil layer (A). The 030 cm and 30–60 cm and manure fertilization (B) in µg kg−1.

No significant differences were observed in the content of the sum (16) of PAHs
between the two soil layers: 0–30 and 30–60 cm deep, in soil without natural fertilizer,
fertilized with the smallest doses of nitrogen and potassium or in limed soil (Figure 3). T
results clearly demonstrated that a higher content of PAHs, with differences confirmed
statistically as significant or insignificant ones, appeared in the soil fertilized with manure.
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Figure 3. The content of the sum (PAHs) of in soil (0–30 cm and 30–60 cm) in 2006–2009 depending
on mineral fertilization (A), and manure-mineral and mineral fertilization (B) in µg kg−1; the codes
were used for variants of fertilization and are given in Supplementary Table S2.
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The research results demonstrated a generally higher content of the sum of light
polycyclic aromatic hydrocarbons (naphthalene, acenaphthene, acenaphthylene, fluorene,
anthracene, phenanthrene, fluoranthene, pyrene, chrysene) in the 30–60 cm than in the
0–30 cm soil layer (Figure 4A). Similarly, a higher content of light PAHs in the 30–60 cm
soil layer was determined in both types of soil (i.e., in soil treated with manure and in soil
without manure application) (Figure 4B). However, the differences between the two soil
layers proved to be statistically insignificant.
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Figure 4. The content of the sum of light PAHs in the soil in 2006–2009 depending on the soil layer
(A). The 0–30 and 30–60 cm and manure fertilization (B) in µg kg−1.

The comparison of the content of light PAHs in the two soil layers (0–30 and
30–60 cm) in each variant of fertilization proved the lack of significance of the differences
(Figure 5). However, a higher content tended to be determined in the lower than in the
upper soil layer.
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Figure 5. The content of the sum of the light PAHs in soil (0–30 and 30–60 cm) in 2006–2009 depending
on mineral fertilization (A) and manure-mineral and mineral fertilization (B) in µg kg−1.
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The content of the total heavy PAHs in the upper soil layer was significantly higher
than in the deeper layer (Figure 6A). This relationship appeared in both the soil treated
with manure and in soil receiving only mineral fertilization (Figure 6B).
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Based on the results of the statistical computations, it was demonstrated that the
content of heavy PAHs in the upper soil layer was significantly higher than in the under-
lying, deeper soil layer, irrespective of the applied mineral fertilization (Figure 7). More
detailed calculations carried out for the objects fertilized with manure or only with mineral



Int. J. Environ. Res. Public Health 2022, 19, 10460 9 of 13

fertilizers confirmed the above relationship, as the content of heavy PAHs was invariably
higher in the upper than in the deeper soil depths, although the difference was not always
verified as statistically significant in the following objects: N0P0K0, N2P1K3, N2P1K2Mg
fertilized with manure and N2P1K2 with exclusive mineral fertilization.
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Figure 7. The content of the sum of heavy PAHs in soil (0–30 and30–60 cm) in 2006–2009 depending
on the mineral fertilization (A) and manure-mineral fertilization (B) in µg kg−1.
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4. Discussion

The study concerned the period of 2006–2009, that is, spanned one full crop rotation
cycle covering all four growing seasons. The long-term fertilizer inputs to the soil con-
tributed to an increased PAH pollution over the long-term. The results confirmed that
higher content of the sum (16) of PAHs appeared in the soil fertilized with manure. Such
a statement was also found in other twelve-year research [18,19]. Similar findings were
reported by Mazur et al. [27], who stated that manure-fertilized soil contained the highest
PAH content compared with the minerally fertilized and mineral-organically fertilized
soils. The anthropogenic sources of PAHs include the products of the incomplete combus-
tion of different organic materials [28] and the references therein [29], and their content is
dependent on the type of materials and atmospheric conditions. The manure affects an
increased source of PAHs in soil compared to the mineral fertilizers.

A high amount of the sum (16) of PAHs was usually recorded in the upper soil
layers, which is characteristic of urban agglomerations or the neighboring areas [21–23].
Concerning the vertical distribution, a higher content of the sum (16) of PAHs in the 0–30 cm
soil layer than in 30–60 cm one was confirmed in this study, similarly to other findings
(e.g., [6–8,13,16,17]). Significant differences in the content of the total PAHs in the upper soil
layers versus the deeper one regardless of the type of fertilization (i.e., with manure or only
with mineral fertilizers) were also similar to the findings of Maliszewska-Kordybach et al. [30]
and Klimkowicz-Pawlas et al. [31]. According to Baran and Oleszczuk [32], the higher PAH
content in the upper soil layers results from their large affinity for organic matter. Czop
and Wandrasz [17] maintained that PAH compounds bind to organic matter in the topmost
soil layers of organic and cultivated soils, and the translocation of these compounds can
only take place in response to mechanical movements or cracks caused by drought.

Slightly different results concerning the content of light and heavy PAHs in soil are
reported by Mazur et al. [27] and Zhang et al. [33]. These authors claimed that light PAHs
that prevailed over heavy PAHs in the upper soil layers could suggest a lower anthro-
pogenic pressure from agriculture. The prevalence of heavy PAHs in the upper soil layer,
in turn, could indicate an enhanced anthropogenic source of contamination [23,34]. More
intensive PAH accumulation was found along the pollution transect from the northeastern
to southwestern areas of Poland [35]. It was found that the main sources of PAHs came
from the coal and wood combustion. The origin of PAHs in the soil is connected to the de-
composition of airborne particles that were emitted from natural as well as anthropogenic
sources [36,37].

An elevated content of the sum of light polycyclic aromatic hydrocarbons such as
naphthalene, acenaphthene, acenaphthylene, fluorene, anthracene, phenanthrene, fluoran-
thene, pyrene, and chrysene was found in the 30–60 cm layer. The reason could be the
greater water solubility of light PAHs and their ability to translocate to the deeper soil
layers [38,39]. Wang et al. [13], in turn, confirmed that heavy PAHs are rather difficult to
translocate into the soil vertical profile. The higher content of heavy PAHs in the deeper
soil layers determined in this study can be explained by their greater sorption to organic
matter. This was confirmed by a higher content of total organic carbon in the 0–30 cm soil
layer (approximately 11.0 g kg−1, on average) than in the 30–60 cm one (approximately
9.0 g kg−1 on average) in this experiment [40]. Similar findings of higher PAH content
in the upper soil layers (O-horizons) than in the deeper soil layers (A/B-horizons) were
confirmed from high-altitude mountains in China [41]. A higher accumulation of PAHs
relating to soil organic matter present in a higher content in the surface layers was also
recorded in the case of forest stands [42]. In the present studies, however, by comparing
the high content of light PAHs in the deeper soil layers, the differences between the soil
treated with manure and soil without manure application were statistically insignificant.
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5. Conclusions

A higher content of the sum (16) of heavy PAHs was determined in the 0–30 cm soil
layer than in the 30–60 cm one. This relationship appeared in both the soil fertilized with
manure and soil receiving only mineral fertilization. No significant differences in the total
content of 16 PAHs between the two soil layers of 0–30 and 30–60 cm were detected in the
soil without natural fertilizer and supplied with the lowest doses of nitrogen and potassium
as well as in the limed soil.

The results distinctly confirm that higher quantities of PAHs appeared in the manure-
treated soil. Heavy PAHs occurred in higher amounts in the upper soil layer (0–30 cm),
while light PAHs were more abundant in the deeper soil layer (30–60 cm).
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https://www.mdpi.com/article/10.3390/ijerph191610460/s1, Table S1. Design of the field trial;
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