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Abstract: Intradialytic hypotension (IDH) is a common side effect that occurs during hemodialysis
and poses a great risk for dialysis patients. Many studies have been conducted so far to predict
IDH, but most of these could not be applied in real-time because they used only underlying patient
information or static patient disease information. In this study, we propose a multilayer perceptron
(MP)-based IDH prediction model using heart rate (HR) information corresponding to time-series
information and static data of patients. This study aimed to validate whether HR differences and
HR slope information affect real-time IDH prediction in patients undergoing hemodialysis. Clinical
data were collected from 80 hemodialysis patients from 9 September to 17 October 2020, in the
artificial kidney room at Yeungnam University Medical Center (YUMC), Daegu, South Korea. The
patients typically underwent hemodialysis 12 times during this period, 1 to 2 h per session. Therefore,
the HR difference and HR slope information within up to 1 h before IDH occurrence were used as
time-series input data for the MP model. Among the MP models using the number and data length
of different hidden layers, the model using 60 min of data before the occurrence of two layers and
IDH showed maximum performance, with an accuracy of 81.5%, a true positive rate of 73.8%, and
positive predictive value of 87.3%. This study aimed to predict IDH in real-time by continuously
supplying HR information to MP models along with static data such as age, diabetes, hypertension,
and ultrafiltration. The current MP model was implemented using relatively limited parameters;
however, its performance may be further improved by adding additional parameters in the future,
further enabling real-time IDH prediction to play a supporting role for medical staff.

Keywords: intradialytic hypotension; multilayer perceptron; heart-rate; hemodialysis; real-time

1. Introduction

Intradialytic hypotension (IDH), in which blood pressure (BP) drops rapidly during
hemodialysis, is a major risk factor in dialysis patients. Previous studies have reported
that IDH occurs in approximately 15-20% of patients during dialysis [1]. IDH indicates
a decrease of more than 10 mmHg in mean arterial pressure or more than 20 mmHg in
systolic blood pressure (SBP) [2,3]. IDH can pose various risks to the central nervous
system, heart, and kidneys [4,5]. The frequent occurrence of IDH may be an important risk
factor for increased mortality in dialysis patients [6,7]. It has also been widely reported that
IDH can significantly impact sudden cardiac death by causing severe arrhythmia [8]. IDH is
caused by the interaction between the ultrafiltration rate (UFR), arteriolar tone, and cardiac
output (CO). IDH is mainly caused by a decrease in blood volume due to the withdrawal of
fluid from the vascular compartment and insufficient refilling of fluid from the interstitial
compartment into the vascular compartment during ultrafiltration (UF) [9]. In patients with
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end-stage renal disease, an imbalance between a decrease in central blood volume and an
appropriate hemodynamic response can lead to impaired cardiac function and an impaired
autonomic nervous system (ANS) [10]. During hemodialysis, the UF procedure removes
fluid from the vascular compartment and displaces it from the interstitial compartment.
Therefore, the UFR affects the rate of plasma replenishment. If the UFR exceeds the plasma
recharge rate, then the IDH potential increases. Excessive UF volume can cause decreased
CO, especially when compensatory mechanisms such as myocardial contraction and heart
rate (HR) are not optimal [5]. Other causes may include impaired ANS function, peripheral
vasoconstriction, and cardiovascular diseases such as atherosclerosis and left ventricular
hypertrophy [11]. Additionally, autonomic neuropathy, diabetes, and antihypertensive
medications increase the likelihood of IDH [12].

In the event of intravascular hypovolemia, various compensatory mechanisms are
activated, such as cardiac responses to maintain CO and venous circulation, arteriolar
vasoconstriction to increase the total peripheral resistance, and plasma recharging from
interstitial and intracellular compartments [13,14]. ANS dysfunction also significantly in-
fluences the occurrence of IDH. In patients with normal autonomic function, increase in HR
and systemic resistance were observed, whereas in patients with autonomic neuropathy, the
overall systemic resistance decreased during IDH despite a fixed HR [15]. ANS dysfunction
causes IDH, which leads to an inappropriate sympathetic response to hypovolemia that
occurs during hemodialysis [16].

A common treatment for IDH is to keep the patient’s feet above the head and sig-
nificantly slow down the UFR to slow the loss of blood volume due to fluid removal [9].
Another method is to inject a hypertonic solution that increases blood volume and BP [17].
As these practical measures are taken at the onset of symptoms in patients, it is very im-
portant to predict IDH in advance. Engineering approaches for predicting IDH have been
adopted. It was assumed that the increased variability in short-term oxygen saturation
resulted in changes in CO before IDH, which was used as a predictor of IDH [18]. Another
approach assumed that peripheral vasoconstriction precedes IDH [19]. This method pro-
vided a warning when the size of the normalized photoplethysmogram (PPG) envelope was
less than the threshold. Additionally, the HR turbulence induced by premature ventricular
beats was studied for IDH prediction [20]. Abnormal HR turbulence refers to autonomic
dysfunction, and autonomic neuropathy is closely associated with IDH [21]. Meanwhile,
spectral power using heart-rate variability (HRV) obtained from the measured electrocar-
diogram (ECG) was studied to identify patients predisposed to IDH [20,22]. For example,
in episodes without hypotension, the ratio between low-frequency and high-frequency
power increased, whereas in episodes with hypotension, this ratio decreased [23].

Recently, in addition to the single-variable and hypothesis-based methods mentioned
above, logistic regression using multivariate, negative binomial models, and deep learning
(DL) methods have been studied for IDH prediction. In 2013, dialytic age, SBP, hemoglobin
level, and weight gain factors during dialysis were found to be related to IDH in a multivari-
ate regression model [24]. In 2018, a time-dependent logistic regression model calculated
the BP drop probability, and the parameters used included SBP at the onset of IHD, current
SBP, current dialysis setting, baseline demographic variables, and time lapse between
the current time and last record [25]. In 2019, a multivariate negative binomial model
using patient information and HRV for IDH prediction was proposed [13]. In addition, in
2020, a fully adjusted multivariate regression analysis and deep neural model using UF
amount, UFR, UF coefficient, and comorbidity of hypertension were proposed based on a
multi-factor interaction analysis [10]. Ref. [26] proposed a recurrent neural network using a
timestamp-bearing dataset to predict IDH. To improve the performance of IDH prediction,
a new feature selection method using Long Short-Term Memory was proposed in [27].
Ref. [28] also utilized time-related differences in machine learning and DL methods for
IDH early warning. Table 1 presents a comparison of the IDH prediction models studied
to date.
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Table 1. Comparison of IDH prediction models developed to date.

References Factors Used Model Used Data Source Performance
Solem et al. [19], 2010 Amplitude of PPG Hypothesis based statistical model 11 patients 57~65%
. , p % 25 treatments °

Bossola et al. [24], 2013

Age, Sex, CCIS, Hemoglobin, Serum
creatinine, Serum albumin, DSC, Blood flow,
IWG, ACE-Inhibitors or Sartans, Predialysis
SBP, Dialytic age

Linear and logistic regression model

82 patients

28 sessions from 11 hypotension-prone

9/14 (symptomatic IDH), 5/5 (acute

Sandberg et al. [9], 2014 PPG envelope, LF/HF ratio of ECG Bayes’ rule patients, 20 sessions from 7 patients symptomatic IDH)
) . . 10 patients
Shahabi et al. [22], 2015 g?le-)gomam features and LF/HF ratio Genetic algorithm and AdaBoost 217 Normal, 22 Pre-IDH episode, Accuracy of 90.68 %)

90 IDH episode

Lin et al. [25], 2018

- SBP at onset, current SBP, Time lapse
to next SBP

- Dialysis settings (machine
temperature, Conductivity, UFR)

- Baseline demographic variables (age,
sex, diabetes mellitus, dry weight)

Time-dependent logistic regression model

653 HD outpatients, 55,516 HD treatment
sessions

Sensitivity of 86% and specificity of 81%

Park et al. [13], 2019

Diabetes mellitus, CAD, CHF, Age, UFR,
iPTH, ARB, CCB, 3-blocker, RRI, HF, TP,
AIC

Multivariate negative binomial model

28 patients, 85 cases (10% of a total 852
dialysis sessions)

Chen et al. [10], 2020

Age, BMI, Gender, Comorbidity of

hypertension, UF coefficient, UF amount, Deep Neural Network
UFR, Ca, Cardiothoracic ratio
Comorbidity of hypertension, UF coefficient, Deep Neural Network

UF amount, UFR

279 participants, 780 hemodialysis sessions

Age, Male, Hemodialysis type, Vascular

Lee et al. [26], 2021 access, Anticoagulant, Blood findings, Recurrent Neural Network 9292 patients, 261,647 sessions AUC of 0.94
Dialysate finding

Hu et al. [27], 2021 Blood draw data, Phymologlg al Long Short-Term Memory 593 dialysis sessions AUC of 0.97
measurement data, Time series

Yang et al. [28], 2021 Time-relevant difference Light Gradient Boosting Machine 593 hemodialysis sessions Sensitivity of 88.9%

CCIS, Charlson comorbidity index score; DSC, dialysate sodium concentration; IWG, interdialytic weight gain; CAD, coronary artery disease; CHF, congestive heart failure; UFR,
ultrafiltration rate; iPTH, intact parathyroid hormone; ARB, angiotensin II receptor blocker; CCB, calcium channel blocker; RRI, R-R interval; HE high frequency; TP, total power; AIC,
Akaike information criterion; AUC, area under the receiver operating characteristic curve.
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Currently, an important issue in IDH is medical response based on real-time detection.
In the past, IDH studies used a large amount of static data, such as basic patient information,
underlying disease, and the composition of compounds in the body during dialysis. Despite
the recent active study of IDH prediction using DL and HRV information, there are still
questions regarding the real-time application of these methods. For example, in [10],
frequency HRV with a beat-to-beat (RR) interval for input data with a length of 240 min
was used as an input for a DL model for IDH prediction; however, the real-time application
of the method may not be easy because of the long input data lengths. In addition, as
discussed in Table 1, in [13], HRV information as well as patient characteristic values were
used as inputs to the DL model. However, the HRV values used in the method were
representative values for time, and time-series values were not used as inputs. Therefore,
this study aims at the real-time prediction and application of IDH.

In addition, our approach in this paper avoids the criticisms of existing methods using
instantaneous data given in clinical practice on the doubt that some instantaneous data may
not macroscopically reflect the occurrence of IDH. Specifically, it is proposed that changes
in macroscopic pulse gradient as well as instantaneous pulse changes can be effectively
utilized to predict abnormal BF such as IDH. In addition, a sudden change in BF, such as
IDH, was used in the proposed model by discovering characteristics related to the body’s
homeostasis, that is, the body’s responses aimed at reducing BF changes.

2. Pathogenesis and Medical Treatment for IDH

Figure 1 shows the normal and inadequate compensatory mechanisms for maintaining
BP during dialysis via UF, as well as the actions of doctors for IDH. In the figure, the blue
background represents venous circulation, whereas the red background represents arterial
circulation. In the United States, the UF volumes for patients undergoing hemodialysis
three times a week are typically in the range of 2.7-3.0 L [29].
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Figure 1. (a) normal and (b) inadequate compensatory responses to maintain BP during dialysis

([14]). (In Figure 1a, + denotes the response sensitivity.)
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As shown in Figure 1a [14], normal compensatory responses include activation of the
sympathetic nervous system (SNS), increased release of the renin-angiotensin-aldosterone
system and vasopressin (vasoconstrictor), and appropriate plasma replenishment (mini-
mizing the decrease in blood volume in blood vessels) from the intracellular compartments.
These responses promote the maintenance of BP by increasing cardiac preload through
increased venous capacitive reflux, increased CO, and arteriolar vasoconstriction. BP is
calculated as the product of CO and total peripheral resistance. CO is determined by stroke
volume and HR, whereas stroke volume depends on the preload, afterload, and contractility.
In response to hypotension, SNS stimulates increased HR and contractility to increase CO as
well as BP. The various vasoactive hormones, including arginine vasopressin, SNS, and the
renin-angiotensin-aldosterone system, increase total peripheral resistance to maintain the
appropriate BP. Damage to any aspect of the normal compensation response, as shown in
Figure 1b, may result in damage to the maintenance of the appropriate perfusion pressure,
resulting in an IDH. It can also be assumed that the main factor of IDH is associated with
the occurrence of intravascular blood loss.

2.1. Maintenance of Cardiac Output
21.1.HR

A typical physiological response to hypovolemia is an increase in HR. The prevalence
of tachyarrhythmia in patients undergoing hemodialysis is higher during dialysis. Drugs
that cause negative inotropy can more easily induce IDH. On the other hand, slowing the
HR and improving ventricular compliance can increase diastolic filling and minimize IDH.

2.1.2. Contractility

Heart failure is an important risk factor for IDH, occurring in approximately one-third
of patients undergoing hemodialysis [30]. In addition, >70% of dialysis patients show
left ventricular hypertrophy during hemodialysis. Diastolic dysfunction can result in
significant decreases in CO and BP because of small decreases in cardiac preload and left
ventricular volume. Systolic failure has been reported in 15% of dialysis patients, and
increasing cardiac contractility may also improve BP. High dialysate calcium levels may be
used to increase myocardial contractility.

2.2. Cardiac Preload

The representative body response to hypovolemia is increased CO through increased
cardiac preload. In hypovolemic conditions, an increase in vasoactive hormones and SNS
results in arteriolar vasoconstriction and a reduction of blood flow to the venous beds. This
lowers the pressure in the venous capacitance system and increases the venous return by
causing subsequent passive elastic contraction of the vessel walls. This phenomenon is
known as the DeJager-Kroger phenomenon [31]. Patients prone to hypotension during
dialysis have a reduced DeJager-Kroger reflex response.

2.3. Arteriolar Vasoconstriction
2.3.1. ANS

The development of peripheral arteriolar vasoconstriction in hypovolemia is regulated
by the activity of the ANS and vasoactive hormones. Hypovolemia activates cardiopul-
monary and baroreceptors, resulting in the inhibition of sympathetic outflow into the
peripheral vasculature. This initially causes cutaneous arteriolar constriction followed by
increased contractility and HR. Patients prone to hypotension during dialysis experience
impaired sympathetic activation.

2.3.2. Vasopressor Hormones

Inappropriate (blunted) elevation of vasoconstrictor hormones for hypovolemia is
also associated with IDH. In particular, arginine vasopressin has a strong vasoconstrictive
effect. Under normal conditions, arginine vasopressin is stimulated by severe hypovolemia
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and increased plasma osmolality. However, patients prone to hypotension during dialysis
exhibit a blunted vasopressin response [32]. For this reason, vasopressin injection has been
reported to be advantageous for the prevention of IDH.

The pathophysiology of IDH is shown in Figure 2 [33]. The body has various defenses
against hypovolemia. These defenses include increased vascular resistance, which increases
the HR and contractility. Reduced venous return is the most important factor that impairs
the body’s ability to maintain CO. Diabetes, aging, and uremia can cause autonomic and
baroreceptor dysfunction, leading to abnormal vasodilation.

Left Ventricular Hypertrophy

Cardiomyopathy
Arrhythmia
Cardiac Function UFR ds abilit
- it J exceeds abi
(4HR and contractility) o compensate y IDH
UF (rate/amount) *
Dialysate Na+ > | PV » BP

Volume status \ Normal

. o JFR C
Arterial and Venous constriction zbilit\? ?Cfscgﬁ]tpee“;;ﬁ BP

Thermal balance

4 Sympathetic function

Adenosine

Endothelin, Vasopressin, Medication,
Food

Figure 2. Pathophysiology of IDH ([33]).

Collectively, the common causes of IDH can be summarized as an excessive UFR,
decreased CO, increased arteriolar tone, and autonomic dysfunction. In Figure 2, the green
letters indicate the actions to be taken in response to the risk of IDH. Dialysate calcium,
cold dialysate, and L-carnitine can be used to improve the heart function. Furthermore, to
lower BP, midodrine may be administered or food intake may be prohibited. Additionally,
to attenuate the variability that may lead to SBP reduction or IDH during dialysis, it may
be helpful to use calcium channel blockers, discontinue «-blockers (antihypertensives), or
maintain adequate serum phosphorus levels [34].

3. Materials and Methods
3.1. Participants

Data used to construct the neural networks were collected clinically from 80 hemodial-
ysis patients in the artificial kidney room of Yeungnam University Medical Center (YUMC)
in Daegu, South Korea (IRB File No.: YUMC 2019-04-035-001, YUMC 2020-08-005). The age
of the patients has a distribution of 1 in their 30s, 3 in their 40s, 16 in their 50s, 34 in their 60s,
25 in their 70s, and 10 in their 80s. A total of 12 hemodialysis sessions (1-2 h per session)
were performed during the data collection period (9 September 2020, to 17 October 2020).
A study was conducted to evaluate the correlation between heart rate fluctuations and
BP through bio-signals collected using a personal electrocardiogram (Vital Patch, VP-100)
in hemodialysis patients [32]. Table 2 shows the statistical characteristics of the patients
on renal dialysis who participated in the clinical trial. In addition, the R-peak detection
methods of [35,36], and [37] were applied to electrocardiogram signals of hemodialysis
patients for HR calculation.

Table 2. Baseline characteristics of the patients in IDH and non-IDH groups.

Non- Non-

Male, Female, Age> 65y, Age <65y, Diabetes, : Hypertension, . 8]
Total n (%) 1 (%) (%) n (%) 1 (%) Diabetes, 1 (%) Hypertension, 5 unt
1 (%) n (%)
Total 89 48 (53.9) 41 (41.6) 52 (58.4) 37 (41.6) 47 (52.8) 33 (37.1) 51(57.3) 38 (42.7) 21827
IDH 67 30 (44.8) 37 (55.2) 41 (61.2) 26 (38.8) 35 (52.2) 28 (41.8) 29 (43.3) 29 (43.3) 21274
Non-IDH 2 18 (81.8) 4(182) 11 (50.0) 11 (50.0) 12 (54.5) 5(22.7) 9(40.9) 9 (40.9) 2350.9

The units y and n mean year and number respectively.
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3.2. Proposed Multilayer Perceptron Model for IDH Prediction

Figure 3 shows the structure of the multilayer perceptron (MP)-IDH net, which is a
MP model proposed in this study for IDH prediction. The proposed model has a non-deep
feedforward neural network structure, and its inputs are largely divided into static data
and dynamic (time series).

Hidden layer

= Age

< ] Diabetes

%—; Hypertension O

“ L—  Ultrafiltration
— HR slope (60min

£ HR slope (30min

Z} HR slope (15min

§ 1 DoS (60-30min)

& DoS (30-15min)

E point

Figure 3. Proposed MP-IDH net with static and dynamic data inputs.

The first static input data for the model was age, as used in previous studies such
as [10,13] and [24,25]; elderly patients have a high risk of developing IDH. In addition,
patients with comorbidities, such as diabetes ([12,13]) and hypertension ([10]), are more
frequently observed to be prone to IDH. The last static data point is the most widely used
UF amount.

The dynamic input data are the slope of the HR and the difference of slope (DoS)
for 60 min, 30 min, and 15 min before the onset of IDH, as described in Section 3.2. The
decrease in HR slope before IDH occurrence reflects the non-functioning of the compen-
satory response of sympathetic increase in heart rate to IDH-induced hypovolemia. The
decrease in the HR slope before the occurrence of IDH reflects the non-functioning of the
compensation response of increased HR by sympathetic nerves to hypovolemia caused by
IDH. These HR slopes represent the macroscopic phenomenon of IDH occurrence. The
last dynamic input data is the time from the measurement time to point E, representing
the macroscopic phenomenon of IDH generation. This reflects an increase in HR due to
sympathetic nerve activation, which often occurs before hypotension during dialysis. The
proposed MP structure has 10 inputs, one or two hidden layers, and one output layer. The
input and hidden layers have the same number of 10 nodes.

4. Results
4.1. Changes in HR Slope before IDH

Figure 4 shows the changes in the slope of the HR per minute for 15 min (blue line),
30 min (green line), and 1 h (red line) before the onset of IDH. In addition, the black star
indicates the point with the largest difference in HR for 1 h before the onset of IDH, which
is referred to as the emergency point (point E) in this study. As shown in the figure, most of
the ECG signals (Figure 4a—h) showed a tendency to decrease the average HR per minute
slope. In addition, for some ECG signals (Figure 4i,j), a slight increase in the heart rate per
minute gradient was observed. As introduced in Section 2, the expression of point E in
the proximate time period before the occurrence of IDH can be considered to be due to an
increase in HR for an increase in BP by the SNS for hypovolemia caused by hypotension
during dialysis.
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Figure 4. Changes in slope of HR per minute before IDH. ((a-h,1,j) show the decreasing and increasing
trend of the mean HR slope respectively).

It can be seen that this instantaneous increase in HR per minute is more pronounced in
Figure 4c—e,g,h. Point E is an important parameter in IDH prediction. The E-point, which
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represents a momentary increase in HR, provides significant evidence for the occurrence
and prediction of IDH, but the average HR slope obtained for a specific time period before
the onset of IDH does not have this E-point information. Therefore, E-point information
is independently used as an input to the proposed MP model. In a significant portion of
our clinical data, a decrease in HR slope was observed closer to the occurrence of IDH.
This lowering of the HR slope suggests that the compensatory response of increased HR to
IDH-induced hypovolemia does not work well in patients with IDH. Therefore, changes in
the HR slope can be an important factor in IDH prediction. Collectively, it can be observed
that point E represents the instantaneous phenomenon of IDH generation, and the change
in the HR slope represents the macroscopic phenomenon of IDH generation.

4.2. Analysis of E-Point

HR is largely regulated by the ANS, including the sympathetic and parasympathetic
nervous systems [38]. SNS increases HR while the parasympathetic nervous system (PNS)
suppresses it. Figure 5 shows the homeostasis (constancy) of BP based on the relation-
ship between BP and baroreceptor reflexes [39]. In hypotensive conditions, such as IDH,
baroreceptor firing is reduced, resulting in a decrease in cardiac inhibitors and activation of
cardiac accelerator and vasomotor centers. Thereafter, BP increases, owing to an increase
in CO (HR) and a decrease in vasoconstriction [39,40]. This BP homeostasis results in the
expression of point E, as discussed in Section 3.2.

Vague nerves
(parasympathetic)
decrease HR

+C:1rdiac inhibitor centers Lh"\. *Cardiztc output | ¢
Increased *B tor ! (HR. SV)
BP -1 M?i_fgi;p or +Cardiac accelerator cenlers | BP drops
: / fVasodilution - \
+ Vasomotor centers li‘;

Sympathetic cardiac nerves Homeostasis
Increase HR and force of contraction restored

* Cardiac inhibitor centers L

BP

Decreased + Baroreceptor
firing

| *C ardiac output | | * /

(HR, SV) BP

increases

+ Cardiac accelerator centers |

i &Vasocousuicuou -
4 Vasomotor centers r

Figure 5. Relationship between BP and baroreceptor reflex ([39]).

As introduced in Section 3.2, the expression of point E can be attributed to the increase
in HR for increased BP due to homeostasis of the SNS for hypovolemia caused by hypoten-
sion during dialysis. In this study, it is assumed that the precursor phenomenon before
the occurrence of IDH, named point E, occurs in the HR difference. Figure 6 shows the
distribution of HR differences in patients with IDH and non-IDH (normal) 1 h before the
occurrence of IDH. Under the tendency of hypotensive variability in patients with IDH (cf.
the HR slope before IDH in Figure 4), each E point is associated with the body’s homeostasis
by the activation of sympathetic nerves against tachycardia that occurs in individual cases.
That is, the reaction indicates a temporary increase in HR by the sympathetic nerve to raise
the lowered HR. As shown in Figure 6, in patients with IDH, 60% of all E-points appeared
within 30 min of IDH onset, whereas in normal (non-IDH) patients, the E-points were
evenly distributed for 1 h before IDH onset.
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Figure 6. Distribution of HR differences for (a) IDH and (b) normal (non-IDH) patients 1 h before
IDH onset.

4.3. Analysis of HR Slope

Figure 7 and Table 3 show the HR slopes of the 1 h, 45 min, 30 min, and 15 min data
before IDH onset for IDH and normal (Non-IDH) patients. Each HR slope was obtained
using the line-fitting function in MATLAB R2021b for a given time period before the
occurrence of IDH. In each HR slope plot for each time period, the bold color line indicates
the average HR slope for the corresponding time period. It can be seen that the mean HR
slope decreases as we approach the IDH generation.

b Hypotension:Slope(60 min) i Hypotension:Slope(30 min) 2 Hypotension:Slope(15 min) Hypotension:Slope(5 min)

2 2

A

0 20 40 60 0 10 20 30 0 5 10 15
Time to IDH (min) Time to IDH (min) Time to IDH (min) Time to IDH (min)

(a)

Normal:Slope(30 min) Normal:Slope(15 min) B Normal:Slope(5 min)

0 20 40 60 10

Time to IDH (min) Time to IDH (min) Time to IDH (min) Time to IDH (min)

(b)

Figure 7. Changes in HR slopes of 1 h, 45 min, 30 min, and 15 min data for IDH and normal (Non-
IDH) patients before IDH onset. HR slopes before IDH onset for (a) IDH and (b) normal (Non-IDH)
patients. (bold color line: average HR slope, black line: x-axis).
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Table 3. HR slope values of 1 h,
patients before onset of IDH.

45 min, 30 min, and 5 min data for IDH and normal (Non-IDH)

Hypotension Normal
60 min 30 min 15 min 5 min 60 min 30 min 15 min 5 min
Mean slope —0.0608 —0.0987 —0.4706 —2.3681 —0.0764 —0.0555 0.0526 0.4310
Num. of positive slopes 25 33 24 18 73 103 108 95
Num. of negative slopes 66 58 67 73 111 81 76 89
% of negative slopes 725 63.7 73.6 80.2 60.3 44.0 41.3 48.4

This section shows the correlations between diabetes, hypertension, age, hyperfiltra-
tion and IDH incidence through HR slope analysis. Figure 8 shows the changes in HR
slopes for IDH and normal (non-IDH) patients according to 30-min data for each patient’s
baseline information before IDH onset (see Supplement Figures S1 and S2 for graphs of the

60 min and 45 min data prior

to the onset of IDH). The HR slope values for Figure 8 are

listed in Table 4. Data at 30 min before IDH onset were more dramatic than those at 60 and
45 min before the onset of IDH (see Supplementary Tables S1 and S2 for slope values of the
60 min and 45 min data prior to the onset of IDH).
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Figure 8. Changes in HR slope for IDH and normal (non-IDH) patients according to 30-min data by
patient baseline information before the onset of IDH. (The dashed lines represent the lines separating

the patient baseline information).



Int. |. Environ. Res. Public Health 2022, 19, 10373

12 of 22

Table 4. HR slope values for IDH and normal (non-IDH) patients according to patient baseline information 30 min before IDH onset.

Hypotension Normal
30 min 15 min 8 min 30 min 15 min 8 min 30 min 15 min 8 min 30 min 15 min 8 min
Underlying disease Diabetes Non-diabetes Diabetes Non-diabetes
Mean slope —0.136 —0.489 —0.808 —0.207 —0.558 —1.303 —0.159 —0.155 —0.179 —0.224 —0.185 —0.259
Num. of positive slopes 27 21 44 13 16 32 94 132 209 85 127 201
Num. of negative slopes 76 82 59 50 47 31 261 223 146 258 216 142
% of negative slopes 73.79 79.61 57.28 79.37 74.60 49.21 73.52 62.82 41.13 75.22 62.97 41.40
Underlying disease Hypertension Non-hypertension Hypertension Non-hypertension
Mean slope —0.154 —0.429 —0.862 —0.171 —0.587 —0.109 —0.198 —0.215 —0.374 —0.182 —0.104 0.007
Num. of positive slopes 17 18 37 23 19 39 93 145 233 86 114 177
Num. of negative slopes 59 58 39 67 71 51 320 268 180 199 171 108
% of negative slopes 77.63 76.32 51.32 74.44 78.89 56.67 77.48 64.89 43.58 69.82 60 37.89
Underlying disease Age Non-age Age Non-age
Mean slope —0.254 —0.6198 —1.353 —0.045 —0.379 —0.529 —0.221 —0.357 —0.332 —0.151 0.087 —0.064
Num. of positive slopes 14 16 42 26 21 34 89 116 242 90 143 168
Num. of negative slopes 80 78 52 46 51 38 314 287 161 205 152 127
% of negative slopes 85.11 82.98 55.32 63.89 70.83 52.78 77.92 71.22 39.95 69.49 51.53 43.05
Underlying disease UF Non-UF UF Non-UF
Mean slope —0.190 —0.607 —1.094 —0.107 —0.325 —0.792 —0.240 —0.335 -0.377 —0.103 0.134 0.072
Num. of positive slopes 27 23 54 13 14 22 101 149 253 78 110 157
Num. of negative slopes 85 89 58 41 40 32 351 303 199 168 136 89
% of negative slopes 75.89 79.46 51.79 75.93 74.07 59.26 77.65 67.04 44.03 68.29 55.28 36.18
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Regardless of the presence or absence of diabetes, it can be seen that the HR slope
decreases as IDH development approaches. In the case of non-diabetic patients, when IDH
occurs, it can be seen that the HR slope was significantly reduced compared to the normal
(non-IDH) case. In contrast, in the case of diabetic patients, the HR gradient gradually
decreased as IDH development approached. In the absence of IDH, there was little change
in the HR slope, with or without diabetes (nearly zero HR slope). This finding implies that
changes in the HR slope in diabetic patients affect IDH occurrence.

In the absence of IDH, there was little change in the HR slope, with or without hyper-
tension. That is, the HR slope of hypertensive patients gradually decreased, whereas the
HR slope of non-hypertensive patients slightly increased. Similar to the occurrence of IDH
in diabetic patients, in the case of hypertension, the HR slope decreased as IDH develop-
ment approached. Similar to IDH development in diabetic patients, it was confirmed that
changes in the HR slope in hypertensive patients affect IDH occurrence.

As the onset of IDH approached, the HR slope of elderly patients aged 65 years and
older became much smaller than that of the people under 65 years of age. This implies
that old age influences the development of IDH. In addition, when IDH did not occur, the
HR slope of the elderly patients decreased slightly, whereas that of the non-elderly people
remained almost unchanged.

In the case of a UF amount of 2000 or more, the HR slope decreases as IDH generation
approaches, whereas in the case of a UF amount less than 2000, the HR slope hardly
changes, even as IDH generation approaches. In addition, when IDH did not occur, a UF
amount over 2000 showed a constant change in HR slope, whereas a UF amount less than
2000 induced an increase in HR.

4.4. Model Results

The MP structure proposed in this study for predicting hypotension during dialysis
was implemented using the DL toolbox of MATLAB R2021b. The MP architecture used
had 10 input neurons, two neurons per hidden layer, and 10 output layer neurons. In
addition, the MP structure used a scaled conjugate gradient method and a cross-entropy
cost function, and typically 10-30 epochs were used.

The performance of the proposed model was evaluated in terms of accuracy (ACC),
sensitivity (e.g., true positive rate (TPR)), precision (e.g., positive predictive value (PPV)),
and Matthews correlation coefficient (MCC), which were calculated from true positive (TP),
true negative (TN), false positive (FP), and false negative (FN) values. ACC, TPR, PPV, and
MCC were calculated as ACC = (TP + TN)/(TP + FP + TN + EN), TPR = TP/(TP + EN),
PPV = TP/(TP + FP), and MCC = {(TP x TN) — (FN x FP)}/sqrt {(TP + EN) (TN + FP)
(TP + FP) (TN + EN)}, respectively [10].

Figure 9 shows the confusion matrix of the training and test data for Deep-IDH
models using different hidden layers and data lengths. The first two diagonal cells in
the figure show the number and percentage of correct classifications using the trained
network. The rows correspond to the predicted classes (output classes), and the columns
correspond to the actual classes (target classes). Cells outside the main diagonal correspond
to misclassified observations [41]. The right column of the plot shows the precision (PPV)
and FN rate, the lower column shows the recall (TPR) and FN rate, and the cell in the lower
right of the plot shows the overall accuracy [42]. In training using one layer, the model
accuracy using 60-min data before IDH occurrence was 69.2%, whereas the model accuracy
using 45-min data before IDH occurrence was 73.2%. In training using two layers, the
model accuracy using 60-min data before IDH was 81.5%, whereas the model accuracy
using 45-min data before IDH was 70.2%. Regardless of the number of layers, the model
using 30-min data showed lower accuracy than the models using longer length data. This
means that the minimum time to extract the HR slope information for IDH prediction is
45 min or more.
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Table 5 lists the performance of Deep-IDH models using different hidden layers
and data lengths. The model using the 2-layer hidden layer and 60 min data before the
occurrence of IDH showed the maximum value after the performance metrics evaluation
[ACC = 81.5 (%); TPR = 73.8 (%); PPV = 87.3 (%); and MCC = 0.638]. The MP-IDH
model using one layer and 60 min data before IDH occurrence showed the maximum TPR
value, and the longer the data length for the same number of hidden layers, the better the
performance. In addition, the model using a data length of less than 60 min (30-min and
45-min data) before the occurrence of IDH showed higher ACC, PPV, and MCC values, as
the number of hidden layers decreased. This suggests that reducing the number of hidden
layers results in a better performance when the data length is less than 1 h.
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Figure 9. Confusion matrices of Deep-IDH models using different hidden layers and data lengths:
(a) 1-layer and 60-min data before IDH occurrence (69.2%, 30.8%); (b) 1-layer and 45-min data before
IDH onset (73.2%, 26.8%); (c) 1-layer and 30-min data before IDH onset (64.5%, 35.5%); (d) 2-layer and
60-min data before IDH onset (81.5%, 18.5%); (e) 2-layer and 45-min data before IDH onset (70.2%,
29.8%); and (f) 2-layer and 30-min data before IDH onset (59.6%, 40.4%).
Table 5. Performance of Deep-IDH models using different hidden layers and data lengths.
Combinations Model Ranking ACC (%) TPR (%) PPV (%) MCC
1 layer, 60 min 4 69.2 % 78.5 % 66.2 % 0.391
1 layer, 45 min 2 73.2 % 69.0 % 75.3 % 0.496
1 layer, 30 min 5 64.5 % 61.4 % 65.4 % 0.290
2 layers, 60 min 1 81.5 % 73.8 % 87.3 % 0.638
2 layers, 45 min 3 70.2 % 66.7 % 71.8 % 0.370
2 layers, 30 min 6 59.6 % 68.1 % 58.2 % 0.195

The efficiency of the proposed Deep-IDH model was analyzed using a receiver operat-
ing characteristic (ROC) curve. Figure 10 shows the ROC curves of the Deep-IDH models
using different hidden layers and data lengths. ROC curves show TPR (sensitivity) versus
FPR (1-specificity) for various thresholds of the classification scores. As shown in the figure,
it can be seen that the ROC curve of the Deep-IDH model using two layers and 60-min
data before IDH occurrence is on top of the ROC curves of other models, and can work as a
better binary classifier for IDH prediction. As shown in Figure 10c,{, it can be seen that the
shorter the length of available data before IDH occurrence, the closer the ROC curve to the
mean/basic model. In addition, as described in Table 5, when data less than 60 min before
the occurrence of IDH have to be used, the smaller the number of hidden layers, the better
the binary classifier (note the change from Figure 10e,f to Figure 10b,c).

This study verified a MP system for real-time prediction of IDH occurrence. Predicting
the BP profile during a 1-2 h hemodialysis session is a difficult task. The Deep-IDH
model we built performed well for various definitions of SBP drop, especially for <90 and
100 mmHg, which were most associated with mortality among the definitions of IDH in
previous studies [25,29]. This indicates that our predictive model is stable and reliable for
predicting IDH in hemodialysis patients.



Int. J. Environ.

Res. Public Health 2022, 19, 10373

16 of 22

True Positive Rate

True Positive Rate

1 Training ROC 1 Validation ROC
=]
08
@ @
& 8
£ 206
8 8
a T o4
o o
= 2
= =
0.2
o o
V] 0.2 0.4 06 038 1 0 02 0.4 0.6 0.8
False Positive Rate False Positive Rate
. Test ROC g AllROC
08 0.8
o o
T T
24 4
g 0.6 ‘g 0.6
3 %
204 S 04
o o
=4 =
= =
0.2 02
o (1]
o 02 0.4 0.6 0.8 1 ] 02 0.4 0.6 0.8
False Positive Rate False Positive Rate
(@)
a Training ROC . Validation ROC
0.8 0.8
2 2
5 ol
& o
2 06 © 06
2 2
= =
& 8
% 04 '-é— 0.4
= =
02 02
0 o
o 0.2 04 0.6 0.8 1 0 0z 04 06 0.8
False Posilive Rale False Posilive Rate
a Test ROC < All ROC
08 0.8
2 2
5 5
& o
2 06 © 06
2 2
= =
& a8
S04 04
g g
= =
= =
02 02
oHd o
o 0.2 04 0.6 0.8 1 0 0z 04 06 0.8
False Positive Rate False Positive Rate
(c)
1 Training ROC 1 Validation ROC
0.8
o ]
5
[:4
@ 06
2
E-]
]
S04
@
=
=
0.2
o o
0 0.2 0.4 0.6 0.8 1 o 0.2 04 0.6 0.8
False Positive Rate False Positive Rate
1 Test ROC 1 AllROC
0.8 08
@
0.6 E 0.6
27
=
<
04 @ 04
=
=
0.2 02
'] o
o 0.2 0.4 06 08 1 o 0.2 04 06 0.8

False Positive Rate

(e)

False Positive Rate

a Training ROC q Validation ROC
08 0.8
2 2
5] 4
S os 506
Ehe 27
2 Z
& &
% 04 % 04
2 2
= [=
0.2 0.2
o o
o 02 04 0.6 08 1 o 02 0.4 06 08 1
False Positive Rate False Positive Rate
4 Test ROC q All ROC
0.8 08
o @
b o
(52 [
2 06 2 0.6
8 8
04 o 04
@ 2
= =l
= =
02 0.2
—
o o
o 0.2 04 06 08 1 o 0.2 0.4 06 08 1

False Positive Rate

=

Training ROC

False Positive Rate

Validation ROC

1
08 08
ks 3
< 4
© 0.6 © 06
2 2
= =
& &
502 304
= =
0.2 02
0 o
0 0.2 04 06 08 1 o 02 0.4 06 08 1
False Positive Rate False Positive Rate
1 Test ROC 1 All ROC
08 08
£ e
5] 5
& -4
2 06 206
2 3
o 04 04
@ @
= =
= =
0.2 0.2
0 o
0 0.2 04 06 08 1 0 02 04 0.6 08 1
False Positive Rate False Positive Rate
g Training ROC P Validation ROG
Class 2
0.8 0.8
e o
g g
o 0.6 o 0.6
= =
= =
& &
& 04 & 0.4
= 2
= =
0.2 0.2
1] 0
] 0.2 0.4 0.6 0.8 1 ) 0.2 04 0.6 0.8 1
False Positive Rate False Positive Rate
q Test ROC 4 All ROC
08 08
) o
T T
% 0.6 % 0.6
£ e
& &
& 04 = 0.4
i 2
= =
0.2 i 4 0.2
o o
] 0.2 0.4 0.6 0.8 1 ) 0.2 0.4 0.6 0.8 1

False Positive Rate

()

False Positive Rate

Figure 10. ROC of Deep-IDH models using different hidden layers and data lengths: (a) 1-layer and
60-min data before IDH onset; (b) 1-layer and 45-min data before IDH onset; (c) 1-layer and 30-min
data before IDH onset; (d) 2-layer and 60-min data before IDH onset; (e) 2-layer and 45-min data
before IDH onset; and (f) 2-layer and 30-min data before IDH onset.
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5. Discussion
5.1. ECG Analysis of Patients with IDH

Figure 11 shows the HRV results at the time of hypotension in five hemodialysis
patients using the HRV analysis method introduced in [43,44]. Among the HRV parameters,
HR per minute (beats per minute (BPM)), RR interval trend, RR histogram, power spectrum,
and Poincaré plot were used. The RR interval refers to the elapsed time (reciprocal of HR)
between two consecutive R peaks in the ECG. The power spectral density (PSD) is estimated
from the RR series using the fast Fourier transform, and all frequency domain parameters
of the PSD are calculated according to the specified frequency band. The Poincaré plot also
shows a scatterplot of the current RR interval plotted against the previous RR interval; it can
be seen that the characteristics are prominent at the time of hypotension in hemodialysis
patients. It can also be seen that the higher the instantaneous change rate of HR per
minute and RR interval, or the higher the non-clusterity in the Poincaré plot, the higher
the probability of hypotension. However, it is difficult to use these characteristic values in
real-time because of the large instantaneous change rate.
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Figure 11. HRV results at the time of hypotension in hemodialysis patients.
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Figure 12 shows the change in HR per minute at the onset of IDH in patients undergo-
ing hemodialysis. In the figure, the orange square box indicates the IDH or hypotension
period and includes the systolic and diastolic BP values. In addition, the blue line repre-
sents the original HR per minute value and the red line represents the average HR per
minute value. For patients #1 and #4 with normal HR per minute, the change in HR per
minute was very severe (20 or higher HR per minute) from 30 min to 1 h before the onset
of hypotension. In addition, there were many sections where the average HR per minute
changed significantly. In patient #3 with bradycardia (HR less than 70 in clinical practice),
hypotension occurred after the HR per minute gradually decreased for > 30 min. That is,
when the HR per minute decreased gradually in patients with bradycardia or when the HR
per minute fluctuated in patients with normal HR per minute, the probability of occurrence
of hypotension was high. To generalize such instantaneous changes in HR per minute, we
analyzed the slope of HR per minute for a specific time period before IDH, as shown in

Figure 4.
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Figure 12. Changes in HR per minute at the onset of IDH in hemodialysis patients. (The square box
area indicates the IDH or hypotension period).

5.2. Real-Time Prediction of IDH

A major issue in current IDH research is real-time prediction. Hospital officials have
demanded over 65% real-time accuracy for IDH prediction. The IDH prediction methods
studied thus far have an accuracy of 65% or more. However, the major requirement is that



Int. J. Environ. Res. Public Health 2022, 19, 10373 19 of 22

it should be capable of real-time processing. Until now, many IDH prediction methods
using static data faced difficulties when applied in real-time. In addition, even if it is a
method that uses time-series data, the methods used very long data (approximately 4 h),
and representative values of the used data length were used as input to the MP model. As
such, the data length for real-time prediction of IDH is judged to be appropriately within
30 min to 1 h or 2 h before IDH occurs. In addition, although the current study used data
up to the onset of IDH, considering the amount of change in the slope of HR, it is judged
that data up to 5 min before the onset of IDH can be used for practical use.

In this study, a real-time IDH prediction model with an ACC of 81.5% and a PPV of
87.3% was created using patient characteristics such as age, diabetes, and hypertension,
and a relatively limited number of parameters, such as UF volume and pulse information.
The BPM slope and symptom points can be easily calculated in real time. Because we used
a relatively limited number of predictors in this study, future models with a higher level of
segmentation may perform better.

5.3. Data and Clinical Issues of IDH

Another issue is the lack of open databases for IDH predictions. Because the data
obtained through clinical trials are used for each study, the current IDH prediction study
encounters the large problem of data individuality. In addition, small IDH trials may
have data bias issues. Owing to these practical problems, it is difficult to objectively
compare the IDH prediction methods studied to date. Therefore, the selection of stan-
dardized parameters necessary for IDH prediction is essential for future research, and an
objective performance comparison of IDH prediction techniques developed so far can be
performed afterwards.

Table 6 shows the parameters for patient data and session data that can be considered
in addition to the factors used for IDH prediction introduced in Table 1 [45,46]. There
may also be other parameters that could be potential factors for real-time IDH prediction.
The use of different parameters by different investigators may be because of the clinical
environment. Therefore, it can be a good choice to set up the clinical environment after
selecting the necessary parameters through sufficient review of existing studies.

Table 6. Additional parameters that may be considered.

Patient Data Session Data

Male sex, Dialysis vintage, Race (White, Black), Interdialytic weight gain, Blood flow, Dialysate
Peripheral artery disease, Peripheral vascular ~ temperature, Dialysate conductivity, Dialysate
disease, Antihypertensive use, sodium, Dialysate calcium, Body weight before
Body temperature and after HD

6. Conclusions

In this study, a method for predicting IDH in real-time was introduced, and the pulse
information extracted from the ECG signal was used as the time-series data input for the
MP model. Considering the pulse information used in the MP model, it was inferred
that the change in the pulse slope before IDH occurrence and the appearance of symptom
points were highly correlated with the occurrence of IDH. In addition, not only time-series
data, but age, diabetes, hypertension, and UF, which are static data used in many IDH
prediction methods studied so far, were also used as inputs for the MP model proposed in
this study. This study aimed to predict IDH, which may occur in a short time, in real time
by continuously inputting real-time pulse information into a MP model. Our approach
avoids the batch use of instantaneous data, which may have a low correlation with a given
IDH in a clinical setting, as found in other studies. Specifically, it is based on the inference
that changes in BF lead to changes in the macroscopic slope of the pulse; we found that
sudden abnormal BF reactions such as IDH lead to various characteristic responses due to
homeostasis of the body, and visible as symptom points. In this study, we implemented a
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MP prediction model using relatively limited parameters, and we believe that the model’s
performance can be further improved through the future study of additional parameters.

7. Patents

A patent from the results of this study is pending approval. (Title: Method for predicting
hypotension during dialysis using patient baseline information and heart-rate variation.).

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/ijerph191610373/s1, Figure S1: Changes in HR slope for IDH
and normal (non-IDH) patients according to 60 min data by patient baseline information before the
onset of IDH; Figure S2: Changes in HR slope for IDH and normal (non-IDH) patients according to
45 min data by patient baseline information before the onset of IDH; Table S1: HR slope values for
IDH and normal (non-IDH) patients according to patient baseline information 60 min before IDH
onset; Table S2: HR slope values for IDH and normal (non-IDH) patients according to patient baseline
information 45 min before IDH onset.

Author Contributions: Conceptualization, T.W.B. and J].W.P.; methodology, TW.B. and M.S.K.; soft-
ware, T.W.B. and M.S.K,; validation, K K.K. and ].W.P; formal analysis, T.W.B. and J.W.P,; investigation,
KKK. and J.W.P; resources, ] W.P. and T.W.B.; data curation, TW.B. and J.W.P.; writing—original
draft preparation, T.W.B.; writing—review and editing, T.W.B. and J.W.P,; visualization, T.W.B. and
KH.K,; supervision, K.K.K.; project administration, K.H.K.; funding acquisition, K.H.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by an Electronics and Telecommunications Research Institute
(ETRI) grant funded by the Korean government [22Z2D1140, Development of ICT Convergence
Technology for Daegu-Gyeongbuk Regional Industry].

Institutional Review Board Statement: The study was conducted in accordance with the guidelines
of the Declaration of Helsinki and approved by the Institutional Review Board (or Ethics Committee)
of Yeungnam University Medical Center (protocol code YUMC 2019-04-035-001 and 16 July 2019,
protocol code YUMC202008005-HE003 and 21 August 2021).

Informed Consent Statement: Informed consent was obtained from all the subjects involved in
the study.

Data Availability Statement: Not applicable.

Acknowledgments: We thank all the patients who participated in the clinical trial. We hope that this
study will benefit the health of the patients. “He sent his word, and healed them, and delivered them
from their destructions.” Psalm 107:20.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Daugirdas, ].T. Measuring intradialytic hypotension to improve quality of care. J. Am. Soc. Nephrol. 2015, 26, 512-514. [CrossRef]
[PubMed]

2. Agarwal, R. How can we prevent intradialytic hypotension? Curr. Opin. Nephrol. Hypertens. 2012, 21, 593-599. [CrossRef]
[PubMed]

3. Assimon, M.M,; Flythe, J.E. Definitions of intradialytic hypotension. Semin. Dial. 2017, 30, 464-472. [CrossRef] [PubMed]

4. Schreiber, M.]. Clinical dilemmas in dialysis: Managing the hypotensive patient. Am. J. Kidney Dis. 2001, 38, S1-S10. [CrossRef]
[PubMed]

5. Kanbay, M.; Ertuglu, L.A.; Afsar, B.; Ozdogan, E.; Siriopol, D.; Covic, A.; Basile, C.; Ortiz, A. An update review of intradialytic
hypotension: Concept, risk factors, clinical implications and management. Clin. Kidney . 2020, 13, 981-993. [CrossRef] [PubMed]

6. Tislér, A.; Akocsi, K.; Borbas, B.; Fazakas, L.; Ferenczi, S.; Gorogh, S.; Kulcsar, I.; Nagy, L.; Samik, ].; Szegedi, J.; et al. The effect
of frequent or occasional dialysis-associated hypotension on survival of patients on maintenance haemodialysis. Nephrol. Dial.
Transpl. 2003, 18, 2601-2605. [CrossRef] [PubMed]

7. Shoji, T.; Tsubakihara, Y.; Fujii, M.; Imai, E. Hemodialysis-associated hypotension as an independent risk factor for two-year
mortality in hemodialysis patients. Kidney Int. 2004, 66, 1212-1220. [CrossRef]

8. Selby, N.M.; McIntyre, C.W. The acute cardiac effects of dialysis. Semin. Dial. 2007, 20, 220-228. [CrossRef]

9.  Sandberg, F; Bailén, R.; Hernando, D.; Laguna, P.; Martinez, J.P.; Solem, K.; Sérnmo, L. Prediction of hypotension in hemodialysis

patients. Physiol. Meas. 2014, 35, 1885-1898. [CrossRef]


https://www.mdpi.com/article/10.3390/ijerph191610373/s1
https://www.mdpi.com/article/10.3390/ijerph191610373/s1
http://doi.org/10.1681/ASN.2014090860
http://www.ncbi.nlm.nih.gov/pubmed/25270073
http://doi.org/10.1097/MNH.0b013e3283588f3c
http://www.ncbi.nlm.nih.gov/pubmed/22914686
http://doi.org/10.1111/sdi.12626
http://www.ncbi.nlm.nih.gov/pubmed/28691195
http://doi.org/10.1053/ajkd.2001.28089
http://www.ncbi.nlm.nih.gov/pubmed/11602455
http://doi.org/10.1093/ckj/sfaa078
http://www.ncbi.nlm.nih.gov/pubmed/33391741
http://doi.org/10.1093/ndt/gfg450
http://www.ncbi.nlm.nih.gov/pubmed/14605284
http://doi.org/10.1111/j.1523-1755.2004.00812.x
http://doi.org/10.1111/j.1525-139X.2007.00281.x
http://doi.org/10.1088/0967-3334/35/9/1885

Int. J. Environ. Res. Public Health 2022, 19, 10373 21 of 22

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

Chen, J.B.; Wu, K.C.; Moi, S.H.; Chuang, L.Y.; Yang, C.H. Deep learning for intradialytic hypotension prediction in hemodialysis
patients. IEEE Access 2020, 8, 82382-82390. [CrossRef]

Davenport, A. Can Advances in Hemodialysis Machine Technology Prevent Intradialytic Hypotension? Semin. Dial. 2009, 22,
231-236. [CrossRef] [PubMed]

Reilly, R.F. Attending rounds: A patient with intradialytic hypotension. Clin. . Amer. Soc. Nephrology 2014, 9, 798-803. [CrossRef]
[PubMed]

Park, S.; Kim, W.]J.; Cho, N.J.; Choi, C.Y.; Heo, N.H.; Gil, H.W.; Lee, E.Y. Predicting intradialytic hypotension using heart rate
variability. Sci. Rep. 2019, 9, 1-9. [CrossRef] [PubMed]

Reeves, P.B.; Causland, ER. Mechanisms, clinical implications, and treatment of intradialytic hypotension. Clin. J. Am. Soc.
Nephrol. 2018, 13, 1297-1303. [CrossRef]

Kersh, E.S.; Kronfield, S.J.; Unger, A.; Popper, RW.; Cantor, S.; Cohn, K. Autonomic insufficiency in uremia as a cause of
hemodialysis-induced hypotension. N. Engl. ]. Med. 1974, 290, 650-653. [CrossRef]

Converse, R.L.; Jacobsen, T.N.; Jost, C.M.; Toto, R.D.; Grayburn, P.A.; Obregon, T.M.; Tarazi, EF,; Victor, R.G. Paradoxical
withdrawal of reflex vasoconstriction as a cause of hemodialysis-induced hypotension. J. Clin. Investig. 1992, 90, 1657-1665.
[CrossRef]

Shimizu, K.; Kurosawa, T.; Sanjo, T. Effect of hyperosmolality on vasopressin secretion in intradialytic hypotension: A mechanistic
study. Am. |. Kidney Dis. 2008, 52, 294-304. [CrossRef]

Mancini, E.; Corazza, L.; Cannarile, D.C.; Soverini, M.L.; Cavalcanti, S.; Cavani, S.; Fiorenzi, A.; Santoro, A. Short term variability
of oxygen saturation during hemodialysis is a warning parameter for hypotension appearance. In Proceedings of the 2008
Computers in Cardiology, Bologna, Italy, 14-17 September 2008.

Solem, K.; Olde, B.; Sornmo, L. Prediction of intradialytic hypotension using photoplethysmography. IEEE Trans. Biomed. Eng.
2010, 57, 1611-1619. [CrossRef]

Sornmo, L.; Sandberg, F.; Gil, E.; Solem, K. Noninvasive techniques for prevention of intradialytic hypotension. IEEE Rev. Biomed.
Eng. 2012, 5, 45-59. [CrossRef]

Calvo, C.; Maule, S.; Mecca, F.; Quadri, R.; Martina, G.; Perin, P.C. The influence of autonomic neuropathy on hypotension during
hemodialysis. Clin. Auton. Res. 2002, 12, 84-87. [CrossRef]

Shahabi, M.; Nafisi, V.R.; Pak, F. Prediction of intradialytic hypotension using PPG signal features. In Proceedings of the 22nd
Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, 25-27 November 2015.

Pelosi, G.; Emdin, M.; Carpeggiani, C.; Morales, M.A.; Piacenti, M.; Dattolo, P.; Cerrai, T.; Macerata, A. Impaired sympathetic
response before intradialytic hypotension: A study based on spectral analysis of heart rate and pressure variability. Clin. Sci.
1999, 96, 23-31. [CrossRef]

Bossola, M.; Laudisio, A.; Antocicco, M.; Panocchia, N.; Tazza, L.; Colloca, G.; Tosato, M.; Zuccala, G. Intradialytic hypotension is
associated with dialytic age in patients on chronic hemodialysis. Ren. Fail. 2013, 35, 1260-1263. [CrossRef] [PubMed]

Lin, CJ.; Chen, C.Y,;; Wu, P.C,; Pan, C.F; Shih, HM.; Huang, M.Y,; Chou, L.H.; Tang, ].S.; Wu, C.J. Intelligent system to predict
intradialytic hypotension in chronic hemodialysis. J. Formos. Med. Assoc. 2018, 117, 888-893. [CrossRef]

Lee, H.; Yun, D.; Yoo, J.; Yoo, K,; Kim, Y.C.; Kim, D.K.; Oh, K.H,; Joo, KW,; Kim, Y.S.; Kwak, N.; et al. Deep learning model for
real-time prediction of intradialytic hypotension. Clin. J. Am. Soc. Nephrol. 2021, 16, 396-406. [CrossRef] [PubMed]

Hu, HW,; Yang, ].Y.; Un, C.H.; Chen, K.Y.; Huang, C.C.; Tsaih, R.H. The New method of feature selection for intradialytic
hypotension prediction using machine learning. In Proceedings of the IEEE 3rd Eurasia Conference on Biomedical Engineering,
Healthcare and Sustainability (ECBIOS), Tainan, Taiwan, 28-30 May 2021.

Yang, ].Y.; Hu, HW.; Liu, C.H.; Chen, K.Y.; Un, C.H.; Huang, C.C.; Chen, C.C,; Lin, C.C.K,; Chang, H.; Lin, H.M. Differencing
time series as an important feature extraction for intradialytic hypotension prediction using machine learning. In Proceedings of
the IEEE 3rd Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS), Tainan, Taiwan, 28-30
May 2021.

Flythe, J.E.; Xue, H.; Lynch, K.E.; Curhan, G.C.; Brunelli, S.M. Association of mortality risk with various definitions of intradialytic
hypotension. J. Am. Soc. Nephrol. 2015, 26, 724-734. [CrossRef] [PubMed]

Harnett, ].D.; Foley, RN.; Kent, G.M.; Barre, PE.; Murray, D.; Parfrey, P.S. Congestive heart failure in dialysis patients: Prevalence,
incidence, prognosis and risk factors. Kidney Int. 1995, 47, 884-890. [CrossRef] [PubMed]

Rothe, C.E. Physiology of venous return. An unappreciated boost to the heart. Arch. Intern. Med. 1986, 146, 977-982. [CrossRef]
Ettema, E.M.; Zittema, D.; Kuipers, J.; Gansevoort, R.T,; Vart, P.,; Jong, P.E.; Westerhuis, R.; Franssen, C.F. Dialysis hypotension: A
role for inadequate increase in arginine vasopressin levels? A systematic literature review and meta-analysis. Am. J. Nephrol.
2014, 39, 100-109. [CrossRef]

Santos, S.EE,; Peixoto, A.J.; Perazella, M.A. How should we manage adverse intradialytic blood pressure changes? Adv. Chronic
Kidney Dis. 2012, 19, 158-165. [CrossRef]

Nakagawa, N. Seasonal variation and predictors of intradialytic hypotension. Hypertens. Res. 2021, 44, 1551-1553. [CrossRef]
Bae, T.W,; Lee, S.H.; Kwon, K K. An adaptive median filter based on sampling rate for R-peak detection and major-arrhythmia
analysis. Sensors 2020, 20, 6144. [CrossRef] [PubMed]

Bae, TW.; Kwon, K.K. Efficient real-time R and QRS detection method using a pair of derivative filters and max filter for portable
ECG device. Appl. Sci. 2019, 9, 4128. [CrossRef]


http://doi.org/10.1109/ACCESS.2020.2988993
http://doi.org/10.1111/j.1525-139X.2009.00614.x
http://www.ncbi.nlm.nih.gov/pubmed/19572996
http://doi.org/10.2215/CJN.09930913
http://www.ncbi.nlm.nih.gov/pubmed/24385517
http://doi.org/10.1038/s41598-019-39295-y
http://www.ncbi.nlm.nih.gov/pubmed/30796327
http://doi.org/10.2215/CJN.12141017
http://doi.org/10.1056/NEJM197403212901203
http://doi.org/10.1172/JCI116037
http://doi.org/10.1053/j.ajkd.2008.03.024
http://doi.org/10.1109/TBME.2010.2042170
http://doi.org/10.1109/RBME.2012.2210036
http://doi.org/10.1007/s102860200025
http://doi.org/10.1042/CS19980180
http://doi.org/10.3109/0886022X.2013.820645
http://www.ncbi.nlm.nih.gov/pubmed/23902384
http://doi.org/10.1016/j.jfma.2018.05.023
http://doi.org/10.2215/CJN.09280620
http://www.ncbi.nlm.nih.gov/pubmed/33574056
http://doi.org/10.1681/ASN.2014020222
http://www.ncbi.nlm.nih.gov/pubmed/25270068
http://doi.org/10.1038/ki.1995.132
http://www.ncbi.nlm.nih.gov/pubmed/7752588
http://doi.org/10.1001/archinte.1986.00360170223028
http://doi.org/10.1159/000358203
http://doi.org/10.1053/j.ackd.2012.03.003
http://doi.org/10.1038/s41440-021-00730-1
http://doi.org/10.3390/s20216144
http://www.ncbi.nlm.nih.gov/pubmed/33137901
http://doi.org/10.3390/app9194128

Int. J. Environ. Res. Public Health 2022, 19, 10373 22 of 22

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Bae, T.W.; Kwon, K.K.; Kim, K.H. Vital block and vital sign server for ECG and vital sign monitoring in a portable u-Vital system.
Sensors 2020, 20, 1089. [CrossRef] [PubMed]

Wehrwein, E.A.; Orer, H.S.; Barman, S.M. Overview of the anatomy, physiology, and pharmacology of the autonomic nervous
system. Compr. Physiol. 2016, 6, 1239-1278. [PubMed]

Control of Heart Rate. Available online: https://teachmephysiology.com/cardiovascular-system/cardiac-output/control-heart-
rate (accessed on 20 June 2022).

Your Parasympathetic Nervous System Explained. Available online: https://www.healthline.com /health/parasympathetic-
nervous-system#cranial-nerves (accessed on 20 June 2022).

Plotconfusion. Available online: https://kr.mathworks.com/help/deeplearning/ref/plotconfusion.html (accessed on 20
June 2022).

Plot Classification Confusion Matrix. Available online: https:/ /lost-contact.mit.edu/afs/inf.ed.ac.uk/group/teaching /matlab-
help/R2016b/nnet/ref /plotconfusion.html (accessed on 20 June 2022).

Bae, T.W.; Kwon, K.K. ECG PQRST complex detector and heart rate variability analysis using temporal characteristics of fiducial
points. Biomed. Signal Processing Control. 2021, 66, 102291. [CrossRef]

Bae, T.-W.; Kwon, K.-K.; Kim, K.-H. Electrocardiogram fiducial point detector using a bilateral filter and symmetrical point-filter
structure. Int. J. Environ. Res. Public Health 2021, 18, 10792. [CrossRef] [PubMed]

David, EK.; Jochen, G.R; Hanjie, Z.; Joanna, W.; Stephan, T.; Peter, K. The time of onset of intradialytic hypotension during a
hemodialysis session associates with clinical parameters and mortality. Kidney Int. 2021, 99, 1408-1417.

Lin, C.J.; Chen, Y.Y,; Pan, C.E; Wu, V,; Wu, C.J. Dataset supporting blood pressure prediction for the management of chronic
hemodialysis. Sci. Data 2019, 6, 313. [CrossRef]


http://doi.org/10.3390/s20041089
http://www.ncbi.nlm.nih.gov/pubmed/32079305
http://www.ncbi.nlm.nih.gov/pubmed/27347892
https://teachmephysiology.com/cardiovascular-system/cardiac-output/control-heart-rate
https://teachmephysiology.com/cardiovascular-system/cardiac-output/control-heart-rate
https://www.healthline.com/health/parasympathetic-nervous-system#cranial-nerves
https://www.healthline.com/health/parasympathetic-nervous-system#cranial-nerves
https://kr.mathworks.com/help/deeplearning/ref/plotconfusion.html
https://lost-contact.mit.edu/afs/inf.ed.ac.uk/group/teaching/matlab-help/R2016b/nnet/ref/plotconfusion.html
https://lost-contact.mit.edu/afs/inf.ed.ac.uk/group/teaching/matlab-help/R2016b/nnet/ref/plotconfusion.html
http://doi.org/10.1016/j.bspc.2020.102291
http://doi.org/10.3390/ijerph182010792
http://www.ncbi.nlm.nih.gov/pubmed/34682541
http://doi.org/10.1038/s41597-019-0319-8

	Introduction 
	Pathogenesis and Medical Treatment for IDH 
	Maintenance of Cardiac Output 
	HR 
	Contractility 

	Cardiac Preload 
	Arteriolar Vasoconstriction 
	ANS 
	Vasopressor Hormones 


	Materials and Methods 
	Participants 
	Proposed Multilayer Perceptron Model for IDH Prediction 

	Results 
	Changes in HR Slope before IDH 
	Analysis of E-Point 
	Analysis of HR Slope 
	Model Results 

	Discussion 
	ECG Analysis of Patients with IDH 
	Real-Time Prediction of IDH 
	Data and Clinical Issues of IDH 

	Conclusions 
	Patents 
	References

