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Abstract: The emergence of different virus variants, the rapidly changing epidemic, and demands
for economic recovery all require continual adjustment and optimization of COVID-19 intervention
policies. For the purpose, it is both important and necessary to evaluate the effectiveness of different
policies already in-place, which is the basis for optimization. Although some scholars have used
epidemiological models, such as susceptible-exposed-infected-removed (SEIR), to perform evaluation,
they might be inaccurate because those models often ignore the time-varying nature of transmission
rate. This study proposes a new scheme to evaluate the efficiency of dynamic COVID-19 interventions
using a new model named as iLSEIR-DRAM. First, we improved the traditional LSEIR model by
adopting a five-parameter logistic function β(t) to depict the key parameter of transmission rate.
Then, we estimated the parameters by using an adaptive Markov Chain Monte Carlo (MCMC)
algorithm, which combines delayed rejection and adaptive metropolis samplers (DRAM). Finally, we
developed a new quantitative indicator to evaluate the efficiency of COVID-19 interventions, which is
based on parameters in β(t) and considers both the decreasing degree of the transmission rate and the
emerging time of the epidemic inflection point. This scheme was applied to seven cities in Guangdong
Province. We found that the iLSEIR-DRAM model can retrace the COVID-19 transmission quite
well, with the simulation accuracy being over 95% in all cities. The proposed indicator succeeds in
evaluating the historical intervention efficiency and makes the efficiency comparable among different
cities. The comparison results showed that the intervention policies implemented in Guangzhou is
the most efficient, which is consistent with public awareness. The proposed scheme for efficiency
evaluation in this study is easy to implement and may promote precise prevention and control of the
COVID-19 epidemic.

Keywords: COVID-19; dynamic intervention; efficiency evaluation; iLSEIR-DRAM model;
transmission rate

1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic has profoundly impacted the
health, economy, and livelihood of human societies worldwide [1]. Most regions and
countries have implemented various interventions to contain the spread of epidemic, such
as personal measures (i.e., frequent hand hygiene, facial coverings or mask wearing, etc.),
physical and social distancing measures in public spaces (i.e., adaptation or closure of
schools and businesses, restrictions on public and private gatherings, staying at home, etc.),
movement measures (i.e., limiting domestic and international travels, offering guidance
regarding travel, etc.), special protection measures to protect special populations and
vulnerable groups, and vaccination [2]. The outcomes, however, are not promising except
in a few countries and regions [3]. There are many possible reasons for that, for example,
virus variants, policy formulation and implementation of governments, and the response of
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target population to policies [4–8]. The current situation indicates that further improvement
of current interventions is necessary, which would benefit containment of the current
COVID-19 pandemic, as well as controlling other emerging infectious diseases (EIDs) for
human society. Meanwhile, accurate assessment on the efficiency of interventions also
becomes more and more important.

Some existing studies have evaluated the efficiency of interventions to control
COVID-19 by simulating the reduction in confirmed or fatal cases under different in-
tervention scenarios with epidemiological models [9], such as the susceptible-exposed-
infected-removed (SEIR) model and its variations [10–13]. Some of these studies used
individual-based models to evaluate the efficiency of interventions in micro scenarios, such
as schools, refugee camps, parks, and gyms [14–20], while some other studies introduced
asymptomatic (A), quarantine (Q), hospitalized (H), dead (D), and other processes into
the original SEIR model to represent intervention effects in macro scenarios, i.e., cities,
provinces, countries, and so on [11,21–23]. Regardless of the scales of their scenarios, these
studies mainly focused on the effects of single or combined interventions at a specific
intensity [12,21,24–29]. Although these studies provide certain useful results, they have
two obvious limitations. First and foremost, most of the studies used a fixed transmission
rate in their simulations, which may lead to bias in trend simulations due to spatio-temporal
differences in the epidemic transmission [30–33]. As a result, the efficiency evaluation of
COVID-19 interventions could be inaccurate and noncomparable in regions. Second,
existing studies mostly applied the control variables approach in their scenario simula-
tions, but few of them evaluated the effectiveness of different policies already applied,
which, however, is more important because it provides the basis for further optimization of
follow-up measures.

To address these limitations, this study proposes a scheme to evaluate the efficiency
of dynamic COVID-19 interventions. Interventions refer to the various measures imple-
mented by the government to mitigate the epidemic transmission implemented in the study
area during the first wave, such as mask wearing policies, closures of schools and busi-
nesses, restrictions on public and private gatherings, domestic movement, and international
travels, etc. The scheme includes three primary steps. The first step is constructing an
improved logistic SEIR (iLSEIR) model, which quantifies the time-varying transmission rate
with a five-parameter logistic function. The second step involves estimation of parameters
in the iLSEIR model by using the DRAM algorithm, which combines delayed rejection
and adaptive metropolis samplers. The third step is evaluating the efficiency of dynamic
COVID-19 interventions based on a quantitative indicator, which considers both the de-
creasing degree of the transmission rate and the emerging time of the epidemic inflection
point. In this study, we applied the scheme to seven cities in Guangdong province and
compared their intervention efficiencies. We also discussed potential influencing factors.

The rest of this paper is organized as follows. Section 2 introduces the materials and
methodology, including the case study area, data sources, the proposed iLSEIR-DARM
model and the efficiency indicator. Section 3 presents the simulation results of the iLSEIR-
DRAM, the evaluated dynamic transmission rate, and the intervention efficiency. Section 4
discusses the influencing factors of the efficiency and implications of public health. Section 5
gives the main conclusions of this study.

2. Materials and Methodology
2.1. Study Area and Data
2.1.1. Study Area

Since its reform and opening in the 1980s, Guangdong has developed into one of the
most populous, open, innovative, and dynamic regions in China. With comprehensive
transportation systems, the cities in the region have been playing important roles in linking
economics at home and abroad. Large-scale movements, however, also indicate higher
transmission risks of COVID-19 in these cities [8]. From 19 January 2020 to 5 March 2020,
a total of 1351 confirmed cases were reported in Guangdong, which is the highest for
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the same period in China. In this study, we selected seven cities in Guangdong province,
including Shenzhen, Guangzhou, Dongguan, Zhuhai, Foshan, Zhongshan, Huizhou, to
evaluate the COVID-19 dynamic epidemic intervention efficiency (Figure 1). The cumula-
tive confirmed cases in these cities accounted for over 85% of Guangdong Province during
the first wave of the outbreak, each city with a number of cumulative confirmed cases more
than 25. Other cities were excluded because only imported cases of COVID-19 existed, and
no large-scale local transmission occurred in these cities.
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first reported in a city until the date when there had been zero new local cases for the past 

Figure 1. The location of seven cities in Guangdong province and their corresponding spatial
distribution of the final cumulative confirmed cases during the first COVID-19 wave. For each
city, the time window of the first COVID-19 wave refers to the period from 7 days before the
first reported case until no new local cases for 14 consecutive days, as shown in Table 1. Addi-
tionally, the seven days considers that the epidemic in other cities has a lag of 1 to 2 weeks from
Wuhan, because the infection source of other cities in the first wave was mainly imported from
Wuhan [34]. The 14 days considers that the incubation period for COVID-19 generally does not exceed
14 days (http://www.gov.cn/zhengce/zhengceku/2020-02/05/content_5474791.htm) (accessed on
5 August 2022).

Table 1. Time range of the first epidemic wave of seven cities in Guangdong province.

Cities Abbreviation Beginning of
the First Wave

End of the
First Wave

Confirmed
Cases Number

Shenzhen SZ 12 January 2020 5 March 2020 417
Guangzhou GZ 14 January 2020 18 March 2020 347
Dongguan DG 17 January 2020 12 March 2020 99

Zhuhai ZH 13 January 2020 1 March 2020 98
Foshan FS 14 January 2020 27 February 2020 84

Zhongshan ZS 15 January 2020 29 February 2020 66
Huizhou HZ 13 January 2020 2 March 2020 62

2.1.2. Data

Two types of data were used in this study, including COVID-19 confirmed cases
and potential influencing factors of the intervention efficiency. The COVID-19 data of
the study area were obtained from the Health Commission of each local city and Guang-
dong province. We chose the first epidemic wave as the corresponding data time win-
dow, which refers to the period from seven days before the date when the COVID-19
case was first reported in a city until the date when there had been zero new local
cases for the past 14 consecutive days, as shown in Table 1. The spatial distribution
of the final cumulative confirmed cases and the daily cumulative confirmed cases of
seven cities of Guangdong province are shown in Figures 1 and 2, respectively. Data
on potential influencing factors of the intervention efficiency include quantity and qual-

http://www.gov.cn/zhengce/zhengceku/2020-02/05/content_5474791.htm
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ity of medical resources, economic dynamics, and population mobility, which were ob-
tained from the Statistical Yearbooks 2020 of the seven cities, location-based services
(LBS) data obtained from open platforms, such as Amap API, and the monthly nighttime
light data (https://eogdata.mines.edu/nighttime_light/monthly/v10/2020/) (accessed on
22 April 2022).
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2.2. Methods

Constructing a model that can well characterize the dynamics of the epidemic trans-
mission process is key to evaluating the efficiency of interventions. In this study, we
constructed an iLSEIR-DRAM model to overcome the shortcomings of the existing models,
which fail to consider the variation and stochasticity of transmission rate over time. We
introduced a five-parameter logistic function to represent the dynamic transmission rate of
COVID-19 and estimated the parameters using the DRAM algorithm, which belongs to the
adaptive Markov Chain Monto Carlo (MCMC) method. Based on this, we further proposed
an indicator to evaluate the efficiency of dynamic interventions and used it to analyze the
composite intervention efficiencies of seven cities in Guangdong. The framework of the
scheme is shown in Figure 3.

2.2.1. Construction of the Improved LSEIR (iLSEIR) Model

Currently, the SEIR model is the most widely adopted and improved model for
simulating epidemics. The original SEIR model divides the population into four groups
according to human health statuses (i.e., susceptible (S), exposed (E), infected (I), and
removed (R)) and uses a set of differential equations to represent the changes in these
subpopulations over time [35–37]. There are three important parameters in the SEIR model,
namely, the transmission rate β, the incubation rate σ, and the probability of removing from
infection γ. They are often used as static parameters to specify the rates of transitions from
status S to status E, status E to status I, and status I to status R, respectively [12,37,38].

Due to human interventions, the infection ability of the infected individual will change
over time, which means that the transmission rate is time-varying. Thus, assuming it
as a fixed value cannot illustrate the actual situation of the epidemic transmission. By
introducing a four-parameter logistic function to quantify the time-varying transmission
rate β(t), the logistic SEIR (LSEIR) model was proved to be able to simulate the SARS
epidemic transmission in Guangzhou in 2003, which experienced three stages, namely, the
exponential growth stage, the slowing down stage, and the slow growth stage [30]. Accord-
ing to the white paper published by the State Council Information Office of the People’s
Republic of China (http://www.scio.gov.cn/ztk/dtzt/42313/43142/index.htm) (accessed
on 11 October 2021), the first wave of COVID-19 epidemic in China has also experienced
a similar three-stage epidemic transmission. It is, therefore, possible to construct a new
LSEIR-based model to simulate the COVID-19 epidemic transmission.

https://eogdata.mines.edu/nighttime_light/monthly/v10/2020/
http://www.scio.gov.cn/ztk/dtzt/42313/43142/index.htm
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Here, iLSEIR represents the improved logistic susceptible-exposed-infected-removed (SEIR) model.
The DRAM represents the parameter estimation algorithm, which integrated the adaptive metropolis
samplers (AM) and the delayed rejection (DR). The abbreviation tur implies the time period ratio
between the degree of transmission rate reduction in the infected individuals before and after the
fastest decrease. The abbreviation eff is the efficiency of dynamic COVID-19 interventions.

According to an existing comparative study, the four-parameter logistic function
in the original LSEIR model can be considered as a special case of the five-parameter
logistic function, which limits it from effectively describing the asymmetrical change in
the transmission rate due to the rate differences during the initial fall and the leveling
off [39]. Therefore, we constructed an improved LSEIR (iLSEIR) model by using the more
general five-parameter logistic function to show the dynamic transmission rate of COVID-
19. The ordinary differential equations (ODEs) of the iLSEIR mechanism model are shown
in Equations (1)–(6).

dS
dt

= −β(t) ∗ S(t)
N
∗ I(t) (1)

dE
dt

= β(t) ∗ S(t)
N
∗ I(t)− σ ∗ E(t) (2)
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dI
dt

= σ ∗ E(t)− γ ∗ I(t) (3)

dR
dt

= γ ∗ I(t) (4)

β(t) = k1 +
k2

(1 + exp(k3 ∗ (t− k4)))
k5

(5)

N(t) = S(t) + E(t) + I(t) + R(t) (6)

In Equations (1)–(5), S(t), E(t), I(t), and R(t) represent the population number of
susceptible (S), exposed (E), infected (I), and removed (R) at time t, respectively. N(t) is the
total number of the population in a city. The dynamic transmission rate β(t), which specifi-
cally refers to the number of susceptible individuals infected by one infected individual
at time t [38], is defined by the five-parameter logistic function in Equation (5). Detailed
explanations of the parameters {k1, k2, k3, k4, k5, σ, γ} to be solved are shown in Table 2.

Table 2. Explanations and range setting of main parameters in the iLSEIR epidemiological model.

Parameters Ranges Explanation

k1 k1 ∈ [0, 1]
k1 represents the final average transmission rate of infected
individuals after implementing interventions.

k2 k2 ∈ [0, +∞)
k2 represents the variation of the average transmission rate
during the entire transmission process. Thus, k1 + k2 means the
initial transmission rate of the infected.

k3 k3 ∈ [0 ,+∞)
k3 is the curvature at the inflection point, indicating the speed at
which the policy will take effect. The larger k3 is the faster the
prevention and control effect will appear.

k4 k4 ∈ [0, day)

k4 is the inflection point of the β(t), showing the time lag of the
human intervention effect and not exceeding the period to reach
half of the maximum cumulative confirmed cases of the local
epidemic (day). At the k4, the transmission rate drops fastest.

k5 k5 ∈ [0, +∞) k5 controls the asymmetry degree of the curve.

σ σ ∈ [0, 0.5]

σ represents the average positive rate during transmission,
which is equal to the inverse of the incubation period.
According to Ahmed S. Keshta et al., the COVID-19 incubation
period is generally more than 2 days [40]. The range of
parameter σ was, therefore, set as [0, 0.5].

γ γ ∈ [0, 1/7]

γ means the probability of removing from infection, which is
equal to the reciprocal of the recovery period. For COVID-19
patients, the average treatment time is mostly longer than
influenza patients. According to Mahmoud S. Al-Haddad et al.,
the average duration of illness for the common cold is one week
(7 days) [41]; therefore, setting the parameter γ is no more than
1/7 (the reciprocal of 7). The range of parameter γ was,
therefore, set as [0, 1/7].

2.2.2. Parameter Estimation and Initialization of the iLSEIR Model

The introduction of the dynamic β(t) to the iLSEIR model involves estimating more
parameters. Since the samples obtained from the target probability distribution are based
on estimate parameters, they should represent the true distribution, which, however, is
unknown and complex. It is, therefore, difficult to sample directly from the target prob-
ability distribution. The MCMC is a typical way to solve the problem since it introduces
a proposal distribution (i.e., uniform, Gaussian, normal distribution, etc.) to sample indi-
rectly [42,43]. However, it is difficult to determine an effective proposal distribution since
non- or slow convergence may occur if it is greatly different from the target distribution.
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A better strategy is to use an adaptive MCMC algorithm, which can update the proposal
distribution continuously [44].

In this study, we used the DRAM algorithm to estimate the parameters. The algorithm
optimizes the MCMC by combining adaptive metropolis (AM) samplers and delayed
rejection (DR). In the DRAM, the AM algorithm updates the proposal Gaussian distri-
bution continuously and efficiently by using the information so far acquired about the
target distribution. The DR considers the rejected information in each time step to pre-
serve the property and reversibility of the Markov Chain lost due to the AM. Herein, the
property and reversibility of the Markov Chain refer to the fact that the Markov Chain is
a sequence of random samples in which the “next state” (random sample) depends on the
“current state” but not on earlier ones [42]. For more information, please refer to Heikki
Haario et al.’s series of studies [44,45].

Therefore, the iLSEIR-DRAM model was constructed and then implemented on the
Matlab R2020a platform through an external toolbox (https://mjlaine.github.io/mcmcstat/)
(accessed on 5 May 2020), mcmcstat. To run the model, we set the initial value of the double
boundary range parameters to the median value and the single boundary range parameters
to the boundary value (Table 2). Additionally, we performed five restarts on a long Markov
Chain to minimize the impact of initial values on epidemiological ODEs [46]. To further
reduce the random errors, the average of ten simulations was used as the final results of
this study.

2.2.3. Evaluation of the Dynamic Intervention Efficiency

The degree of the decrease in the transmission rate and the emerging time of the
epidemic inflection point are important signs of the intervention effects. It is possible to
obtain values of these two metrics from the dynamic β(t). This study takes both of them
into account to construct a quantitative indicator of the dynamic intervention efficiency.
Specifically, we propose the e f f to evaluate the efficiency of dynamic COVID-19 inter-
ventions by incorporating two sub-indicators ∆β and tur, as shown in Equations (7)–(9).
Additionally, the ∆β in Equation (8) indicates the difference in the degree of transmission
rate reduction in the infected individuals before and after the fastest decrease in β, which
is used to evaluate the reduction in transmission rate. The tur in Equation (9) refers to
corresponding time period ratio, which assesses the acceleration degree of the emergence
of the epidemic inflection point.

e f f = ∆β ∗ tur (7)

∆β =
βs − βm

βm − βe
(8)

tur =
1

k4−Ts
Te−k4

(9)

In Equations (7)–(9), βs refers to the value of the transmission rate when the β(t)
curve starts to fall rapidly (at time Ts). βm is the value of the transmission rate when the
β(t) curve falls fastest (at time k4). Additionally, βe refers to the value of the transmission
rate when the β(t) curve tends to be zero (at time Te). Considering the states of β(t) at these
three time points and important signs of the intervention effects, this paper has constructed
an indicator e f f . The basis for obtaining Ts and Te is that the first order derivative of
β(t) is to be within the defined threshold (0.01 or 0.001 is sufficient). That means that
between time Ts and time Te, the effects of interventions cause a significant decrease in the
transmission rate. This indicator was used to evaluate the dynamic intervention efficiencies
of seven cities in Guangzhou. Figure 4 shows an example curve and its related parameters
of dynamic transmission rate β(t), which is useful to understand.

https://mjlaine.github.io/mcmcstat/
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Figure 4. An example of the dynamic transmission rate β(t). In the figure, k1 denotes the final
transmission rate after the epidemic is under control. k2 represents the actual reduction in the
transmission rate. k4 is the time when the β(t) curve has a turning point. At the turning point, the
first order derivative of the β(t) is the largest.

3. Results
3.1. Simulation Results of the iLSEIR-DRAM

Based on the parameter estimation results, we obtained the mean and median of the
average positive rate σ and recovery rate γ, as shown in Table 3. The average incubation
period 1/σ and the average time interval from diagnosis to discharge 1/γ can be then
inferred accordingly (Table 3). Additionally, the Guangdong Provincial Center for Disease
Control and Prevention has estimated a 6.7556-day lag between infection and diagnosis.
Therefore, the actual infection period of the COVID-19 patients, from infection to removal,
requires adding this time lag. The basic reproductive number R0 can be then inferred based
on the ratio of the initial transmission rate to the inverse of this time lag. Additionally,
8.02 and 7.40 are the mean and median infections that an index case would cause within
a completely susceptible population.

Table 3. Epidemiological indicators derived from parameter estimation.

Indicators
Average

Positive Rate
(σ)

Average
Incubation

Period
(1/σ)

Recovery
Rate
(γ)

Average Time Interval
from Diagnosis

to Discharge
(1/γ)

Recovery
Period

Basic
Reproductive

Number
(R0)

Mean 0.27 3.76 0.10 9.72 16.48 8.02
Median 0.28 3.63 0.10 9.53 16.29 7.40

Based on 5× 105 times simulations under the 95% confidence level, the cumulative
confirmed cases in each city fitted well with determination coefficients R2 greater than
0.98 (Table 4). The fitting curves in Figure 5 also prove that the iLSEIR-DRAM model can
simulate well in different cities. It indicates that the model with five-parameter logistic
function is suitable for representing the time-varying transmission rate of the infected
under human intervention.
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3.2. Dynamic Changes in Transmission Rate Curves

According to the parameter estimation results of in Equation (5), we estimate the
dynamic transmission rate β(t) (Figure 6). The seven curves have both similarities and
differences. One of the similarities is that all these curves have three-stage changes during
the first COVID-19 wave, including the exponential growth stage, the slowing down
stage, and the slow growth stage. The second similarity is that the co-effects of various
interventions will eventually reduce the daily infectious ability of infected persons to
a low level, i.e., the transmission rate β(t) is close to zero, effectively decreasing the risk of
COVID-19 infection in the cities.
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However, the differences of these transmission rate curves show distinct epidemic
processes and intervention efficiencies in each city. Firstly, differences in the maximum
and minimum values indicate different transmission rates at the beginning and under
control, respectively. As shown in Figure 6, the initial transmission rate was highest in
Guangzhou (2.03 person/day), while the lowest was in Zhongshan (0.71 person/day).
After the epidemic being under control, the final transmission rates of all the cities were
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ultimately less than 0.01 person/day. Secondly, policies on COVID-19 might not take
effect immediately after implementation due to the latency period. As reflected in the
transmission rate curves, differences in the timing of inflection points indicate that it took
different amounts of time for each city to bring the COVID-19 epidemic under control.
For example, Shenzhen, Zhuhai, Huizhou, and Zhongshan had spent longer time to reach
their inflection points. In addition, the curvature at the inflection point of the β(t) curve
indicates the speed of intervention effects taken. Curvatures of the seven curves show
that the epidemic turns around much faster in Foshan and Guangzhou than in the other
five cities.

3.3. Results of the Dynamic Intervention Efficiency Evaluation

As described in Section 3.3, the construction of the indicator considers the intervention
efficiency of the COVID-19 epidemic in two aspects, including both the decreasing degree
of the transmission rate and the emerging time of the epidemic inflection point. Therefore,
the proposed efficiency indicator in Equation (7) is subject to both ∆β in Equation (8) and
tur in Equation (9). Based on the parameter estimation results and Equations (7)–(9), the
dynamic intervention efficiencies of the cities were rationally evaluated. The integrative
evaluation results show that the rank of cities by efficiencies from highest to lowest is
Guangzhou, Dongguan, Foshan, Zhongshan, Zhuhai, Shenzhen, and Huizhou (Table 4).
Figure 7 gives the spatial distributions of the intervention efficiency in each city.

Int. J. Environ. Res. Public Health 2022, 19, x  11 of 18 
 

 

 
Figure 7. The distributions of the dynamic intervention efficiency  using the proposed indicator 
for each city. 

Table 4 shows that seven cities have different performances in different aspects of 
epidemic prevention and control. However, the values of ∆  show that significant reduc-
tion in transmission rates have taken place in these cities. Consequently, the  indicates 
that inflection points appear earlier in Guangzhou, Foshan, and Huizhou than the other 
four cities. Obviously, since the difference of ∆  is greater than tur, it also contributes 
more to the efficiency indicator . Moreover, the transmission processes of most exist-
ing epidemics and EIDs essentially show the three-stage characteristic [47], and the effi-
ciency indicator available in this study are suitable for them. 

Table 4. The dynamic intervention efficiencies in different cities. 

Cities 
Determination 

Coefficient ( ) 

Transmission Rate 
Reduction (∆ ) 

Inflection 
Point ( ) 

Efficiency ( ) 

Shenzhen 0.9993 0.8464 1.1205 0.9484 
Guangzhou 0.9968 5.1795 0.3742 1.9380 

Zhuhai 0.9979 1.2223 0.8602 1.0514 
Dongguan 0.9955 4.0595 0.4192 1.7019 

Foshan 0.9910 1.8904 0.6479 1.2248 
Zhongshan 0.9951 1.3863 0.7919 1.0978 

Huizhou 0.9860 0.6809 1.3232 0.9010 

4. Discussion 
4.1. Analysis of Influencing Factors Related to Efficiency 

To better understand the impact of regional socio-economic vulnerability and policy 
response on dynamic intervention efficiencies, we chose several factors (Table 5) to ex-
plore the correlation between these variables and the efficiencies. These socio-economic 
indicators of the factors were selected or constructed from three aspects: (1) number of 

Figure 7. The distributions of the dynamic intervention efficiency e f f using the proposed indicator
for each city.

Table 4 shows that seven cities have different performances in different aspects of
epidemic prevention and control. However, the values of ∆β show that significant reduction
in transmission rates have taken place in these cities. Consequently, the tur indicates
that inflection points appear earlier in Guangzhou, Foshan, and Huizhou than the other
four cities. Obviously, since the difference of ∆β is greater than tur, it also contributes
more to the efficiency indicator e f f . Moreover, the transmission processes of most existing
epidemics and EIDs essentially show the three-stage characteristic [47], and the efficiency
indicator available in this study are suitable for them.
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Table 4. The dynamic intervention efficiencies in different cities.

Cities
Determination

Coefficient
(R2)

Transmission Rate
Reduction

(∆β)

Inflection Point
(tur)

Efficiency
(eff)

Shenzhen 0.9993 0.8464 1.1205 0.9484
Guangzhou 0.9968 5.1795 0.3742 1.9380

Zhuhai 0.9979 1.2223 0.8602 1.0514
Dongguan 0.9955 4.0595 0.4192 1.7019

Foshan 0.9910 1.8904 0.6479 1.2248
Zhongshan 0.9951 1.3863 0.7919 1.0978

Huizhou 0.9860 0.6809 1.3232 0.9010

4. Discussion
4.1. Analysis of Influencing Factors Related to Efficiency

To better understand the impact of regional socio-economic vulnerability and policy
response on dynamic intervention efficiencies, we chose several factors (Table 5) to explore
the correlation between these variables and the efficiencies. These socio-economic indica-
tors of the factors were selected or constructed from three aspects: (1) number of medical
resources, (2) quality of medical resources, and (3) economic dynamics and population mo-
bility. In addition, we analyzed the relationship of intervention efficiency with the epidemic
inflection point and the initial transmission rate, respectively. As shown in Table 5, we
first selected the initial transmission rate (β0), the ratio of the time of epidemic turnaround
(EIP), the size of population (Ppopu), medical resource-related indicators, including the
totals of grade A hospitals (Phosp_a), hospital beds (Phosp_bed), doctors (Pdoc), and nurses
(Pnur), and the growth rate of nighttime light values (Pnpp) as possible influencing factors,
and then we analyzed the correlation between these factors and the prevention and control
efficiency (e f f ).

Table 5. Possible influencing factors of the intervention efficiency.

Possible Influencing Factors Explanations

initial transmission rate β0: The initial transmission rate in each city,
which is equal to k1 + k2.

population size Ppopu: The proportion of population size in
a given city among these seven cities.

epidemic inflection point

EIP: The ratio between the period to reach half
of the maximum cumulative confirmed cases of
the local epidemic (day) and the duration of
the first wave epidemic.

number of medical resources

Phosp_bed: The proportion of hospitals in a given
city among these seven cities.

Pdoc: The proportion of doctors in a given city
among these seven cities.

Pnur: The proportion of nurses in a given city
among these seven cities.

quality of medical resources Phosp_a: The proportion of grade A hospitals in
a given city among these seven cities.

economic dynamics and population mobility Pnpp: The growth rate of nighttime light values
during February compared to January.

We implemented the Shapiro–Wilk (S–W) normality test to select suitable indica-
tors and their exponential and logarithmic transformations before the correlation analy-
sis, where the two variables involved are required to satisfy a bivariate normal distribu-
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tion [48]. The results of the S–W test are shown in Table 6. According to the statistic W and
P-value, we selected eight indicators β0, ln

(
Ppopu

)
, exp(EIP), ln

(
Phosp_bed

)
, ln(Pdoc), ln(Pnur),

ln
(

Phosp_a

)
, and Pnpp to perform the Pearson correlation analysis with the e f f . In addi-

tion, we have drawn Q-Q plots on nine variables, including e f f , β0, ln
(

Ppopu
)
, exp(EIP),

ln
(

Phosp_bed

)
, ln(Pdoc), ln(Pnur), ln

(
Phosp_a

)
, and Pnpp (Figure 8). In Figure 8, the distribu-

tion of these scatter points for each Q-Q plot is close to a straight line, which indicates that
the original and transformed data used in this study are normally distributed.

Table 6. The Shapiro–Wilk (S–W) normality test between eff and eight selected variables. Where the
value of statistic W is closer to 1, the significance level p-value is greater than 0.05; the hypothesis that
the variables obey a bivariate normal distribution is accepted.

Indicators W p-Value Pass the Test or Not Choose the
Variable or Not

β0 0.8945 0.2989 Yes
√

exp(β0) 0.7573 0.0151 No
ln(β0) 0.8635 0.1627 Yes

Ppopu 0.8599 0.1511 Yes ×
exp

(
Ppopu

)
- - - ×

ln
(

Ppopu
)

0.9139 0.4233 Yes
√

EIP 0.8411 0.1017 Yes ×
exp(EIP) 0.8606 0.1533 Yes

√

ln(EIP) 0.7816 0.0268 No ×
Phosp_bed 0.7987 0.0398 No ×

exp
(

Phosp_bed

)
0.7768 0.0240 No ×

ln
(

Phosp_bed

)
0.9134 0.4202 Yes

√

Pdoc 0.8374 0.0940 Yes ×
exp(Pdoc) 0.8223 0.0676 Yes ×
ln(Pdoc) 0.9019 0.3425 Yes

√

Pnur 0.8195 0.0636 Yes ×
exp(Pnur) 0.7972 0.0385 No ×
ln(Pnur) 0.9164 0.4419 Yes

√

Phosp_a 0.7458 0.0115 No ×
exp

(
Phosp_a

)
0.7230 0.0066 No ×

ln
(

Phosp_a

)
0.8497 0.1220 Yes

√

Pnpp 0.9455 0.6885 Yes
√

exp
(

Pnpp
)

0.9389 0.6287 Yes ×
ln
(

Pnpp
)

- - - ×

As shown in Figure 9, the result of correlation between socio-economic factors and
the dynamic intervention efficiency also further validates the rationality of the proposed
indicator e f f . For example, the efficiency of dynamic COVID-19 interventions (e f f ) is
significantly negatively (−0.88) correlated with the epidemic inflection point (exp(EIP)).
That means where interventions are more efficient, the earlier the epidemic inflection point
occurs. The population size (ln

(
Ppopu

)
) and the initial transmission rate has a significant

positive correlation (R2 = 0.77), which indicates that cities with a larger population size will
easily have a higher initial transmission rate and face more epidemic pressure.
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Allocation of medical resources is another key for the efficiency of dynamic COVID-19
interventions (e f f ). In general, medical care level is shown in both quantity and quality
of medical resources, which are also a city’s foundation to respond to an outbreak of an
infectious disease. This study uses the number of hospital beds (ln

(
Phosp_bed

)
), doctors

(ln(Pdoc)), and nurses (ln(Pnur)) to indicate the quantity of medical resources and the
number of class A hospitals (ln

(
Phosp_a

)
) to indicate the quality of medical resources. Their

correlations with e f f were 0.64, 0.56, 0.62, and 0.53, with β0 were 0.87, 0.83, 0.86, and 0.79,
and with exp(EIP) were −0.74, −0.73, −076, and −0.73. This indicates that cities with
higher levels of medical care are more effective in preventing and controlling epidemics by
reducing the transmission rate and accelerating the inflection point. Therefore, determining
how to better allocate medical resources would help patients recover sooner, hence reducing
the infection risk [49]. This issue is extremely urgent and challenging.

Additionally, urban, economic, and population activity levels (Pnpp) were significantly
and negatively (−0.60) associated with the efficiency of dynamic COVID-19 interventions
(e f f ). As the infection sources of COVID-19 in Guangdong were mainly imported cases
from Hubei during the first wave, cities with stronger mobility intensity usually had higher
imported risk. Further, the local transmission scale of imported cases is largely influenced
by the level of economic and demographic activity within the city. When a city has more
restrictions regarding this, the intervention intensity is stronger, and the intervention is
more efficient. Because nighttime light data have been shown to reflect this feature well,
the growth rate of nighttime light values during February compared to January is used
here in this study.

4.2. Advantages and Limitations

Although many studies have evaluated the intervention efficiency of COVID-19
through sensitivity analysis of control variables, few of them considered the time-varying
transmission rate and evaluated the effectiveness of different policies already applied. In
this study, the proposed scheme provides a solution for this issue, which constructed an
iLSEIR model by introducing a dynamic transmission rate β(t) and constructed an indicator
to realize efficiency evaluation of the interventions that already applied by considering how
much the transmission rate reduces and how quickly the epidemic inflection point occurs.

Our method highlights that the transmission rate can be significant in reflecting the
effects of human interventions. For most previous COVID-19 studies, the transmission
rate was generally set to average, which simplifies its time-varying characteristics. This
study represents β(t) using the five-parameter logistic growth function, which intuitively
describes the dynamic change in the infectious ability of the infected person under different
intervention intensities. Moreover, the function’s three-stage characteristic can explain
the effects of interventions on most epidemics, which could provide a reference for other
EIDs. Considering seven cities in Guangdong Province as a typical case, we found that
the iLSEIR-DRAM model simulated well after introducing the five-parameter logistic
growth function, with R2 exceeding 0.98 in all the cities. It indicates that the function’s
mathematical characteristics well represent the dynamic transmission rate of the infected
people under various interventions. Our study also achieves at constructing a quantitative
indicator to make the dynamic intervention efficiency comparable in different cities.

This study still has certain limitations. First, this model has only been used to eval-
uate the efficiency of nonpharmacological interventions. As of 21 March 2022, China
had administered about 3.23 billion doses of COVID-19 vaccine, with an 87% full vacci-
nation rate (http://www.nhc.gov.cn/xcs/fkdt/202203/321bbcc05ff548a8bd73d3d31242
dc10.shtml) (accessed on 5 August 2022). Although the vaccinated populations are not
completely immune, the probability of infection has decreased significantly. Since the effect
of the vaccine can also be reflected in the transmission rate, the iLSEIR-DRAM model has
the potential to evaluate the co-effects of vaccination and nonpharmacological interven-
tions. Future research may evaluate the efficiency of interventions after the invention of the
COVID-19 vaccine. Second, although the five-parameter logistic function is more realistic to

http://www.nhc.gov.cn/xcs/fkdt/202203/321bbcc05ff548a8bd73d3d31242dc10.shtml
http://www.nhc.gov.cn/xcs/fkdt/202203/321bbcc05ff548a8bd73d3d31242dc10.shtml
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represent the dynamic transmission rate β(t), it could not guarantee apparent improvement
in the LSEIR model’s simulation accuracy when comparing to the four-parameter logistic
function. Future studies should investigate the advantages of four- and five-parameter
logistic function used in epidemiology. Third, our work has not performed an attribution
analysis for β(t), which is critical to achieve the epidemic prediction. In the future, studies
should conduct more in-depth research to address this deficiency.

5. Conclusions

Evaluating the intervention efficiency is imperative to optimize prevention and con-
trol measures for the outbreak and rapid spread of the COVID-19 epidemic. This study
constructed the iLSEIR-DRAM model focusing on the co-effects of all time-varying interven-
tions and quantifying the transmission rate with the five-parameter logistic growth function
and has successfully evaluated the COVID-19 dynamic intervention efficiency during the
first wave. The proposed model can accurately simulate the transmission process of the
COVID-19 epidemic, with the accuracy being over 98% for seven cities of Guangdong. We
constructed a quantitative indicator to evaluate the intervention efficiency and analyzed the
transmission rate reduction and the inflection point of the COVID-19 epidemic to capture
the major influencing factors. The satisfying results of the epidemic transmission simulation
and correlation analysis indicate that our proposed scheme can serve as a reference for
precise interventions and equal distribution of resources and contribute to responses to
other emerging infectious diseases.
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