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Abstract: Many uncertainties such as variable irregular structure and complex flow conditions
bring difficulties to the design of a nature-like fishway. This study defines the main factors and
parameters affecting flow conditions such as permeability ratio, offset ratio, bottom slope and pool
length to simplify and generalize the irregular geometry of the nature-like fishway. According to the
engineering requirements of the Mopiling nature-like fishway, the effect of the above parameters of
pool geometry on the flow structure is investigated through a 3D turbulent numerical simulation, and
the parameter thresholds are summarized according to the optimization of the flow conditions. The
results show that under the same conditions, the maximum velocity of the control section increases
with the increase in permeability ratio, bottom slope and pool length, and the offset ratio has limited
effect on the maximum velocity of the control section. It is recommended that when the bottom slope
is 1/250 and the pool length is 10 m, the permeability ratio should not be greater than 0.30 and the
offset ratio should be located between 0.15 and 0.60. When the bottom slope is adjusted to 1/200, it is
recommended to control the permeability ratio below 0.20, the offset ratio between 0.30 and 0.60, and
the pool length can be adjusted to 8 m. Within the above threshold range of the design parameters,
the maximum velocity in the fishway can be basically controlled at about 1.0 m/s. The mainstream in
the pool is clear and the flow pattern is good, which can basically satisfy the requirements of fish
passing. The relevant design parameters and optimization strategies can provide reference for similar
projects.

Keywords: nature-like fishway; permeability ratio; offset ratio; bottom slope; pool length

1. Introduction

The construction of water conservancy projects such as locks and dams can meet the
requirements of flood control, irrigation, power generation, etc. While generating huge
social and economic benefits, they also form a barrier to fish in rivers, hindering the genetic
exchange of fish upstream and downstream of the dam site and destroying the ecological
environment on which fish and other aquatic organisms rely for survival. The fishway
is responsible for opening up the fish migration channel and safeguarding the aquatic
ecological environment of the watershed. The fish are sensitive to the water flow conditions
in the fishway, and the hydraulic characteristics of the fishway are also complicated, so
it is necessary to conduct hydraulics research on the fishway to ensure the effect of fish
passing [1–6].

There are two types of fishways: technical fishways and nature-like fishways. At
present, many scholars have studied the technical fishway, especially for the vertical-slot
fishway; they have mainly studied the flow characteristics of the common pool or the turn-
ing pool [7–9], and analyzed the effects of pool geometry changes such as the length and
width of the pool, the layout of the vertical slots, the bottom slope and the macro-roughness
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on the flow conditions [10–14]. For the complex turbulent flow in the vertical-slot fishway,
researchers also used more sophisticated turbulent models such as the detached eddy
simulation and the large eddy simulation to study the velocity and eddy [15–18]. A good
vertical-slot fishway design should ensure that the hydraulic characteristics of the pool are
compatible with the swimming ability of the fish. Researchers observed the fish upstream-
ing process in the vertical-slot fishway, analyzed the motion characteristics, revealed that
the fish movement was related to the preference range of hydraulic characteristics such
as velocity and turbulent kinetic energy [19–23], and simulated the fish trajectory using a
numerical model [24,25]. Generally, the structure of a technical fishway is relatively regular,
which is convenient for design. However, the internal flow structure and flow pattern
of the pool are slightly single, which is only suitable for some special fishes. However,
in practical engineering, there are various passing objects that need to be protected in
rivers. Among them, the body shape is quite different, and the swimming ability is also
different. Especially, the swimming behavior and energy cost-recovery of fish passing
through velocity barriers are very complex [26–28]. The construction of fishway needs to
use an interdisciplinary approach, considering aquatic biology and hydraulics. How to
design a fishway that can consider a variety of passing objects and improve the efficiency
of fish passing is the key and difficult point of the research.

A nature-like fishway is a broad term for several styles of structures such as bottom
ramps and slopes, bypass channels and fish ramps, with the chosen construction material
corresponding to what is usually present in rivers under natural conditions. Compared
with traditional technical fishways, the flow conditions in nature-like fishways tend to be
more diversified, providing both fish passage and habitat for a variety of aquatic organ-
isms [29–32]. The nature-like fishway optimizes the construction material and structure
form ecologically, pays more attention to the overall coordination with the surrounding
environment, and can form an ecological-landscape corridor [33]. For hydraulic-design
aspects of nature-like fishways, Acharya et al. [34] studied the flow field around the single
geometric flow obstruction of different shapes and gave recommendations for the spacing of
isolated roughness elements in the fishway. He et al. [35] compared the hydraulic character-
istics in the fishway of the rocky ramp type under aligned slot arrangement and staggered
slot arrangement. Baki et al. [36] investigated the hydraulic characteristics of a rock-weir
fishway with and without passage notches. Zhang et al. [37] studied the cross-section form
with multi-stage velocity in the fishway by adjusting the arrangement of multiple groups
of wild stones. Hu et al. [38] and Ma et al. [39] studied the flow conditions under the
structure combination of a bottom outlet or surface outlet and a vertical slot. Li et al. [40]
compared the hydraulic characteristics of fishways with cobblestone weirs and fishways
with impermeable weirs, and analyzed the effect of cobblestone weirs’ porosity on flow
conditions. The nature-like fishway often has a slow bottom slope, a long route and many
changes; it is easy to accumulate energy at all levels of the pools. Xu et al. [41] established
the overall physical model of the nature-like fishway, and demonstrated the overall and
local flow conditions and the local water supplement measures. The nature-like fishway is
designed according to the site topography and natural materials to simulate the natural
river as much as possible. Many uncertainties such as the variable irregular structure
and the complex flow conditions bring difficulties to the design of the nature-like fishway.
Fewer nature-like fishways have been built and are under construction in China, and there
is a lack of sufficient construction experience and post-evaluation of fish-passing effects.
Due to the complexity of the subject, there is a lack of simple, effective and well-developed
research methods or design guidelines for the nature-like fishway [41].

This study defines the main factors and parameters such as the permeability ratio,
offset ratio, bottom slope and pool length to simplify and generalize the irregular geometry
of the nature-like fishway. According to the engineering requirements of the Mopiling
nature-like fishway, in the study, we carried out a three-dimensional turbulent numer-
ical simulation. The effect of parameters of pool geometry on the flow structure was
investigated, and the design parameter thresholds meeting the engineering requirements
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were obtained according to the optimization of the flow conditions, which can provide a
theoretical reference for the construction of the nature-like fishway.

2. Materials and Methods
2.1. Study Sites

The Xinjiang River is located in the northeastern part of Jiangxi Province, China, and it
is rich in fish resources and has many economic fish species. Mopiling hydrojunction is part
of the Bazizui hydrojunction on the Xinjiang River; the construction will form a barrier to
fish in the hydrojunction area and even the entire mainstream of the Xinjiang River, causing
damage to the ecological environment. In order to open up the fish migration channel
between the upstream and downstream of the Mopiling hydrojunction, it is proposed to
build a nature-like fishway (the bypass channel) with abundant construction space and
good layout conditions.

The main protecting targets of the fishway are economic fish such as the “four great
fish” and the original rare fish such as shad in the Xinjiang River. The design velocity of
the fishway refers to the maximum velocity of the control section of the fishway under the
design water level difference. It is generally believed that the ability of fishes to overcome
the velocity increases with their body length, so in the preliminary design, the design
velocity of the fishway can be selected according to the body length of the main fish-passing
objects. According to the data, for Cyprinidae fish with a body length greater than 30 cm,
the design velocity of the fishway is usually 1.0 m/s~1.2 m/s, and the favorite velocity of
the shad is 0.7 m/s~1.0 m/s. So, the design velocity of this fishway is determined to be 0.7
m/s~1.2 m/s; the study controlled the maximum velocity of the fishway at about 1.0 m/s.

The design strategy of the Mopiling nature-like fishway is that the total length and
slope of the fishway are determined by considering the topography. The interior of the
fishway basically adopts a trapezoidal section with the partition walls set at every distance
along the fishway, constructed with natural materials such as rock to form the structure of
the vertical slots. The main season of the fish migration is from April to July every year;
during the season, the design’s water level at the fishway outlet is 18.0 m, and the design’s
low water level at the inlet is 12.95 m. The total length of the effective climbing section of
the fishway is determined to be about 1265 m, with an average slope of 1/250.

2.2. Generalization Strategy and Numerical Model of Nature-Like Fishways

There are variable cross-sectional patterns and many influencing factors for nature-like
fishways. The study could not be carried out effectively if all the complex factors were
taken into account. In order to understand its basic hydrodynamic characteristics, this
study simplified and generalized the nature-like fishway by not considering other factors
such as possible bends, resting pools, shoals and deep pools in the bypass channel, but
only considering the linear section and the basic unit of the fishway pool.

The nature-like fishway adopts a trapezoidal arrangement. The partition wall is set
at every interval in the fishway to form water blocking and energy dissipation, and the
pool is formed between adjacent partition walls. There are several water-permeable areas
in the partition wall, and the water-permeable area of adjacent partition walls is arranged
on different sides to form the mainstream. In this paper, the irregular permeable area
in partition walls is simplified as a rectangle. According to the concept of the narrow
permeable zone of the control section in the vertical-slot fishway, the rectangular permeable
area in the nature-like fishway is also called “vertical slot”. The general layout of the
partition wall and the pool is shown in Figure 1. In the figure, B represents the bottom
width of the pool, b represents the width of the vertical slot, i′ represents the side slope of
the fishway, h represents the water depth, a represents the offset distance at the bottom of
the short partition wall, d represents the thickness of the partition wall, x′ represents the
distance between the centers of adjacent vertical slots, and L represents the length of the
pool.
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There are two important causes of water flow energy consumption in the fishway:
water blockage by the partition wall and mainstream bypass deflection of the pool. Based
on these two reasons, the irregular cross-section and the pool geometry is simplified
and generalized. The water-permeable area of the partition wall is expressed by the
permeability ratio of the control section, referred to as the permeability ratio. Additionally,
the mainstream deflection length of the pool is expressed by the offset ratio of the control
section of the adjacent pool, referred to as the offset ratio.

There are many factors that affect the flow conditions, based on the generalization
above; the main ones are permeability ratio, offset ratio, bottom slope, side slope, bottom
width and pool length. Within a certain range, changes in the side slope and bottom width
have limited effect on the flow conditions [38,41]. So, the main influencing factors discussed
in the study are permeability ratio W, offset ratio R, bottom slope S and pool length L. The
permeability ratio of the control section can be calculated according to Formula (1):

W = A′/A (1)

A′ is the water flow area of the control section (i.e., the water flow area of the vertical
slots in the generalization, A′ = h · b). A is the trapezoidal water flow area of the pool,
A = (B+ h/i′)h. The offset ratio of the control section of the adjacent pool can be calculated
according to Formula (2):

R = x′/B (2)

In the study, the effects of changes in permeability ratio and offset ratio on the velocity
of the pool are calculated and analyzed one by one to obtain reasonable thresholds that meet
the engineering requirements. On this basis, the effects of changes in bottom slope and pool
length on the velocity of the pool are analyzed to further demonstrate the reasonableness
of the thresholds of W and R.

In the preliminary design of the Mopiling nature-like fishway, the pool length is 10.0 m,
the bottom width is 4.0 m, the bottom slope is 1/250, and the side slope is 1/2. The partition
wall is built with artificial gabions or pebbles, 0.6 m-thick, which are porous and rough.
In this study, the nature-like fishway is simplified and generalized according to design
parameters such as permeability ratio and offset ratio, focusing on the effect of structural
changes on the flow conditions, so the boundary conditions of the geometry are modeled
as impermeable and treated as wall boundaries without considering the porosity. For
the surface of the geometry, the surface roughness is set to 0.01 m in the simulation. The
simulation experience shows that the surface roughness has limited influence on the overall
flow condition within a certain range, so it is reasonable to set this value. The numerical
model of the fishway was constructed including 9 common pools and 15 m flat sections in
both the upstream and downstream, with the total length of 120 m.

To date, Reynolds-averaged Navier–Stokes (RANS) turbulence simulation techniques
are the most popular alternative for fishway modelling. Compared with other methods,
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RANS methods have demonstrated a good accuracy and computational cost [9,14,40]. In
the study, the RNG k-ε model and the method of VOF were used. Additionally, the control
equations are expressed in the rectangular coordinate system as follows [35,38,39,42]:

∂ρ

∂t
+

∂ρui
∂xi

= 0 (3)

∂(ρui)

∂t
+

∂
(
ρuiuj

)
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ε

k
Gk − C2ερ

ε2
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∂F
∂t

+ ui
∂F
∂xi

= 0 (7)

where ρ is the fluid density, t is the time, ui and uj are the velocity components, xi and
xj are the coordinate components, p is the pressure, µ is the dynamic viscosity, µt is the
eddy viscosity, the equation is µt = ρCµk2/ε, ρgi is the body acceleration, k is the turbulent
kinetic energy, ε is the turbulent dissipation, and F is the volume fraction of fluid; the other
parameters in the equations are:

Gk = µt

[
∂ui
∂xj

(
∂ui
∂xj

+
∂uj

∂xi

)]
(8)

C∗1ε = C1ε −
η(1− η/η0)

1 + βη3 (9)

η =
k
ε

√(
2Eij · Eij

)
(10)

Eij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
(11)

Empirical constants in the equation: Cµ = 0.0845, αk = αε = 1.39, C1ε = 1.42,
C2ε = 1.68, η0 = 4.38, and β = 0.012.

The calculation area is meshed with 1.73 million hexahedral cells for reconstructing the
geometry. The geometry and mesh are shown in Figure 2. Pressure boundary conditions
are used for the inlet, outlet and top surface of the numerical model. The water depths
of the inlet and outlet are both controlled as 1.0 m. The relative pressure and the volume
fraction of fluid at the top boundary of the fishway are both set to 0, indicating that there is
only atmosphere. The model set the initial water level and adopted the adaptive time step
for calculation, with the initial time step set to 0.01 s, solved by transients until the flow
state reaches steadiness and convergence.

2.3. Model Validation

In order to verify the velocity distribution in the fishway pool, the numerical model is
verified by using the data of a physical model test of another fishway. The common pool
length is 3.0 m, the pool width is 2.5 m, the vertical-slot width is 0.4 m, the water depth
is 1.5 m, and the bottom slope is 1/100. The geometric scale of the physical model is 5.
The simulation area includes 11 common pools and one resting pool, including 6 pools
upstream of the resting pool and 5 pools downstream, with a total of 13 vertical slots
(numbered from upstream to downstream 1–13). The study verified the maximum flow
velocity of the vertical slot along the fishway from 3 to 11, and the verification results
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are shown in Figure 3. The velocity measurement data of a typical pool were selected
for further verification, the distribution of measuring points is shown in Figure 4, and
the comparison of the simulated and measured values is shown in Figure 5, where Y
indicates the width direction of the pool. The validation results show that the simulated
and measured values match well, and the maximum deviation between the simulated and
measured values of the maximum velocity of the vertical slots is 4.55%, which indicates
that the numerical model can simulate the hydraulic characteristics well and can be used
for subsequent studies.
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2.4. Cases

In order to discuss the influence of permeability ratio W, offset ratio R, bottom slope
S and pool length L on flow conditions, the cases were designed, respectively; all cases
are shown in Table 1. Each case keeps the side slope at 1/2 and bottom width at 4.0 m
unchanged.

Table 1. Numerical model calculation cases.

Case b (m) W a (m) R S L (m)

1 0.6 0.1 0 0.85 1/250 10
2 0.9 0.15 0 0.775 1/250 10
3 1.2 0.2 0 0.7 1/250 10
4 1.5 0.25 0 0.625 1/250 10
5 1.8 0.3 0 0.55 1/250 10
6 2.1 0.35 0 0.475 1/250 10
7 0.9 0.15 0.35 0.6 1/250 10
8 0.9 0.15 0.65 0.45 1/250 10
9 0.9 0.15 0.95 0.3 1/250 10

10 0.9 0.15 1.25 0.15 1/250 10
11 0.9 0.15 1.55 0 1/250 10
12 0.9 0.15 0.95 0.3 1/200 10
13 0.9 0.15 0.95 0.3 1/150 10
14 1.2 0.2 0.8 0.3 1/200 10
15 1.5 0.25 0.65 0.3 1/200 10
16 0.9 0.15 0.95 0.3 1/200 8
17 0.9 0.15 0.95 0.3 1/200 12
18 1.2 0.2 0.8 0.3 1/200 8

According to the engineering background, the design average bottom slope of the
fishway is 1/250. In the study, the bottom slope is controlled to be 1/250 and the pool
length is 10 m. The effects of changes in W and R on the velocity are investigated. In
cases 1~6, where the vertical slots are adjacent to the bottom of the side slope on one side
(i.e., a = 0 m), the permeability ratio is changed by adjusting the width of vertical slots, and
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the reasonable threshold of the permeability ratio is analyzed according to the results. On
this basis, cases 2 and 7~11 control the permeability ratio unchanged, adjust the offset ratio
by changing a to obtain a reasonable threshold of the offset ratio.

The bottom slope is designed according to the terrain topography, and different slopes
can be used for different lots, so it is necessary to study the bottom slope. Cases 9, 12 and
13 study the effect of bottom slope change on the velocity under the control of the constant
permeability ratio and offset ratio. On this basis, cases 12, 14 and 15 control the bottom
slope of 1/200, to further demonstrate the reasonable threshold value of the permeability
ratio. To further optimize the hydraulic characteristics, cases 12, 16 and 17 control the
permeability ratio, offset ratio and bottom slope constant, and the influence of the pool
length on the velocity was studied. On this basis, the pool length is further discussed.

2.5. Indicators and Analysis Methods

In the fishway design, the most important concern is whether fishes can successfully
pass, and the most intuitive hydrodynamic information is the velocity distribution in the
fishway. In this study, the maximum velocity of the control sections (i.e., the maximum
velocity of the vertical slots) is mainly used as the control index. The study controls the
maximum velocity of the control sections at about 1.0 m/s.

To avoid the influence of upstream and downstream on the calculation results, the
maximum velocity from the 4th vertical slot to the 9th vertical slot (Figure 2 No. 1#~6#)
from upstream to downstream was studied and counted. The data’s maximum, minimum
and average values were analyzed as the maximum velocity of the control section. The
relationship between each influencing factor and the maximum velocity of the control
section was studied. At the same time, due to the uneven distribution of the velocity at
the vertical slot, even if the maximum velocity exceeds the limit, there is still a certain
range of channels available for fish to move up. In order to quantitatively analyze the area
range of the velocity at vertical slots, the downstream edge of the vertical slot from 1# to
6# was taken as the statistical section (the measuring position is shown in Figure 1), and
the distance between adjacent measuring points on each statistical section was 0.1 m. The
velocity exceeding 1.0 m/s was defined as the exceeded velocity. The number of exceeded
velocity points on the statistical section was counted, and the ratio of exceeded velocity
points to the total number of points was the exceeded velocity ratio, which is used to
approximate the area range of the exceeded velocity in the vertical slots. Considering the
above indicators, the reasonable thresholds of permeability ratio and offset ratio can be
concluded.

In order to explore the influence of the above influencing factor changes on the flow
pattern of the pool, three analytical layers of 0.2 h, 0.5 h and 0.8 h (h is the water depth of
the fishway) were divided, representing the bottom, middle and surface layers of the pool.
The middle layer was used as the representative water layer to give the velocity vector
distribution of the pool to analyze the flow pattern. At the same time, the study took the
intermediate pool as the representative; 21 measuring sections (starting from the center
section of the partition wall and ending at the center section of the next partition wall)
were set up equally along the length of the pool in the bottom, middle and surface layers,
respectively. A measuring point was arranged every 0.1 m on each measuring section,
and the maximum velocity on each measuring section was counted as well as the lateral
position of the section where it was located. The change in velocity along the way can
reflect the head loss in the pool to a certain extent. It is generally believed that the better
the attenuation effect of velocity along the way, the better the energy dissipation of the
fishway pool. The change in the lateral position of the maximum velocity can reflect the
mainstream trajectory and analyze the flow pattern in the pool. The above analysis can
further demonstrate the rationality of the threshold of the permeability ratio and offset
ratio.
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3. Results and Discussion
3.1. Influence of Permeability Ratio on Velocity

The calculated results of the maximum velocity of different vertical slots in the fishway
with different permeability ratios are shown in Table 2 and Figure 6. It can be seen from the
figure that with the increase in the permeability ratio, the minimum, maximum and average
values of the maximum velocity of vertical slots show a gradually increasing trend. Based
on the case of W = 0.1, when the permeability ratio increases by 50%, 100%, 150%, 200%
and 250%, the average maximum velocity of vertical slots increases by 6.7%, 13.25%, 22.76%,
32.44% and 37.22%, respectively. When the permeability ratio is 0.25, the maximum velocity
of vertical slots reaches 1.107 m/s, the average maximum velocity reaches 1.054 m/s, and
the area range of exceeded velocity is about 5%. When the permeability ratio reaches
0.30, the maximum velocity reaches 1.182 m/s and the average maximum velocity reaches
1.137 m/s; the area range of exceeded velocity is about 19%. When the permeability ratio
reaches 0.35, the maximum velocity reaches 1.227 m/s and the average maximum velocity
reaches 1.179 m/s; the area range of exceeded velocity is about 33%. It can be seen that the
permeability ratio is the main factor affecting the maximum velocity of the control section.
Even if the maximum velocity exceeds the limit, there is still a certain range of channels
available for fish to move up. To meet the basic requirements, the permeability ratio of the
partition wall should be no more than 0.30.

Table 2. Maximum velocity of vertical slots under different permeability ratios.

W b (m) a (m)
Maximum Velocity of Vertical Slots V (m/s)

1# 2# 3# 4# 5# 6# Min Max Ave

0.10 0.60 0 0.868 0.858 0.892 0.842 0.867 0.826 0.826 0.892 0.859
0.15 0.90 0 0.901 0.947 0.909 0.937 0.904 0.900 0.900 0.947 0.916
0.20 1.20 0 0.942 0.986 0.959 1.003 0.984 0.962 0.942 1.003 0.973
0.25 1.50 0 0.983 1.022 1.036 1.081 1.107 1.097 0.983 1.107 1.054
0.30 1.80 0 1.046 1.125 1.182 1.145 1.158 1.168 1.046 1.182 1.137
0.35 2.10 0 1.086 1.170 1.185 1.215 1.188 1.227 1.086 1.227 1.179
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Figure 7 compares the velocity vector in the middle layer under typical permeability
ratio cases. As can be seen from the figure, the flow structure of each pool is relatively
similar. Due to the vertical slot being arranged on the opposite side, the mainstream in
the pool meanders forward. The mainstream first rushes to the side slope of the short
partition wall, and then the mainstream streamline bends into the next vertical slot on
the opposite side. The velocity distribution of vertical slots is uneven, and the maximum
velocity is mainly located at the upper edge of the long wall and the lower edge of the short
wall in contact with the mainstream. Under different cases, the mainstream of the pool is
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clear. There is a wide range of reflux areas on one side of the mainstream. The width of
the mainstream area increases and the area of the reflux decreases with the increase in the
permeability ratio. However, the velocity of the reflux area is basically less than 0.2 m/s,
so the reflux is not intense. The low-velocity area can provide a good rest area for the
upstream fish, and does not cause the fish to become disoriented.
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Figures 8 and 9 give the mainstream velocity variation and mainstream trajectory vari-
ation for different analyzed water layers under different cases. X indicates the longitudinal
coordinate of the section, L indicates the length of the pool, V indicates the maximum veloc-
ity of the pool, and Y represents the transverse position of the section where the maximum
velocity is located (the centerline position of the pool is recorded as 0). From the variation in
mainstream velocity along the flow path, the attenuation laws of velocity in different water
layers are similar. The mainstream velocity decreases gradually near the control section
and then increases near the next control section. The flow diffusion is sufficient, and the
energy dissipation effect is good. The main flow is on one side, comparing the data from
three water layers, due to the bottom layer having the smallest water area, and the main
flow collides with the side slope faster; the velocity of the mainstream decays faster, so the
energy dissipation is slightly better than the middle layer and surface layer. Additionally,
the surface layer has the largest water area, so the water flow diffusion is more adequate,
and the velocity attenuation is slightly better than the middle layer. The attenuation law of
velocity under different permeability ratios is similar. When the permeability ratio is less
than 0.30, the maximum velocity can be attenuated to about 0.4 m/s–0.7 m/s, but when the
permeability ratio reaches 0.35, the maximum velocity can be attenuated to about 0.8 m/s.
The high velocity in the pool may adversely affect the passing fish, so it is appropriate to
control the permeability ratio below 0.30. From the change in mainstream trajectory, due
to the vertical slot being close to the bottom of the side slope, the mainstream trajectory
of each case is consistent. The mainstreams all, first, are biased to the side of the short
partition wall, and then collide with the side slope and turn to the next vertical slot. The
spans of mainstream trajectories flowing through are slightly different. There are different
degrees of mainstream distortion, especially when the permeability ratio is small and
the mainstream distortion is large, which should be avoided in the design but it can be
optimized by adjusting the offset ratio.
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3.2. Influence of Offset Ratio on Velocity

The calculated results of the maximum velocity of different vertical slots with different
offset ratios are shown in Table 3 and Figure 10. Figure 11 compares the velocity vector in
the middle layer under typical offset ratio cases. The mainstream velocity variation and
mainstream trajectory variation for different analyzed water layers are shown in Figures 12
and 13. The results show that when the offset ratio R ≥ 0.15, the maximum, minimum and
average values of the data for different cases are not particularly different and are roughly
distributed between 0.90 m/s and 1.00 m/s. When R = 0, the upstream and downstream
pools form a direct jet, the maximum velocity of the vertical slot increases obviously, and
the area range of exceeded velocity is about 28%. Therefore, the offset ratio should not be
too small; it is recommended that R ≥ 0.15.

Table 3. Maximum velocity of vertical slots under different offset ratios.

W a (m) R
Maximum Velocity of Vertical Slots V (m/s)

1# 2# 3# 4# 5# 6# Min Max Ave

0.15 0.00 0.775 0.901 0.947 0.909 0.937 0.904 0.900 0.900 0.947 0.916
0.15 0.35 0.600 0.954 0.977 0.958 0.957 0.921 0.942 0.921 0.977 0.952
0.15 0.65 0.450 0.934 0.927 0.983 0.986 0.959 0.981 0.927 0.986 0.962
0.15 0.95 0.300 0.936 0.967 0.968 0.994 0.966 0.969 0.936 0.994 0.967
0.15 1.25 0.150 0.952 1.002 0.983 0.994 1.009 0.963 0.952 1.009 0.984
0.15 1.55 0.000 1.056 1.053 1.043 1.030 1.036 1.038 1.030 1.056 1.043
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When R = 0, the total resistance inside the fishway is significantly reduced. The flow
pattern changes, and a direct jet is formed between the vertical slots; the maximum velocity
is located in the center of the jet, and the area of the reflux on both sides of the jet is basically
the same. When R ≥ 0.15, the flow pattern is similar, the mainstream is bypassing in the
pool, and the velocity distribution in the pool is also similar. When R ≥ 0.15, the variation
law of the mainstream velocity is basically the same. The maximum velocity of the pool
decreases from 1.0 m/s to about 0.4 m/s, and the energy dissipation is good; such a clear
mainstream can attract fish for upstreaming. When R = 0, the maximum velocity decreases
to about 0.7 m/s along the way, the energy dissipation is significantly reduced, and the
direct jet flow with high velocity is maintained in the pool, which may have a negative
impact on fish passing. From the mainstream trajectory changes, with the decrease in
offset ratio, the mainstream trajectory tends to be smoother. Compared to the case where
the vertical slot is close to the bottom of the side slope, the flow pattern has a greater
improvement. The pool as a whole creates a “high velocity zone” and “low velocity zone”;
the flow pattern is good, which is conducive for fish passing.

In general, in the case of similar flow patterns, the offset ratio is not the main factor
affecting the maximum velocity of the control section. The offset ratio mainly controls the
mainstream trajectory. With the decrease in the offset ratio, the mainstream tends towards
the center of the pool, and the bending degree of the mainstream decreases. In order to
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avoid a large bending degree of the mainstream, it is suggested that the offset ratio is less
than 0.6.

3.3. Influence of Bottom Slope on Velocity

The results of maximum velocity of vertical slots with different bottom slopes under
typical permeability ratio and offset ratio are shown in Table 4 and Figure 14. The velocity
vectors of the pool under typical cases are shown in Figure 15. From the chart, it can be seen
that under the same permeability ratio and offset ratio, with the bottom slope steepening,
each index increased greatly. When W = 0.15 and R = 0.3, the average data at 1/250
bottom slope are 0.967 m/s, 1.079 m/s at 1/200 bottom slope (the area range of the exceeded
velocity is about 22%) and 1.212 m/s at 1/150 bottom slope (the area range of exceeded
velocity is about 38%). The average data of maximum velocity in vertical slots reflect the
maximum velocity level of vertical slots. However, the velocity distribution at the vertical
slot itself is uneven; when the bottom slope is 1/200, the area of velocity exceeding the
limit is not very large, which can be considered to basically meet the requirements. When
the bottom slope is 1/150, the area of velocity exceeding the limit is too large, so it does not
meet the requirements. Therefore, the steep bottom slope should be avoided in the design.

Table 4. Maximum velocity of vertical slot under different bottom slopes.

W R S
Maximum Velocity of Vertical Slots V (m/s)

1# 2# 3# 4# 5# 6# Min Max Ave

0.15 0.30 1:250 0.936 0.967 0.968 0.994 0.966 0.969 0.936 0.994 0.967
0.15 0.30 1:200 1.061 1.072 1.079 1.073 1.098 1.088 1.061 1.098 1.079
0.15 0.30 1:150 1.227 1.218 1.197 1.237 1.193 1.198 1.193 1.237 1.212
0.20 0.30 1:200 1.074 1.102 1.141 1.131 1.160 1.132 1.074 1.160 1.123
0.25 0.30 1:200 1.128 1.203 1.249 1.238 1.274 1.257 1.128 1.274 1.225
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The variation law of mainstream velocity along the path and the variation law of
mainstream trajectory are shown in Figures 16 and 17. As can be seen from the chart, as the
bottom slope becomes steep, the velocity of the pool increases, but the overall variation
law is consistent. For mainstream trajectory, when the permeability ratio and offset ratio
remain unchanged, the change in bottom slope has no effect on the mainstream trajectory.

When the bottom slope is adjusted to 1/200, the velocity in the pool increases, and the
threshold of the permeability ratio needs to be further demonstrated. Keeping the offset
ratio 0.3 and bottom slope 1/200 unchanged, when the permeability ratio reaches 0.2, the
average datum of the maximum velocity is 1.123 m/s, and the area range of the exceeded
velocity is about 23%, which can be considered to basically satisfy the requirements. When
the permeability ratio rises to 0.25, the velocity at the vertical slot exceeds the standard in a
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large range, so this case does not satisfy the requirements. Comprehensively, the bottom
slope is the key design parameter affecting the velocity of the control section of the fishway.
When the bottom slope is adjusted to 1/200, the permeability ratio and offset ratio must be
reconsidered. It is recommended to control the permeability ratio below 0.20 and the offset
ratio between 0.30 and 0.60.
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3.4. Influence of Pool Length on Velocity

When the bottom slope is 1/200, the results of maximum velocity of vertical slots with
different pool length under the typical permeability ratio and offset ratio are shown in
Table 5 and Figure 18. The velocity vectors under typical cases are shown in Figure 19. It
can be seen from the chart that the maximum, minimum and average data increase with the
increase in the pool length under the same permeability ratio and offset ratio. The reason
is that when the bottom slope and the water depth of the pool are fixed, the longer the
length of the pool, and the greater the head consumed by the unit pool. When W = 0.2,
R = 0.3 and L = 10 m, the average datum is 1.123 m/s. When the length is adjusted to
8 m, the average datum decreases to 1.088 m/s; the area range of the exceeded velocity is
about 21%, so the exceeding range is not very large, which can be considered to basically
satisfy the requirements. When the permeability ratio decreases to 0.15, the average datum
is reduced to 1.002 m/s, which can better meet the requirements.

Table 5. Maximum velocity of vertical slot under different pool lengths.

W R S L (m)
Maximum Velocity of Vertical Slots V (m/s)

1# 2# 3# 4# 5# 6# Min Max Ave

0.15 0.30 1:200 8.0 0.986 1.012 1.037 0.987 1.002 0.990 0.986 1.037 1.002
0.15 0.30 1:200 10.0 1.061 1.072 1.079 1.073 1.098 1.088 1.061 1.098 1.079
0.15 0.30 1:200 12.0 1.139 1.152 1.126 1.137 1.115 1.111 1.111 1.152 1.130
0.20 0.30 1:200 8.0 1.106 1.140 1.071 1.077 1.049 1.086 1.049 1.140 1.088
0.20 0.30 1:200 10.0 1.074 1.102 1.141 1.131 1.160 1.132 1.074 1.160 1.123
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The variation law of mainstream velocity along the path and the variation law of
the mainstream trajectory are shown in Figures 20 and 21. It can be seen from the chart
that when the length of the pool is 10 m and 12 m, the mainstream is biased towards one
side, and the attenuation law of the velocity and the mainstream trajectory is roughly the
same. The velocity in the fishway pool can quickly decay to about 0.4 m/s, so the energy
dissipation efficiency is high. When the length of the pool is adjusted to 8 m, the flow
pattern in the pool changes, which is similar to the “direct jet”. In this case, the mainstream
tends towards the center of the pool and bypasses within the pool. The mainstream is less
affected by the side slope, so the attenuation of velocity is reduced, with the maximum
velocity decaying to about 0.6 m/s in the surface layer and the maximum velocity being
slightly higher in the middle and bottom layers. Although the energy dissipation efficiency
in the pool is reduced, the mainstream trajectory is smoother, which is conducive to the
fish to find the mainstream to upstream more quickly. Therefore, the study considers that
the shortening of the pool length to 8 m slightly improves the flow pattern, and suggests
optimizing the pool length to 8 m.
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3.5. The Field Applications

The design parameters such as the permeability ratio, offset ratio, bottom slope and
pool length can be used to optimize the flow conditions of the nature-like fishway and
provide guidance for fishway design. Taking into account the results from 3.1~3.4, the
recommended design parameters’ thresholds for the Mopiling nature-like fishway are:
when the bottom slope of the fishway is 1/250 and the pool length is 10 m, the permeability
ratio should not be greater than 0.30 and the offset ratio should be located between 0.15 and
0.60. When the bottom slope is adjusted to 1/200, it is recommended that the permeability
ratio is below 0.20, the offset ratio between 0.30 and 0.60, and the pool length can be
adjusted to 8 m.

For the field applications, the fishway structural arrangement should be adjusted
within the above-given design parameter thresholds. The bottom slope is designed ac-
cording to the terrain topography, and different slopes can be used for different lots. The
cross-section can be regular or irregular, and natural materials such as stones, gabions and
vegetation can be used to make it fit with the natural river as much as possible. Due to the
complexity of the problem, the tested model in the study is a simplified and generalized
model of a nature-like fishway; specific details of natural optimization and the other struc-
tures in the nature-like fishway such as bends, shoals and deep pools need to be further
studied. To date, since there is a lack of sufficient data about the post-evaluation of the
fish-passing effect in China, it is valuable to carry out prototype observations to evaluate
the efficiency of fish passing.

4. Conclusions

(1) The study simplifies and generalizes the irregular nature-like fishway based on two
important causes of flow energy consumption in a nature-like fishway: water blockage
by the partition wall and mainstream bypass deflection of the pool. The water-
permeable area of the partition wall is expressed by the permeability ratio of the
control section, and the mainstream deflection length of the pool is expressed by the
offset ratio of the control section of the adjacent pool. Combining the bottom slope and
pool length, the effect of the above parameters on the flow structure is investigated
through a 3D turbulent numerical simulation, and the design parameter thresholds
satisfying the requirements are summarized to provide guidance for fishway design.
The relevant design parameters and optimization strategies can provide a reference
for similar projects.

(2) The study showed that there are two basic flow patterns in the fishway pool: the
mainstream is biased to one side and the mainstream tends towards the center. Under
the same conditions, when the offset ratio is smaller and the pool length is shorter, the
mainstream tends towards the center of the pool, and vice versa, the mainstream is
biased to one side. Different flow patterns have a great influence on the velocity of
the control section, the attenuation law of the main flow velocity and the main flow
trajectory. The attenuation law of the main flow velocity and the main flow trajectory
are basically the same under the same flow pattern.

(3) Permeability ratio, bottom slope and pool length are the main factors affecting the
maximum velocity of the control section. Under the same conditions, the maximum
velocity of the control section increases with the increase in permeability ratio, bottom
slope and pool length. The offset ratio has limited effect on the maximum velocity of
the control section. Under the same conditions, the offset ratio decreases, the velocity
of the control section only slightly increases, and the mainstream becomes smoother.

(4) Within the recommended design parameter thresholds for the Mopiling nature-like
fishway, the maximum velocity at the vertical slot can be basically controlled at
about 1.0 m/s. The velocity distribution at the vertical slot is uneven, so that even
if the maximum velocity exceeds 1.0 m/s, there is still a sufficient area available
for upstream. The mainstream in the pool is clear and the flow pattern with the
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“high velocity zone” and “low velocity zone” is good, which can basically satisfy the
requirements of fish passing.
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