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Abstract: Agricultural productive services are important paths to realize the development of green
agriculture, while the effect of agricultural productive services on the agricultural environment and
its influencing mechanism are not yet clear. With the panel data of agricultural production in China
from 2004 to 2019, by using multi-output stochastic frontier analysis with an output-oriented distance
function, this study investigates agricultural environmental efficiency based on net carbon sinks.
Then, this study explores the effect of agricultural productive services on agricultural environmental
efficiency and its mechanisms by adopting ordinary least squares regression with fixed-effect panel
model, causal steps approach, and spatial econometric method. The main findings are as follows:
Firstly, agricultural productive services enhance agricultural productivity and agricultural environ-
ment by optimizing inputs and increasing outputs, and thus improve agricultural environmental
efficiency. This result holds steadily after using instrumental variables to deal with endogeneity,
changing the measurement of the dependent and independent variables, and subdividing the sample.
Secondly, the pathways of agricultural productive services affecting agricultural environmental
efficiency are mainly reflected in technology progress, planting structure adjustment, factor allocation
optimization, and spatial spillover. Thirdly, due to the law of diminishing marginal returns, the
impact of agricultural productive services on agricultural environmental efficiency is more significant
when the level of agricultural productive services is relatively low. To improve agricultural envi-
ronmental efficiency, we suggest implementing different productive service strategies in different
regions, strengthening information integration, and improving infrastructure.

Keywords: green agriculture; agricultural productive services; net carbon sinks; agricultural environ-
mental efficiency

1. Introduction

Along with the increasing attention paid to environmental issues, the agricultural envi-
ronment has gradually become one of the most attractive research topics in the agricultural
field in China. Agricultural environment efficiency, which brings environmental factors
into traditional agricultural technical efficiency, is an effective index to balance agricultural
development and agricultural environment. Especially since China has set forth the aims
of carbon peak in 2030 and carbon neutrality in 2060, agricultural environmental efficiency
based on carbon emissions and its determinants have caused increasing concern. Existing
fruitful studies on the determinants of agricultural environmental efficiency are developed
from two aspects of the external agricultural environment and the internal productive
factors. In terms of the external environment, agricultural development level [1,2], urban-
ization, natural disasters, production risk [3], innovation [4], and energy price [5] are taken
into account. In terms of internal factors, agricultural structure [2], agricultural labor force,
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reservoir infrastructure construction, agricultural mechanization service organizations [5],
as well as mechanization [5–7] are frequently mentioned.

At the same time, due to the ubiquity of small-scale and fragmented farming, agricul-
tural productive services adapted to China’s national conditions have spread and popular-
ized rapidly. Agricultural productive services are an essential driving force for improving
agricultural productivity and promoting agricultural modernization [8], for its benefits of
realizing economies of scale and reducing agricultural production costs without changing
the social security functions of cropland [9,10]. Nevertheless, agricultural productive ser-
vices mainly rely on large machinery that consumes diesel and other fuels, emitting large
amounts of carbon dioxide. It is worth noting that the fuel consumption of energy activity
has been one of the most fundamental origins of agricultural carbon emissions [11]. How-
ever, few studies concentrate on whether the promotion of agricultural productive services
exerts a negative impact on the agricultural environment and causes the variation of agri-
cultural environmental efficiency. To date, it is still unclear whether agricultural productive
services will lead to the improvement of the agricultural environment. Therefore, more
imperative exploration of whether agricultural productive services improve agricultural
environmental efficiency from a holistic evaluation perspective can not only conduce to
understanding the formation and evolution of agricultural environmental efficiency, but
also help to promote the relevant policies for the promotion and application of agricultural
productive services.

Agricultural environmental efficiency is determined by agricultural inputs, outputs,
and carbon emissions [7], which are influenced by agricultural productive services. In
re-ality, agricultural productive services, also known as agricultural production outsourc-
ing, refer to outsourcing some or all agricultural production stages to service providers or
other farmers [12]. Due to its incremental, overlapping, complementary advantages [13],
agri-cultural productive services can help optimize agricultural factor inputs while keeping
agricultural output increased or unchanged. This not only reduces agricultural produc-
tion costs [14], but also reduces carbon emissions by optimizing agricultural chemical
inputs. In addition, more generally, the cost of agricultural productive services to a service
provider is lower than the cost of labor to complete the same task because of specializa-
tion. Accordingly, through the adoption of productive services, farmers can not only save
production costs, but also save labor time to engage in non-agricultural work to obtain
more income [15]. Moreover, agricultural production services embed green production
techniques and green production materials in farmers’ production processes, change their
customs and experience with fertilizer application, and thus achieve a reduction in agricul-
tural chemical materials. In addition, agricultural productive services have a mix of benefits,
such as increasing the speed of operations, enhancing the timeliness of crucial production
stages, improving the ability to cope with weather-related risks, and reducing losses in
the harvest process, which exert positive effects on agricultural output [13]. Machila et al.
revealed that agricultural outsourcing had a significant impact on farmers’ crop income and
net crop income in Zimbabwe [16]. Agricultural outsourcing contributes significantly and
substantially to household crop income and the net income of farmers who participated
in the program of outsourced extension service [17]. From the perspective of economics,
farmers share land operation rights with service providers by purchasing socialized agri-
cultural services, which benefit from specialization arising from the division of labor [14]
and will inevitably affect agricultural production efficiency and agricultural environmental
efficiency. Agricultural productivity increased by 25.61% for China’s farmer households
who chose agricultural productive services, and the productivity would increase by 10.86%
if non-outsourcing farmer households chose to outsource [18].

In summary, the literature on the impact of agricultural productive services on agricul-
tural inputs and outputs are growing. However, the research on agricultural environmental
impact is still scarce, which needs further theoretical analysis and empirical verification. In
particular, carbon emissions are the inevitable product of modern agricultural production
for null-jointness and weak disposability imposed on agricultural production. It means
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that the impact of agricultural productive services on agricultural environmental efficiency
requires not only further theoretical analysis but also more micro-empirical results for
verification. To fill this observed deficiency, this paper empirically examines the effects
of productive agricultural services on agricultural environmental efficiency. Furthermore,
comprehensive theoretical analyses and empirical tests are needed to explain the environ-
mental effects of agricultural productive services, i.e., the mechanisms by which agricultural
productive services contribute to agricultural environmental efficiency. To make up for this
theoretical gap, this paper presents a comprehensive overview of the possible influencing
pathways, and empirically validates some of them.

In these contexts, based on the panel data of 30 provinces in mainland China from 2004
to 2019, this paper investigates the role of agricultural productive services in improving
agricultural environmental efficiency. The findings indicate that agricultural productive
services significantly improve agricultural environmental efficiency, which holds steady
after endogeneity treatment and a series of robust analyses. Meanwhile, the impact of
agricultural productive services on agricultural environmental efficiency shows a marginal
decreasing trend. Further research conclusions suggest that the spread of agricultural pro-
ductive services affects both agricultural inputs and outputs through promoting technology
progress, changing cropping structure, and optimizing factor input structure. The above
pathways have significant spatial spillover effects.

This paper contributes to the existing research from the following three aspects. First,
we examine the heterogeneity of agricultural productive services affecting agricultural
environmental efficiency based on accurately measuring agricultural environmental effi-
ciency, expanding not only the study of the effects of agricultural productive services, but
also the analysis of the factors influencing agricultural environmental efficiency. Second,
we develop an analytical framework for the impact of agricultural productive services on
agricultural environmental efficiency, namely that agricultural productive services affect
agricultural environmental efficiency through three aspects, i.e., inputs, outputs, and envi-
ronmental factors. Third, we propose the main mechanisms through which agricultural
productive services affect agricultural environmental efficiency at a theoretical level and
test empirically through the causal steps approach for the mediating effect test.

The remainder of this paper is structured as follows: the “Methodology and Data” sec-
tion describes analysis framework, empirical methods, and the nature of data. Econometric
results and discussion are presented in the “Results” and “Discussion” sections, and the
“Conclusions” section sets out the main conclusions and some policy implications.

2. Methodology and Data
2.1. Analysis Framework of Agricultural Productive Services Affecting Agricultural
Environmental Efficiency

In order to reveal the relationship between agricultural productive services and agricul-
tural environmental efficiency in depth, we attempt to explore the influencing pathways of
agricultural productive services on agricultural environmental efficiency from four aspects.

Firstly, agricultural environmental efficiency is influenced by agricultural productive
services through agricultural technology progress. Most farmers in China face high labor
costs and credit constraints, making it challenging to purchase advanced and costly agri-
cultural machinery and choose the reduction scheme for agricultural chemical materials.
Agricultural productive services are the best solutions to these problems by reducing the
cost of purchasing costly agricultural equipment and lowering the threshold for adopting
advanced agricultural technology. On the one hand, the agricultural technology progress,
which contains advanced farming technology and advanced energy technology, conduces
to improve energy efficiency and directly reduces carbon emissions from energy consump-
tion. On the other hand, agricultural technology progress can indirectly reduce carbon
emissions by optimizing the structure of agricultural energy and fertilizer consumption.
For example, the growing use of renewable energy can reduce the carbon emission intensity
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per unit of energy, and the increasing use of new biological fertilizers can increase the
carbon sequestration capacity of soil.

Secondly, agricultural environmental efficiency is influenced by agricultural produc-
tive services through agricultural planting structure adjustment. Agricultural productive
services help to accelerate the large-scale development of agriculture, promote the propor-
tion of grain sown area [19], and achieve the agglomeration of planting varieties. On the one
hand, research shows that, compared with horticultural crops and cash crops, grain crops
require the least input, including labor and fertilizer [19,20]. Consequently, the increase in
the proportion of grain crops sown has led to a decrease in the demand for agricultural
chemical materials (i.e., pesticides, agricultural films, and fertilizers) per unit area. On the
other hand, grain crops are inclined to be produced by large machinery, resulting in an
increased demand for diesel fuel consumption. Furthermore, grain crops generally grow
more organic matter (i.e., fruit and straw) than cash crops such as vegetables and flowers,
and thus have a more substantial carbon sink effect. Therefore, the bigger the cultivated
area of grain crops, the higher agricultural environmental efficiency [20].

Thirdly, agricultural environmental efficiency is influenced by agricultural productive
services through factor allocation optimization. Agricultural productive services are ac-
companied by the spatial flow of mechanical resources and the transmission of beneficial
agricultural information, and thus realize the effective allocation of regional resources [12].
The popularization of agricultural productive services is accompanied by a shift of agricul-
tural labor to non-agricultural sectors, so the outflow of agricultural labor will strengthen
the scarcity of labor as a primary production factor, and then improve the willingness
of farmers to use other capitals as a substitute for labor in agricultural production. The
decreasing price of machinery relative to labor has led to a decrease in labor input intensity
in farm production and an increase in fertilizers, pesticides, and other agricultural chem-
icals per unit area. Taking fertilizers for example, the outflow of agricultural labor may
reduce the frequency of fertilization, but increase the amount of a single fertilization. In
addition, the increased use of machinery requires more fuel consumption and brings more
carbon emissions, leading to changes in agricultural environmental efficiency. Agricultural
productive services contribute to increased specialization in all segments of the agricultural
industry chain. The gains from specialization that arise from the division of labor promote
the efficiency of agricultural production and realize economies of scale. At the regional
level, because of the formation and expansion of productive service markets, agricultural
production factors can fully flow and be exchanged between different agriculture operators
with the help of agricultural productive services. In other words, agricultural productive
services have realized the change of varying factor combinations. The improvement of
resource utilization rate eases the excessive use of agricultural chemical resources [21], and
thus leads to the change in carbon emissions.

Fourthly, agricultural environmental efficiency is influenced by agricultural produc-
tive services through spatial spillover. From a regional perspective, the higher the level of
agricultural productive services in a region (i.e., the higher proportion of persons engaged
in productive services and the larger market for agricultural productive services), the
greater the empowering effect on agricultural producers in the neighborhood. Relying on
technological innovation, technology diffusion, specialized division of labor, collaboration,
and the similarity of agricultural production resource endowment conditions in adjacent
regions, agricultural machinery, which has apparent diffusion and spillover, forms the agri-
cultural agglomeration effect and enhances the network connection effect in neighboring
areas.

Based on the above analysis, we establish an analysis framework (shown in Figure 1)
as follows.
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2.2. Empirical Models
2.2.1. Benchmark Model

To test the relationship between agricultural productive services and agricultural
environmental efficiency, the ordinary least squares regression with fixed-effect panel
model is employed:

AEEit = α0 + α1 APSit + ∑
j

λjZitj + µi + ηt + ξit (1)

where AEEit represents the agricultural environmental efficiency of province i at year t,
APSit denotes the level of agricultural productive services, Zit refers to control variables;
α0 is the intercept term, α1, λj are the estimation coefficients of explanatory variable and
control variables, µi and ηt represent the fixed effects of province and year, and ξit is a
stochastic error term.

2.2.2. Causal Steps Approach for Mediating Effect Test

To explore the pathways of agricultural productive services affecting agricultural
environmental efficiency, based on the test method of Baron and Kenny (1986) [22], the
causal steps approach for mediating effect test is set as follows:

Mit = β0 + β1 APSit + ∑
j

λjZitj + µi + ηt + ξit (2)

AEEit = γ0 + γ1 APSit + γ2Mit + ∑
j

λjZitj + µi + ηt + ξit (3)

where Mit represents the mediating variables, β0, γ0 are the intercept terms, and β1, γ1, γ2, λj
are the estimation coefficients of corresponding variables. Equation (2) is used to test the
effect of the independent variable on the mediating variables, and Equation (3) is used to
test the effect of the independent variable on the dependent variable after introducing me-
diating variables. If the regression coefficient on agricultural productive services decreases
or becomes insignificant, it indicates that the impact of agricultural productive services
on agricultural environmental efficiency comes partly or entirely through the pathway of
mediating variable.

2.2.3. Spatial Econometric Model

We employ the Spatial Dubin Model with fixed effects to verify the spatial spillover
effect of agricultural productive services on agricultural environmental efficiency:

AEEit = α0 + τAEEi,t−1 + ρWAEEit + α1 APSit + α2WAPSit +∑
j

λjZitj + µi + ηt + ξit (4)
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where W represents the spatial weight matrix, and geographical distance matrix is adopted
in the paper. τ is the first-order lag coefficient of dependent variable, ρ is the spatial corre-
lation coefficient, and α1, α2, λj are the estimated coefficients of each explanatory variable.

2.2.4. Endogeneity and Two-Stage Least Squares

Biases might remain in empirical models because of two types of endogenous problems.
The first is the omitted variable problem, i.e., some variables that affect both agricultural
productive services and agricultural environmental efficiency are omitted from the regres-
sion model. The second is reverse causality, i.e., agricultural environmental efficiency
might affect agricultural productive services. For example, provinces with high agricultural
environmental efficiency level are usually regions with the high level of factor endowments.
These regions, due to the high level of regional development and high price relative to labor,
will adapt to local agricultural development requirements through large-scale adoption
of agricultural productive services, which in turn contribute to the improvement of their
agricultural productive services. This means that the core independent variable and the
dependent variable suffer from reverse causality [23].

To solve the problem of possible omitted variables, we employ a fixed-effect model with
panel data to control the unobservable effects at provincial and time level, while adding
as many control variables as possible in the regression analysis based on existing studies,
such as rural human capital and production risk. To solve the problem of reverse causality,
we introduce a suitable instrumental variable and employ two-stage least squares method
to alleviate endogenous problems. The first stage is used to obtain prediction to replace
endogenous variables, and the second stage is used to draw the final estimation result.

2.3. Variables
2.3.1. Dependent Variable: Agricultural Environmental Efficiency

Following Zhu et al. [7], we adopt the multi-output stochastic frontier analysis method,
which is based on the output-oriented distance function, to obtain agricultural environ-
mental efficiency. In terms of the production function form, we introduce a time-varying
parameter model to estimate elastic changes across time accurately. Drawing on the tra-
ditional literature [24,25], input variables and output variables are selected to calculate
agricultural environmental efficiency. The main input variables of agricultural production
are labor, machinery, fertilizer, land and fuel, which are measured by the number of em-
ployees (in millions), the total power of planting machinery (in million kilowatts), the sum
of the gross weight of various fertilizers (in million tons), the sown area (in million hectares)
reflecting the actual utilization of the cultivated land, and diesel oil (in million tons) in the
planting industry, respectively. We employ the gross value of output (in million CNY) and
net carbon sinks (in million tons of CO2-equivalent) in the planting industry as the output
variables because agriculture has the attribute of net carbon sinks. The calculation formula,
coefficient of agricultural carbon sinks, and carbon emissions are based on the research of
Zhu et al. (2022) [26].

The descriptive statistics on agricultural input and output variables on provincial
level are shown in Table 1, and the changing trends of agricultural inputs and outputs on
national level in China from 2004 to 2019 are shown in Figure 2.

Table 1. Descriptive statistics on agricultural input and output variables.

Variable Type Variable Mean Std. Dev. Min Max

Input variables

Labor (million) 5.062 3.717 0.154 17.555
Machinary (million kilowatt) 16.232 15.454 0.446 70.656

Fertilizer (million ton) 1.832 1.416 0.062 7.161
Farmland (million hectare) 5.363 3.664 0.089 14.903

Diessel oil (million ton) 0.673 0.672 0.018 4.870

Output
variables

Output value (million CNY) 71,574.930 51,567.310 2791.214 242,921.200
Net carbon sinks(million ton of

CO2-equivalent) 62.002 56.596 0.789 250.701
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2.3.2. Independent Variable: Agricultural Productive Services

From the point of view of the demand side (i.e., the objects of agricultural productive
services), the sown area and the number of farmers adopting productive services are the
ideal indexes to measure the level of productive services; from the point of view of the
supply side, the supplier (i.e., the number of agricultural machinery service organizations
and agricultural machinery professional service households or organizations) and the
power of agricultural machinery for productive services are reasonable indicators. Limited
by data availability, we employ the number of people engaged in agricultural productive
services per unit area to measure the level of agricultural productive services.

2.3.3. Instrumental Variable

To solve the problem of endogeneity, the usual approach is to introduce a suitable
instrumental variable [23]. Following Zhu et al. [7], this paper adopts the ratio of road
mileage to farmland area in the region as an instrumental variable for agricultural produc-
tive services. As the transportation infrastructure, roads do not directly impact agri-cultural
output value and net carbon sinks, but they can improve the degree of agricultural pro-
ductive services via improving road conditions and reducing transportation costs for
agricultural machinery.

2.3.4. Mediating Variables

Based on the analysis in the “Literature Review” section, technology progress, planting
structure, and input structure are selected to study the influencing mechanism of agri-
cultural productive services affecting agricultural environmental efficiency. Agricultural
machinery, which contains advanced planting and harvesting techniques, is accompanied
by the transfer and diffusion of management techniques in its service process. Conse-
quently, technology progress is characterized by the ratio of the total power of machinery
to farmland area. There are significant differences between cash crops and grain crops in
mechanical demand and agricultural chemical materials input [5], so the planting structure
is represented by the ratio of grain sowing area to crop sowing area. The main agricultural
inputs include machinery, farmland, labor, and chemical fertilizer. Considering the rele-
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vance of machinery and the stability of farmland, the ratio of fertilizer to labor per unit area
is used to characterize the input structure.

2.3.5. Control Variables

Agricultural operation scale, planting industry development level, rural human capital,
production risk, regional economic development level, part-time employment of labor,
and urban-rural income gap are controlled in our models. Agricultural operation scale
(in hectare per household), which is an essential factor affecting the consumption of farm
machinery and chemical materials [11], is represented by the ratio of farmland to rural
households, and its square term is introduced to examine the possible threshold of land.
Based on the viewpoint of comparative advantage, the development level of the planting
industry is measured by the share of the planting industry in agriculture. As a factor with
strong positive externalities, rural human capital (in years) is calculated as the average
length of schooling of the rural population. As farmers will increase fertilizer and pesticide
inputs to avoid risks [3,27], production risk is selected as the control variable, which refers to
the ratio of the affected area to the total sown area of crops. Regional economic development
level (in CNY per person), which affects carbon emissions intensity [1], is expressed by
the ratio of a region’s GDP to its population. As an essential factor affecting the capital
inputs (i.e., machine, chemical fertilizer, and pesticides) in agricultural production [11],
the part-time employment of labor is measured as the proportion of wage income of rural
residents. The urban-rural income gap, which leads to the flow of the labor to cities [28],
is represented by the ratio of disposable income of urban residents to rural residents. In
addition, due to the complexity of agricultural production, agricultural environmental
efficiency will be affected by many unobserved factors, such as social culture and natural
conditions [29], so provincial and year fixed effects are controlled too.

2.4. Data

From the time perspective, agricultural mechanization and agricultural productive
services have developed rapidly in China since 2004, and the data of agricultural productive
services have been included in the national statistical yearbook since then. Therefore, the
data employed in this study are the province-by-year panel of 30 provinces of mainland
China from 2004 to 2019, and Tibet, Hong Kong, Macao, and Taiwan are excluded due to
data unavailability. The annual data for each province associated with agricultural pro-
duction are obtained from the annual China Rural Statistical Yearbook and China Agricultural
Machinery Industry Yearbook. In addition, price variables are deflated according to the price
level in 2004.

The descriptive statistics on variables are shown in Table 2. The differences of agri-
cultural environmental efficiency and agricultural productive services among different
provinces are presented in Figures 3 and 4, showing that there are great differences between
samples, which are suitable for regression analysis.

Table 2. Descriptive statistics on variables.

Variable Type Variable Mean Std. Dev. Min Max

Dependent variable Agricultural environmental efficiency 0.626 0.168 0.311 0.979
Independent variable Agricultural productive services 0.069 0.048 0.003 0.219

Mediating variables
Technology progress 0.400 0.196 0.048 1.077

Planting structure 0.652 0.131 0.328 0.971
Inputs structure 0.406 0.172 0.073 1.173

Control variables

Agricultural operation scale 6.849 6.109 0.929 30.643
Planting industry development level 0.567 0.090 0.339 0.772

Rural human capital 7.480 0.687 5.144 9.731
Production risk 0.208 0.148 0.000 0.936

Regional economic development level 0.011 0.006 0.003 0.033
Part-time employment of labor 18.138 22.073 0.062 76.300

Urban-rural income gap 2.857 0.563 1.850 5.120
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3. Results
3.1. Benchmark Regression Results

The regression results in columns (1) and (2) of Table 3 present the parameter estimates
for the benchmark regression based on Equation (1). Among them, column (1) does not
include control variables, while column (2) adds control variables, with both columns
controlling province and time differences. As shown in column (1), the coefficient on
agricultural productive services is positive and statistically significant at the 1% level,
indicating that the development of agricultural productive services promotes the level of
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agricultural environmental efficiency. However, the analysis is likely to be confounded by
omitted variables. After introducing control variables, the results in column (2) show that
the coefficient on agricultural productive services is still positive and statistically significant
at the 1% level. To be explicit, the augmentation of agricultural productive services by
1% leads to an increase of 7.16% in agricultural environmental efficiency. This means
that, despite the increasing effect in carbon emissions caused by energy consumption, the
increasing carbon sink effect, which is brought about by the increase of output and the
reduction of agricultural chemical inputs, is more potent. In fact, the carbon emissions
of China’s planting industry began to decline after 2016, but the carbon sinks have been
increasing, showing an obvious net carbon sink effect.

Table 3. Impact of agricultural productive services on agricultural environmental efficiency.

Variables
OLS 2SLS

(1) (2) (3) (4)

Agricultural productive services 0.332 *** 0.072 *** 1.768 *** 0.962 ***
(0.055) (0.026) (0.176) (0.180)

Agricultural operation scale 0.002 ** 0.008 ***
(0.001) (0.002)

Square of agricultural operation scale −0.000 −0.000 **
(0.000) (0.000)

Planting industry development level −0.002 −0.052
(0.019) (0.037)

Rural human capital 0.021 *** 0.017 ***
(0.002) (0.003)

Production risk
−0.010 ** −0.007

(0.005) (0.009)

Regional economic development level 0.687 −2.949 **
(0.490) (1.165)

Part-time employment of labor 0.000 *** 0.000 ***
(0.000) (0.000)

Urban-rural income gap
−0.032

***
−0.029

***
(0.002) (0.005)

Constant 0.603 *** 0.531 ***
(0.004) (0.020)

Fixed province Yes Yes Yes Yes
Fixed year Yes Yes Yes Yes
R-squared 0.893 0.841 −1.334 0.419

Coefficient of IV in the first stage 0.028 *** 0.027 ***
(0.002) (0.005)

Value F in the first stage 145.200 35.820
Observations 480 480 480 480

Provinces 30 30 30 30
Note: **, ***: statistically significant at 5% and 1%, respectively; Standard error in parentheses.

Table 3 also identifies some statistically significant control variables. An inverted
U-shaped relationship exists between farmland operation scale and agricultural environ-
mental efficiency. With the expansion of farmland operation scale, agricultural environ-
mental efficiency gradually improves, which is unsurprising as the appropriate expansion
of farmland operation scale is conducive to the rational allocation of production factors by
agricultural producers and the reduction of material waste. When farmland operation scale
exceeds the threshold value, agricultural environmental efficiency declines. The reason
lies in the difficulty of managing and realizing the maximum potential if the farmland
per capita is too large [30]. There is a significant positive relationship between rural hu-
man capital and agricultural environmental efficiency at a 1% level. This is due to the
considerable positive externality of human capital, which has a significant incremental
improvement on environmental quality. Production risk is significantly and negatively
related to agricultural environmental efficiency. The greater the frequency and degree of
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natural disasters, the greater the production risk perceived by farmers, and the more likely
it is to use agricultural chemical materials to avoid risks and reduce losses, resulting in the
decline of environmental efficiency. The high degree of part-time labor employment and
the low degree of urban-rural income gap improve agricultural environmental efficiency
through higher demand for productive services.

3.2. Two-Stage Least Squares Results

Columns (3) and (4) of Table 3 present the parameter estimates for the two-stage least
squares method. The results of the first stage show a significant positive correlation between
the instrumental variable and agricultural productive services, whether with or without
control variables, which is consistent with the hypothesis of correlation of instrumental
variables. The results of the second stage regression showed that agricultural productive
services still had a significant contribution to agricultural environmental efficiency, which
confirmed the robustness of the benchmark regression results.

3.3. Robust Analysis Results

To further verify the robustness of the impact of productive agricultural services
on agricultural environmental efficiency, we conduct the robustness analysis from three
aspects: replacing the dependent variable, replacing the core independent variables, and
subdividing the sample into main and non-main grain-producing areas.

Firstly, we recalculate agricultural environmental efficiency using the translog produc-
tion function and re-estimate the impact of agricultural productive services. The results
in column (1) of Table 4 presents that the effect of agricultural productive services on
agricultural environmental efficiency remains positive and significant at a 1% level.

Table 4. Results of robust analysis.

Variables
Changing

Dependent
Variable

Changing
Independent

Variable

Non-Main
Grain-

Producing
Areas

Main Grain-
Producing

Areas

(1) (2) (3) (4)

Agricultural productive
services

0.095 *** 0.107 ** 0.139 *** 0.074 **
(0.027) (0.045) (0.047) (0.031)

R-squared 0.853 0.840 0.837 0.898
Control variables Controlled Controlled Controlled Controlled

Fixed province Yes Yes Yes Yes
Fixed year Yes Yes Yes Yes

Observations 480 480 272 208
Provinces 30 30 17 13

Note: **, ***: statistically significant at 5% and 1%, respectively; Standard error in parentheses.

Secondly, we adopt the number of productive service institutions per unit area to
express the level of agricultural productive services. The results in column (2) of Table 4
show that the independent variable has a positive correlation with agricultural environ-
mental efficiency with significance at a 5% level, which further confirms the contribution of
agricultural productive services to agricultural environmental efficiency.

Thirdly, we divide the samples into main and non-main grain-producing areas. There
are 13 provinces in main grain-producing areas, such as Heilongjiang and Henan, with a
high level of agricultural productive services. The coefficients on agricultural productive
services are positive and statistically significant at least at a 5% level in columns (3) and (4)
of Table 4, but differ a lot in the main grain-producing areas and non-main grain-producing
areas. The coefficient on agricultural productive services is 0.1394 in non-main grain-
producing areas, which is more significant than that of main grain-producing areas. This
means that the marginal effect of agricultural productive services is somewhat larger in
non-main grain-producing areas, i.e., agricultural productive services in non-main grain-
producing areas are still in the early development stage and have ample space for growth.
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3.4. Mechanism Analysis Results

To examine the transmission mechanism of agricultural productive services to agricul-
tural environmental efficiency, we employ Equations (2) and (3) for mediating effect tests
from three perspectives of technology progress, planting structure, and input structure,
and adopt the spatial econometric model for the spatial spillover effect test.

Table 5 reports the results of the mechanism analysis. The regression results of the first
step are presented in columns (1), (2), and (3). The coefficients are positive and significant at
a 1% level, indicating that the increase in agricultural productive services has significantly
improved technology progress, and optimized the structure of planting crops and factor
inputs. Column (4) exhibits the impact of agricultural productive services on agricul-
tural environmental efficiency without mediating variables, and columns (5), (6), and (7)
demonstrate the regression results of the second step. As shown in column (5), after the
inclusion of technology progress, the coefficient on agricultural productive services and its
significance become lower, and the coefficient of technology progress is significant at a 5%
level, indicating that the mediating mechanism of technology progress is verified. This is
because technology progress is a fundamental driver of agricultural productivity and is a
critical factor in reducing carbon emissions in agriculture [3,4]. Similarly, the mediating
pathways of planting structure and input structure are manifested in columns (6) and (7).
Grain crops have a more substantial carbon sink effect and their demand for chemical
materials is less than cash crops. Hence, the increase in the share of grain crops sown area
has a positive effect on agricultural environmental efficiency. The optimization of inputs
structure can effectively reduce the cost of agricultural production and contribute to the
improvement of agricultural environmental efficiency.

Table 5. Results of the causal steps approach for mediating effect test.

Variables
Technology
Progress

Planting
Structure

Inputs
Structure Agricultural Environmental Efficiency

(1) (2) (3) (4) (5) (6) (7)

Agricultural productive services 1.346 *** 0.269 *** 0.768 *** 0.072 *** 0.046 * 0.060 ** 0.037
(0.165) (0.088) (0.133) (0.026) (0.028) (0.026) (0.026)

Technology progress 0.019 **
(0.008)

Planting structure 0.043 ***
(0.014)

Inputs structure 0.045 ***
(0.009)

R-squared 0.620 0.201 0.486 0.841 0.843 0.844 0.849
Control variable Controlled Controlled Controlled Controlled Controlled Controlled Controlled
Fixed province Yes Yes Yes Yes Yes Yes Yes

Fixed year Yes Yes Yes Yes Yes Yes Yes
Observations 480 480 480 480 480 480 480

Provinces 30 30 30 30 30 30 30

Note: *, **, ***: statistically significant at 10%, 5% and 1%, respectively; Standard error in parentheses.

Table 6 reports the results of Equation (4) under the geographical distance matrix.
The spatial coefficient and spatial spillover effects are significantly positive, showing that
agricultural productive services have a significant spatial spillover effect on agricultural
environmental efficiency, i.e., agricultural productive services in neighboring regions have
a positive effect on agricultural environmental efficiency in this region. This reflects that
agricultural productive services not only serve the region where they are located, but also
radiate to the surrounding regions based on the similar crop structure and the different
crop maturity time. Therefore, agricultural productive services not only contribute to
local agricultural environmental efficiency, but also promote the efficiency of surrounding
regions due to the spatial spillover effect caused by their cross-regional operation.
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Table 6. Results of the spatial econometric model.

Spatial Coefficient LR_Direct LR_Indirect LR_Total R-Squared

0.673 *** 0.048 ** 0.569 ** 0.617 ** 0.877
(0.059) (0.021) (0.259) (0.267)

Note: **, ***: statistically significant at 5% and 1%, respectively; Standard error in parentheses.

4. Discussion
4.1. The Relationship between Agricultural Productive Services and Agricultural Environmental Efficiency

Under the context of sustainable development, it is valuable to investigate agricultural
productivity in combination with environmental factors and analyze its critical influencing
factors. Our empirical results show that agricultural productive services have a positive
impact on agricultural environmental efficiency. Although the existing literature does not
directly explore the relationship between them, there are two related types of literature
for comparison, both of which have the common basis—mechanization. One is about
agricultural mechanization and agricultural environmental efficiency, but the conclusions
of their relationship are not consistent. Jiang et al. believed that mechanization led to
the decline of agricultural environmental performance based on the provincial data from
2000 to 2017 in China [5]. In the study of Zhu et al., the argument that mechanization and
agricultural environmental efficiency presented an inverted U-shaped relationship was
verified based on the study sample of China’s 30 provinces during 2001–2019 [7]. The
reason for this inconsistency may lie in the inconsistency of the measurement methods and
indicators of agricultural environmental efficiency adopted by them. Jiang et al. employed
the DEA method and selected carbon emissions and solid residues as environmental
outputs [5], while Zhu et al. adopted the SFA method and selected net carbon sinks as
environmental outputs [7]. The other is about agricultural green production technologies
and agricultural environmental efficiency. The majority of green production technologies
in China rely on machinery and energy, which can cause excessive carbon emissions. In the
research of He et al., the impact of different green production technologies on low-carbon
efficiency is not uniform, and the results vary across regions [31]. For example, mechanized
straw returning improves the low-carbon efficiency in the north, while mechanized deep
ploughing and scarification improve low-carbon efficiency in the south.

Agricultural environmental efficiency is determined by agricultural productivity and
agricultural carbon emissions [31]. To be specific, agricultural inputs and outputs de-
termine agricultural productivity, while agricultural carbon emissions affect agricultural
environment [7]. Agricultural productive services, which mainly rely on large machinery
that consumes diesel and other fuels, not only affect agricultural performance through in-
puts and outputs, but also emit large amounts of carbon dioxide from energy consumption.
From the perspective of input, as a capital input replacing labor, productive services signifi-
cantly reduce labor costs and optimize agricultural chemical materials, but increase diesel
consumption. From the standpoint of output, most studies confirm the positive effect of
productive services on agricultural output [9,19]. From the perspective of carbon emissions,
agricultural chemical materials and energy consumption are the two primary sources of
carbon emissions in agriculture. The optimization of the former leads to reducing carbon
emissions, but the rising diesel consumption results in an increase in carbon emissions.
Moreover, the increase effect of carbon emissions is greater than the reduction effect.

The path of agricultural productive services impacting agricultural environmental effi-
ciency is determined by two aspects. The first aspect is to increase agricultural productivity.
Studies have confirmed that agricultural productive services are applied to maximize total
yield and benefit potential production. At the macro level, Sheng and Chancellor found
that the hiring of capital services may lift the productivity of small farms in the Australian
grains industry [32]. At the peasant household level, Bravo-Ureta et al. analyzed the impact
of a canal irrigation project for smallholders in the Philippines and found that irrigation
technology promoted beneficiaries’ production potential [33]. Taking drought-tolerant
maize as a research object in the Northern Region of Ghana, Martey et al. revealed that the
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climate-smart agricultural technologies positively impacted yield and commercialization
intensity [34]. The second aspect is to minimize the damage to the agricultural environment.
For the planting industry, its attribute of net carbon sink dictates that we should maximize
the net carbon sinks rather than minimize carbon emissions.

From the perspective of carbon emissions, the adoption of agricultural productive ser-
vices can reduce carbon emissions by lowering chemical inputs, but agricultural machinery
and its fuel consumption, which support agricultural productive services, directly and indi-
rectly cause carbon emissions. Moreover, in terms of outcome, the carbon emission effect
of energy is greater than that of chemical input reduction. However, from the perspective
of net carbon sinks, the planting industry showed a prominent positive net carbon sink
characteristics and gradually increased.

4.2. The Mechanism of Agricultural Productive Services Affecting Agricultural Environmental Efficiency

Technology progress is an essential driving force for productivity growth, and the
production frontier will continue to expand outward with technology progress. Taking
paddy smallholders in the Philippines, for example, the frontier output was significantly
promoted by improved irrigation technology [33]. If there is no change in the productivity
of the areas below the production frontier, the environmental efficiency values in these areas
will become lower. However, our empirical results show that the environmental efficiency
values are improved in almost all regions, suggesting that technology progress plays a role
in all regions. Furthermore, the efficiency of the regions with low environmental efficiency
rises faster than that of the regions with high environmental efficiency, suggesting that
agricultural productive services embodying technology progress play a more significant
role in the regions with low environmental efficiency.

Agricultural productive services help to achieve the concentration of crop varieties,
especially the increase in the proportion of the sown area of grain crops. In general, compared
to cash crops, grain crops have higher productivity, relatively fewer chemical inputs, and
relatively lower environmental impact. In particular, it is worth mentioning that the carbon
absorption rate of grain crops is relatively high, which can easily form more carbon sinks. For
example, the carbon absorption rates of wheat and maize are 0.485 and 0.471, respectively,
which are higher than that of cash crops (the carbon absorption rate is 0.45).

As a product and cost of agricultural production are dual problems, the optimization
of inputs structure means that the cost can be minimized with constant output. We should
seek measures to improve agricultural productivity from a cost perspective in the case that
the grain output per unit area cannot be significantly increased. Hence, the improvement of
agricultural productivity lies in optimizing cost, which depends on the optimal allocation of
different input factors. The spread of agricultural productive services has effectively solved
the limitation of labor scarcity and realized the rational allocation of resources through the
gains from specialization that arise from the division of labor.

On a regional scale, the neighboring regions often have similar crop varieties, and
the difference in the distribution along the latitude makes the crop maturity have time
differences, which provides a broad market space for agricultural productive services.
Agricultural productive services have obvious diffusion and spillover, for they not only
serve the local agricultural production, but also provide support for neighboring regions.
From the viewpoint of micro-entities, farmers can learn advanced knowledge, technology,
and experience from other farmers, agricultural cooperatives, and agricultural production
service organizations in adopting agricultural productive services, and thus promote
productivity improvement through positive externalities of learning. Employing panel
data of 13 prefecture-level cities in Jiangsu province of China from 2000 to 2016, Wu et al.
revealed that the spatial spillover effect of mechanization was significant on grain yield
due to the cross-regional operation of mechanization [35].

There are several reasons for this paper does not explore the pathway of scale operation,
which is analyzed in some other articles [7]. First, the effect of scale operation is not
the expansion of land operation scale, but the optimal combination of land and other
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endowment inputs of farmers. Scale operation at farmer’s level is ultimately reflected
in factors input structure, which has been analyzed above. Second, scale operation at
the region’s level is reflected in the change of planting structure. The more similar the
adjustment of planting structure, the easier it to form a scale agglomeration effect in
the region. Third, this paper considers the influence of land operation area among the
control variables.

To the best of our knowledge, this is the first attempt to reveal the effect of agricultural
productive services on agricultural environmental efficiency and its influencing mechanism
at the provincial level in China.

4.3. Heterogeneity Impact of Different Levels of Productive Agricultural Services

By comparing the effects of agricultural productive services on agricultural envi-
ronmental efficiency in different regions in Table 3, we find that the marginal effect of
agricultural productive services is more prominent in non-main grain-producing areas.
Then, is this because the level of agricultural productive services is lower in non-main
grain-producing areas? As a factor of production, do agricultural productive services satisfy
the law of diminishing marginal returns? To test these assumptions, we further divide the
level of agricultural productive services into three groups, conduct an econometric test (the
results are shown in Table 7), and find that the above inferences are valid. This means that,
as an input factor, the input of agricultural productive services also conforms to the law of
diminishing marginal returns, which is a fundamental law of short-term production. There
is an optimal combination of productive services and other input factors. When the ratio is
exceeded, the marginal benefit of increasing productive services decreases.

Table 7. Heterogeneity impact of different levels of productive agricultural services.

Variables
Low Level Middle Level High Level

(1) (2) (3)

Agricultural
productive services

0.556 *** 0.127 −0.015
(0.149) (0.087) (0.031)

R-squared 0.841 0.871 0.902
Control variable Controlled Controlled Controlled
Fixed province Yes Yes Yes

Fixed year Yes Yes Yes
Observations 160 159 161

Provinces 15 19 15
Note: ***: statistically significant at 1%; Standard error in parentheses.

5. Conclusions

Based on the panel data of 30 provinces in China from 2004 to 2019, we adopt a
multi-output stochastic frontier analysis method to measure agricultural environmental
efficiency based on net carbon sink, then explore the effects and mechanisms of agricultural
productive services on agricultural environmental efficiency using OLS with fixed-effect
panel data, two-stage least squares with instrumental variable, causal steps approach, and
a spatial econometric method. The main conclusions are as follows:

Firstly, agricultural productive services have a significant contribution to agricultural
environmental efficiency. Agricultural productive services enhance agricultural productiv-
ity as well as the agricultural environment through inputs and outputs, and then improve
the efficiency of the agricultural environment. This result still holds after using instru-
mental variables to deal with endogeneity, changing the measurement of dependent and
independent variables, and subdividing the sample. Secondly, the mechanism pathways of
agricultural productive services affecting agricultural environmental efficiency are mainly
reflected in technology progress, planting structure adjustment, factor allocation optimiza-
tion, and spatial spillover. Advanced agricultural technology and management measures
can improve agricultural productivity and energy efficiency, and optimize the energy con-
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sumption structure. A reasonable planting structure is conducive to reducing agricultural
chemical inputs, improving factor utilization efficiency, and realizing economies of scale.
The rational allocation of factors is the fundamental guarantee for the role of agricultural
input resources such as labor, farmland, and chemical fertilizer. Agricultural agglomeration
and different crop maturity periods make cross-regional services of agricultural productive
services possible, thus generating spatial spillover effects. Thirdly, the impact of agricul-
tural productive services on agricultural environmental efficiency is more significant in
the regions with low agricultural productive services level because agricultural productive
services, as a factor input in agricultural production, conform to the law of diminishing
marginal returns.

Given the above evidence and arguments, we draw some policy implications.
Firstly, policy attention should be paid to improving the level of agricultural produc-

tive services continuously according to the actual situation in different regions. For regions
with low level of agricultural producer services due to terrain factors or crop structure
factors, the marginal contribution of agricultural producer services is more pronounced.
It is valuable to promote appropriate agricultural productive services in these areas to
promote the quality of agricultural development and environmental efficiency. For regions
with a high agricultural producer services level, such as main grain-producing areas, the
marginal contribution of agricultural producer services is relatively small. The critical
measure is to update or replace the existing productive service equipment, and promote
the use of agricultural productive services with more advanced technology and higher effi-
ciency. Secondly, efforts should be made to strengthen information diffusion and regional
cooperation to realize the positive spatial spillover effect of agricultural productive services.
For regions with similar resource endowments and similar crop types, information cooper-
ation is used to guide and promote the cross-regional operation of agricultural productive
services, to achieve rational flow and scientific allocation of agricultural machinery. Thirdly,
it is necessary to improve the operating conditions of agricultural productive services,
such as appropriately increasing the investment in transportation infrastructure, guiding
the centralized farmland transfer, and realizing regional agglomeration of crop planting.
Improving transportation infrastructure can provide primary conditions and convenience
for agricultural machinery operations. Farmland transfer and crop agglomeration are con-
ducive to realizing economies of land scale and service scale in agricultural production. The
scale of expansion is beneficial to cultivating the agricultural productive services market
and introducing small farmers to modern agriculture.

There are also some potential limitations in this paper. First, in terms of the research
scope, this study was conducted at the provincial level. Future research can be conducted
at the county level, which potentially has richer data and more accurate results. Second,
in terms of the research depth, as agricultural productive services exist in all aspects of
agricultural production, such as tillage, sowing, irrigation, fertilization, and harvesting, a
possible research direction is to profoundly investigate the impact of different stages of
productive services on agricultural environmental efficiency.
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