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Abstract: Accurate prediction of forest carbon sequestration potential requires a comprehensive
understanding of tree growth relationships. However, the studies for estimating carbon sequestration
potential concerning tree growth relationships at fine spatial-scales have been limited. In this paper,
we assessed the current carbon stock and predicted sequestration potential of Lushan City, where
a region has rich vegetation types in southern China, by introducing parameters of diameter at
breast height (DBH) and tree height in the method of coupling biomass expansion factor (BEF) and
tree growth equation. The partial least squares regression (PLSR) was used to explore the role of
combined condition factors (e.g., site, stand, climate) on carbon sequestration potential. The results
showed that (1) in 2019, the total carbon stock of trees in Lushan City was 9.22 × 105 t, and the overall
spatial distribution exhibited a decreasing tendency from northwest to south-central, and the carbon
density increased with elevation; (2) By 2070, the carbon density of forest in Lushan City will reach
a relatively stable state, and the carbon stock will continue to rise to 2.15 × 106 t, which is 2.33 times
of the current level, indicating that Lushan forest will continue to serve as a carbon sink for the next
fifty years; (3) Excluding the effect of tree growth, regional forest carbon sequestration potential was
significantly influenced on site characteristics, which achieved the highest Variable Importance in
Projection (VIP) value (2.19) for slope direction. Our study provided a better understanding of the
relationships between forest growth and carbon sequestration potential at fine spatial-scales. The
results regarding the condition factors and how their combination characteristics affect the potential
for carbon sequestration could provide crucial insights for Chinese carbon policy and global carbon
neutrality goals.

Keywords: fine-scale; biomass expansion factor; tree growth equation; carbon sequestration potential;
site characteristics

1. Introduction

As an integral component of terrestrial ecosystems, forest ecosystems are a massive
global carbon reservoir [1]. Forests sequester 2/3 of the total terrestrial carbon sequestration
annually [2]. They perform a critical and irreplaceable function in lowering the rate of
accumulation of greenhouse gases in the atmosphere, which helps to mitigate global
warming [3]. Since the 1980s, due to large-scale afforestation programs, forests in southern
China have accounted for more than 65% of the national carbon sink [4,5], much higher
than in northern regions. At the present stage, China’s strategic goal of “reaching a carbon
peak by 2030 and achieving carbon neutrality by 2060” requires a focus on emission
reduction and sink enhancement, so it is necessary to quantify the current carbon stock
and sequestration potential, i.e., the maximum carbon capacity that can be stored in forest
ecosystems without human interference [6]. For a thorough understanding of the role of
forest ecosystems in the carbon cycle, an accurate calculation of the carbon sequestration

Int. J. Environ. Res. Public Health 2022, 19, 9184. https://doi.org/10.3390/ijerph19159184 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph19159184
https://doi.org/10.3390/ijerph19159184
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-4283-3460
https://orcid.org/0000-0002-5119-4461
https://orcid.org/0000-0002-9461-1157
https://doi.org/10.3390/ijerph19159184
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph19159184?type=check_update&version=2


Int. J. Environ. Res. Public Health 2022, 19, 9184 2 of 22

potential of forest ecosystems is required. Not only does it aid in quantifying the impacts of
forests on global warming, it also aids forest management decision-making processes [7,8].

Existing methods for estimating carbon sequestration potential are shaped by the
extension of carbon stock estimates. The estimation of carbon stocks using the biomass
expansion factor (BEF) is considered relatively reliable [9], which determines the forest
biomass and forest volume as a fixed ratio and estimates the carbon stock of the region
by the mean ratio method (MRM) [10]. The continuous BEF method was proposed by
Fang et al. and was used to estimate the carbon stock of forests in China [11]. The
forest carbon sequestration potential is the difference between the maximum forest carbon
capacity and the current (or a given year) forest carbon stock. Since the carbon density
of mature forests can represent the maximum carbon density of forests in similar regions,
the carbon stock at this time is frequently assumed to be the maximum forest carbon
capacity [12]. In the natural state, the carbon stock of forest vegetation usually increases
rapidly with the increase of forest age (successional stage), then slows down and reaches
a steady state [13]. This increasing trend, described as S-shaped, was also reported by
Taylor et al. [14] and Rothstein et al. [15]. The carbon stock of existing forests in China
increases with the age of the forest, and all types of forests at different age stages can sustain
carbon sequestration [12].

Current studies have introduced age into the estimation, using the relationship be-
tween biomass density and tree age to estimate carbon sequestration potential. Mostly used
for large-scale study areas, such as the whole of China [16] and Finland [17], the estimation
method has been thoroughly developed. Due to the large geographical span, diverse
climate types, and complex tree growth in the large-scale areas, it is feasible to use this sim-
plified connection to estimate carbon sequestration potential as a reference value. However,
for the fine-scale regions, such as the county-level study areas in Hebei Province [18] and
Tibet Autonomous Region [19], the carbon density and carbon sequestration potential of
forest vegetation in 2050 were estimated by directly fitting the biomass-forest age relation-
ship using the biomass converted from storage volume, ignoring the fact that the change of
forest stock volume is disturbed by various conditions and is an artificial estimate during
the survey [20]. This does not accurately reflect the growth of trees, and the estimation for
this scale is still questionable, affecting the actual forestry carbon sink project design. As
a result, we take the more accurate depiction of tree growth as an entry point. According
to the widely established model for estimating storage volume, i.e., the binary standing
volume model, DBH and tree height can visually represent the growth of volume [21],
which can be combined with the tree growth equation [22] to reduce the uncertainty in
estimation. The stochastic simulation is used to more accurately represent the change in
accumulation volume during the growth of trees and to improve the accuracy of estimating
forest carbon sequestration potential.

The forest carbon sequestration potential is not only influenced by forest growth but
also by climatic factors [23], topographic factors [24], land use change [25], management
measures [26], etc. Since the carbon stock of forest ecosystems is the fundamental parameter
for studying the carbon exchange between forest ecosystems and the atmosphere [27], these
existing studies mostly choose the current state of carbon stock as the variable and analyze
its influencing factors, ignoring the growth status of the forest and focusing solely on
the impact of environmental conditions under the current state of carbon stock [24,28].
The current carbon stock is influenced by age group composition and dominant species
type, so the carbon stock is often not stable [12]. The carbon sequestration potential is
the maximum possible growth of forest carbon stock under the current scenario, which is
the predicted result after the dynamic growth of the forest. At this time, the average age
of all tree species has reached the mature forest stage, and the carbon stock is relatively
stable, which is convenient to reveal the relationship between the carbon sequestration
potential and the current condition factors in the study area. Furthermore, most previous
research has concentrated on single components such as elevation factor, canopy density,
rainfall factor, and so on [23,24,28], and less attention has been paid to the combination



Int. J. Environ. Res. Public Health 2022, 19, 9184 3 of 22

characteristics among factors. The forest growth condition of the carbon sequestration
potential is used in our study as an entry point to analyze the effect of single factors of
the condition factor on forest carbon sequestration. Based on this, we also try to combine
single factors of the same type and examine the magnitude to which influence on carbon
sequestration potential among various combined features, this will assist in eliminating
the interference of uninterpretable information such as multiple correlations and better
analyze the influence of multiple condition factors such as site, stand, and climate in
a comprehensive manner.

Given the above, Lushan City in southern China, a “natural laboratory” for studying
forest ecology [29], was selected as a case region of the study. The specific objectives
of the study were to (1) better understand the relationships between forest growth and
carbon sequestration potential at the fine-scale study area; (2) estimate the region’s car-
bon sequestration potential by analyzing the current characteristics of carbon stock; and
(3) reveal the influence of condition factors and their combination characteristics (site, stand,
and climate) on carbon sequestration potential without forest growth disturbances.

2. Materials and Methods
2.1. Study Area

Lushan City (115◦49′42′′–116◦8′18′′ E, 29◦9′6′′–29◦38′32′′ N) is located in the north
of Jiangxi Province, with a total area of 764.54 km2 (Figure 1). The city, in the East Asian
monsoon region, has a humid subtropical climate influenced by both Lushan Mountain and
Poyang Lake. The annual average temperature is 15.3~17.3 ◦C, the precipitation is uneven
in all seasons, and the dry and wet seasons are obvious. Lushan City owns Lushan Nature
Reserve, which has been operating for 41 years since 1981 and has a subtropical forest
ecosystem as its main conservation object. The forest coverage rate has increased from
42.00% before the establishment of the nature reserve to 80.70% at present, and the forest
resources are abundant and well-maintained, with a wide diversity of tree species [29,30].
The total area of arboreal woodland in Lushan is 274.47 km2, consisting of (i) natural
forests (formed by natural underplanting, artificially promoted renewal or sprouting after
a disturbance such as natural forest harvesting) and (ii) planted forests (formed entirely by
machine seeding or artificial sowing, such as seedling planting, seeding and fly sowing).
Among them, the area of natural forest is 201.30 km2 (73.34%), and the area of planted
forest is 73.17 km2 (26.66%). Based on the main dominant species of the forest fine patches
in the forest management inventory, the forest patches were classified into 7 types: Pinus
massoniana, Pinus taiwanensis, and Pinus elliottii constitute pine forest (PF); Cunninghamia
lanceolata and Cryptomeria japonica constitute Chinese fir forest (CFF); Cinnamomum camphora,
Quercus L. and other hard broad species constitute broadleaf hardwood (BLH); Populus L.,
Paulownia fortunei and other soft broad species constitute broadleaf softwood (BLS); and
mixed coniferous forest (MCF), mixed broadleaf forests (MBF) and mixed conifer-broadleaf
forests (MCBF). Among them, PF (41.86%), MCF (18.30%), and CFF (17.95%) accounted
for a higher percentage. According to the age of trees, the patches of forests in Lushan
are mainly young and middle-aged, with the majority of trees between 20–40 years old
(59.33%) and very few patches with an average age of more than 60 years old (0.72%). The
complex and varied mountainous landscape of Lushan presents an elevation difference of
about 1465 m. The vegetation shows more obvious vertical distribution characteristics, and
81% of the forest patches have an elevation greater than 100 m. Furthermore, initiatives
including closing hills for afforestation, rehabilitating degraded forests, and tending to
forests have been taken seriously in Lushan City to increase their capacity as carbon sinks
(For example, the above projects involved 400 ha of forest in 2019). In conclusion, Lushan
City has a diverse range of forest types and a considerable mountain microclimate, with
the typical characteristics of subtropical mountain forests in southern China.
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Figure 1. Location, topography, basic forest information, and forest patch distribution in the study 
area. (a) shows the location and topography of the area; (b) shows the distribution of different forest Figure 1. Location, topography, basic forest information, and forest patch distribution in the study

area. (a) shows the location and topography of the area; (b) shows the distribution of different forest
types. Based on the main dominant species of the forest fine patches in the forest management
inventory, the forest patches were classified into 7 types: PF refers to pine forest composed of
Pinus massoniana, Pinus taiwanensis, and Pinus elliottii; CFF refers to Chinese fir forest composed
of Cunninghamia lanceolata and Cryptomeria japonica; BLH refers to hard broad forest composed of
Cinnamomum camphora, Quercus L. and other hard broad species; BLS refers to soft broad forest
composed of Populus L., Paulownia fortunei and other soft broad species; and three types of mixed
forests: mixed coniferous forest (MCF), mixed broadleaf forests (MBF) and mixed conifer-broadleaf
forests (MCBF); (c) shows the area share of different forest patches; (d) shows average age composition
of forest patches; (e) shows the origin of the forest patches (natural forest/planted forest).
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2.2. Data Sources

Forest management inventory is an important basic task for understanding the cur-
rent state of forest resources and the ecological environment, providing a foundation for
a scientific formulation of forestry development planning. The base data for this study
was obtained from the forest management inventory data (FMID) in Lushan City, Jiangxi
Province. Excluding economic forest, shrub forest, bamboo forest, and other forest patch
types (The above types are incomplete in FMID), there were 5162 forest patches. After re-
moving invalid data, 5077 valid forest survey patches were obtained. The survey recorded
76 forest class factors, including (i) site conditions (e.g., average elevation, slope direction,
slope gradient, soil thickness, etc.); (ii) stand characteristics (average tree age, average DBH,
average tree height, canopy density, etc.); and (iii) evaluation factors (forest naturalness,
stand protection class, etc.), which provide sufficient variables and considerations for
modeling. The survey accuracy of the sampled volume and forest patch factors is ensured
through systematic sampling, and the overall regional volume accuracy reaches 80–85%;
the error of the average tree height does not exceed 10%, and the error of the average
DBH does not exceed 1 cm; the allowable error of the average age of natural forests is
less than one age class period (10 years for PF, BLH, 5 years for CFF, BLS, mixed forests
depending on the actual species composition), and the average age of planted forests is
basically error-free. Furthermore, the FMID was completed in 2019, and we traveled to the
field in September 2021 to conduct research and select some typical sample sites to verify
the data’s legitimacy.

Climate data were obtained from nine meteorological stations in and around Lushan
city from 2014 to 2018 daily rainfall and average temperature data from the China Mete-
orological Science Data Sharing Service (http://data.cma.cn/, accessed on 15 June 2022).
Radiation data were high-temporal (3 h) surface solar radiation data from 2014 to 2017
sunshine hours in the Lushan area from the National Qinghai-Tibet Plateau Scientific Data
Center [31] (http://www.tpdc.ac.cn, accessed on 15 June 2022). Data points were extracted
using the fishnet extraction tool and then spatially interpolated using the inverse distance
weighting (IDW) approach in ArcGIS Pro2.5 [32] to create the grid data of multi-year aver-
age temperature, precipitation, and radiation. We compared the effect of IDW interpolation
with other spatial interpolation of climate data in the Poyang Lake basin study [33] and
finally chose to use the result of the IDW for influence factor analysis. All raster spatial
resolutions were unified at 30 m, and the projection coordinate system was unified at
CGCS2000_3_Degree_GK_Zone_39.

2.3. Methods for Estimating Carbon Sequestration Potential
2.3.1. DBH-Tree Height Growth Model

There is an obvious positive correlation between tree standing volume and its DBH
and tree height [11]. We used the binary standing volume model, which has sufficient
accuracy and is the most widely used [21], to describe the functional relationship, as shown
in Equation (1).

V = a0Da1 Ha2 , (1)

where V is the stumpage volume (m3), D is the average DBH (cm), H is the tree height (m);
a0, a1, a2 are the parameters to be fitted. The FMID were counted by forest patches, and
3–5 standard trees of the dominant species were selected in each forest patch for measure-
ment, and the average DBH (D) of the cross-sectional area was used as the DBH data, and
the average tree height (H) was used as the tree height data. The classifications were fitted
to a0, a1, and a2 to obtain model parameters that better fit this study area.

Changes in tree DBH and tree height are distinctive features of the performance
with increasing tree age, and we selected samples of forest patches with similar natural
conditions, divided into age groups, and proposed a simplified model of DBH and tree
height growth. After a sufficient number of data samples passed the Shapiro-Wilk normality
test [34], it can be assumed that the mean DBH and mean tree height of forest patches
of the same mean age follow a normal distribution, and the trend of the model normal

http://data.cma.cn/
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distribution parameters with mean age can be studied further. The relationship between
DBH-tree height and age is difficult to construct with a uniform expression, so an attempt
was made to employ the existing growth models Gompertz, Logistic, Korf, Mitscherlich,
and Richards growth functions [22,35]. The above models were used to fit nonlinear curves
for the expectation of DBH-tree height and their age, respectively. Using the highest R2 and
lowest RMSE as the test criteria, the best growth model for the forest type in this region was
determined to be the logistic [36], which was selected for subsequent analysis, as shown
in Equation (2).

Y =
c0

1 + c1e−c2·T
, (2)

where Y is the DBH or tree height, T is the age of the tree, e is the natural exponential,
c0, c1, and c2 are the parameters to be fitted. This equation describes a three-parameter
S-shaped growth curve, with c0 showing the exact upper boundary of growth and c1, c2
jointly determining the growth rate of the curve, which is an ideal population growth
model with important ecological significance and is widely used.

2.3.2. Stochastic Simulation of Volume Growth

Under the premise that the mean DBH and tree height of the same mean age forest
patch obey normal distribution, respectively, the mean volume of the forest patches should
satisfy some joint probability distribution function of DBH and tree height according
to the binary standing volume model (Equation (1)). Since the form of the distribution
obtained from the solution of this function is complicated, it is not conducive to practi-
cal application. Therefore, we use MATLAB R2020b (9.9) and Origin 2019b to conduct
a stochastic simulation. Based on the age series and the DBH-tree height growth function,
the samples of DBH and tree height were drawn reflecting normal distribution. Further, we
got a sample matrix of volume. The sample means were used as point estimates, leading to
the expectation of volume under different forest types and ages. By stochastic simulation of
volume growth, we gained a more accurate fit to the logistic growth function. More details
about stochastic simulation can be found in Appendix A.

2.3.3. Estimation of Carbon Sequestration Potential

Tree biomass density was significantly and linearly positively correlated with volume
density [11] (Equation (3)), and forest carbon stock estimates were derived by multiplying
forest biomass by the amount of elemental carbon in the biomass (i.e., the carbon content
factor). Carbon density is the amount of carbon stored per unit area of forest biomass.

W = β1 ·V + β0, (3)

where W is the biomass density (kg/ha), V is the volume density (m3/ha), β1, β0 are model
parameters, mainly based on the forest type conversion model proposed by Fang et al. [11]
and Zeng et al. [37]. Due to the different tree species composition, age, and population
structure of different vegetation types [38], the carbon content conversion coefficients may
vary greatly. In this study, forest carbon stocks were measured based on the carbon content
coefficients of each tree species (group) in the “Guidelines for carbon sink measurement
and monitoring in afforestation projects” issued by the State Forestry Administration and
previous research results [39,40] (Table 1).

Carbon sink capacity indicates the ability of vegetation to fix carbon per unit time,
expressed as the increment of carbon stock in a certain time (Equation (4)). When the carbon
density of the forest is relatively stable, the carbon sequestration potential is the difference
between the carbon stock tending to the maximum and the carbon stock in the current year.

CS = Ct − Ct−1 = γ · (Wt −Wt−1), (4)
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where the annual carbon sink CS is the difference between the corresponding carbon stocks
of Ct and Ct−1 in adjacent years and is equivalent to the product of the carbon content
factor and the biomass. Equations (3) and (4) were implemented on Origin 2019b software.

Table 1. BEF parameters and carbon content coefficients of forest types.

Forest Type Main Dominant Tree Species
Model Parameters Carbon Conversion

Coefficients

β1 β0 γ References

PF
Pinus massoniana 0.520 0

0.544 [40]Other pine species such as Pinus elliottii 0.517 33.238

CFF

Cunninghamia lanceolata 0.399 22.540

0.555
[40]Cryptomeria japonica,

Metasequoia glyptostroboides 0.416 41.332

Cupressus funebris 0.613 26.145

BLH
Quercus L. 1.145 8.547

0.522 [40]Cinnamomum camphora 1.036 8.059
Other hard and broad categories 0.756 8.310

BLS Populus L., Paulownia fortunei and etc. 0.475 30.603 0.521 [40]

MCF - 0.589 24.515 0.528 [39]

MBF - 0.839 9.416 0.511 [39]

MCBF - 0.802 12.280 0.494 [39]

PF refers to pine forest; CFF refers to Chinese fir forest; BLH refers to hard broad forest; BLS refers to soft broad
forest; and three types of mixed forests: MCF refers to mixed coniferous forest, MBF refers to mixed broadleaf
forests, and MCBF refers to mixed conifer-broadleaf forests.

2.4. Influencing Factors Analysis Method

In this study, the PLSR was used to explore the conditional factors of carbon se-
questration potential [41,42] to effectively remove the interference of non-interpretative
information. The results of carbon sequestration potential values were used as dependent
variables to analyze the influence of single trait factors. A combination of single traits of
the same type was attempted to construct the combined traits separately (Table 2) to reflect
the degree of influence of a certain factor type comprehensively.

Table 2. Selection of single-factor and combined characteristics of the conditional factors.

Portfolio Feature Type Single Factor Portfolio Features

Site Characteristics
Mean elevation (ELE), Slope direction (SD), Slope gradient (SG),

Soil thickness (ST), Humus thickness (HT)
5

√
5
∏
j=1

X̃1j

Stand Characteristics Forest density (FD), Vegetation cover (VC), Canopy density (CD) 3

√
3
∏
j=1

X̃2j

Climate Characteristics Precipitation (PRE), Radiation (RAD), Temperature (TEM) 3

√
3
∏
j=1

X̃3j

X̃ is the normalization of single factor X in the table.

Multiple correlation diagnostics were first performed to calculate the variance inflation
factor (VIF). It is generally considered that when VIF > 10, multiple correlations among
the factors will seriously affect the estimates of partial least squares. After testing, all single
and combined factors satisfy VIF < 10, indicating no significant linear correlation between
the factors and can be used for PLSR. The factors that passed the diagnostic were selected
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for PLSR, and Variable Importance in Projection (VIP) was calculated to indicate the degree
of explanation of the standard deviation by the factors, as shown in Equation (5).

VIP2
j =

q
m
∑

i=1
r2(Y, xi)w2

ij

m
∑

i=1
r2(Y, xi)

, (5)

where q denotes the number of variables involved in the analysis, m denotes the number of
iterations, and in the ith iteration, r(Y, xi) is calculated as the correlation coefficient between
the dependent variable and all variables. wij is the weight of variable j, which reflects the
degree of explanation of the variables in the model. The sum of squares of VIP values of
all variables is equal to 1. Factors with VIP < 1 are considered to have a low degree of
explanation of the model, and factors with VIP ≥ 1 have a high degree of explanation. All
the above tests were performed with Python 3.9.

3. Results
3.1. Modeling Results of Tree Forest Volume Growth

The fitted parameters of the binary standing volume model and growth simulation
for each type of forest in Lushan City are shown in Table 3. The fitted parameters of the
binary standing volume model and the DBH-Tree Height growth model generally had
R2 values above 0.90, which were well fitted, as shown in Figure 2. For each age group
of different forest types, the growth function of volume expectation with tree age was
fitted. It was found that the fitted logistic curves using continuous derivable logistic curves
yielded good fitting results for the volume expectancy as a function of mean age. For the
curves of relative tree height, relative DBH, and forest volume with age for specific forest
types, please refer to Figure A1 in Appendix B. The fitted models for the major forest types
showed statistical significance at the 0.01 level, and the R2 values close to 1 confirmed the
good applicability of the model for estimating tree forest volume in Lushan. This volume
growth model illustrated the relationship between the volume of a dominant species forest
with age in a simplified form, which provides a good basis for the estimation and prediction
of carbon sequestration potential.
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Figure 2. Fitting the growth model of accumulation volume of the forest types in Lushan City.
(a) shows the tree height-standardized age fitting relationship; (b) shows the DBH-standardized age
fitting relationship; (c) shows the accumulation volume expectation-mean age fitting relationship
after random simulation. (a–c) compare the relative tree height, relative DBH, and accumulation
volume with age curves of different forest types, respectively, which illustrates that the Logistic
function has a good fitting effect and also describes the differences between the curves of different
forest types, fully reflecting the growth characteristics of forest types in Lushan City. (The points in
the graph were forest patches sampling in FMID data).
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Table 3. Fitting results of the volume growth models in different forest types.

Model Type
Forest Type

PF CFF BLS BLH MCF MBF MCBF

Binary standing
volume model

a0 7.695 × 10−5 6.445 × 10−5 7.199 × 10−5 9.161 × 10−5 7.642 × 10−5 1.086 × 10−4 1.081 × 10−4

a1 1.953 1.939 1.953 1.981 1.969 1.884 1.892
a2 0.821 0.906 0.898 0.757 0.821 0.767 0.758
R2 0.934 0.957 0.891 0.906 0.932 0.933 0.950

RMSE 0.013 0.022 0.039 0.035 0.012 0.018 0.012

DBH
growth model

c0 1.059 0.972 0.917 1.237 1.237 1.170 1.243
c1 44.533 6.218 10.829 8.026 14.709 9.276 42.803
c2 6.249 4.929 6.345 3.135 4.193 3.920 5.265
R2 0.898 0.845 0.853 0.855 0.973 0.926 0.799

RMSE 0.107 0.110 0.119 0.317 0.045 0.076 0.130

Tree height
growth model

c0 0.997 0.927 0.887 0.940 1.086 1.177 1.317
c1 8.295 6.262 14.930 8.592 13.439 11.052 8.106
c2 5.119 5.496 9.421 5.279 5.253 3.823 3.143
R2 0.941 0.915 0.881 0.937 0.969 0.968 0.910

RMSE 0.076 0.084 0.118 0.074 0.051 0.051 0.072

Model
for growth
of average

plant volume

c0 0.199 0.237 0.242 0.336 0.328 0.217 0.258
c1 19.486 30.880 6.591 8.510 18.997 13.711 13.693
c2 0.089 0.104 0.092 0.046 0.072 0.075 0.063
R2 0.991 0.997 0.988 0.999 0.996 0.994 0.995

RMSE 0.006 0.003 0.006 0.002 0.006 0.005 0.005

PF refers to pine forest; CFF refers to Chinese fir forest; BLH refers to hard broad forest; BLS refers to soft broad
forest; and three types of mixed forests: MCF refers to mixed coniferous forest, MBF refers to mixed broadleaf
forests, and MCBF refers to mixed conifer-broadleaf forests.

3.2. Characteristics of the Current Carbon Sequestration Capacity of Tree Forests

The average carbon density of tree forests in Lushan City in 2019 was 33.59 t/ha.
The current state of carbon density showed an overall distribution pattern of high in the
northwest and low in the south, decreasing from north to south, as shown in Figure 3. The
carbon density contribution of different age groups of forest types at various altitudes was
analyzed. Forest patches were more distributed at 0–100 m and 100–300 m altitudes, and
the carbon density was 26.41–28.97 t/ha here, which was lower than the average carbon
density of the study area (33.59 t/ha). The carbon density increased with elevation in the
four gradient intervals higher than 300 m, closely related to the forest types at various
elevations. The main contributing forest types for carbon density were CFF and MCF in
the 300–600 m and 600–900 m gradient intervals. PF was the most significant contributory
species in the other four gradient intervals, particularly in the highest elevation interval
(1200–1465 m), where PF accounted for a considerable proportion under all conditions.

In 2019, the volume of forest storage in Lushan City was 2.34 × 106 m3, the biomass
was about 1.73× 106 t, and the total carbon stock was 9.22× 105 t (Table 4). The carbon stock
indicates the overall state of a forest type, and the percentage of carbon stock contributed
by each type of forest varies. Among them, the four forest types of PF, CFF, MCF, and
MCBF provided 86.12% of carbon stock, with PF mainly providing 33.39% of carbon stock.
The annual carbon sink of the Lushan forest was 3.02 × 104 t from 2019 to 2020, and its
main contributing sources were PF (40.66%), CFF (15.39%), and MCF (19.50%). The average
carbon density of tree forests in Lushan had grown about 1.10 t/ha/a with a growth rate of
3.28% from 2019 to 2020. The lowest growth rate of BLS was 0.74 t/ha/a with a growth rate
of 1.84%, and the highest growth rate of MBF was 1.35 t/ha/a with a growth rate of 3.41%.
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carbon sequestration capacity of forests in Lushan City was calculated from four aspects: spatial
distribution, elevation, age group, and forest types. The geographic distribution map in the middle
shows the spatial distribution of carbon density of forests in 2019; the carbon density stacking figures
on both sides show the carbon density share of each age group of forest types in Lushan City at
(0, 100], (100, 300], (300, 600], (600, 900], (900, 1200], and (1200, 1465] altitude gradients.

Table 4. Status of carbon density/carbon stock in forest patches of different types.

Forest Type Forest Volume
(×104 m3)

Forest Volume
Density
(m3/ha)

Tree Biomass
(×104 t)

Forest Carbon
Stock (×104 t)

Forest Carbon
Density (t/ha)

Forest
Single-Year

Carbon Sink
(×103 t/a)

Forest Carbon
Intensity
Growth
(t/ha/a)

PF 89.617 78.007 56.558 30.784 26.796 12.291 1.070
CFF 60.795 123.397 37.211 20.660 41.933 4.653 0.944
BLH 4.777 91.650 5.008 2.615 50.181 0.614 1.179
BLS 4.976 99.408 3.897 2.029 40.543 0.372 0.744
MCF 35.161 70.012 33.022 17.442 34.730 5.893 1.173
MBF 16.705 80.809 15.966 8.159 39.457 2.784 1.347
MCBF 22.072 75.560 21.287 10.509 35.976 3.619 1.239

Overall 234.103 85.291 172.948 92.197 33.590 30.227 1.101

PF refers to pine forest; CFF refers to Chinese fir forest; BLH refers to hard broad forest; BLS refers to soft broad
forest; and three types of mixed forests: MCF refers to mixed coniferous forest, MBF refers to mixed broadleaf
forests, and MCBF refers to mixed conifer-broadleaf forests.

3.3. Predicted Carbon Sequestration Potential of Tree Forests

The relationship between the carbon density of forests and tree age was examined
based on the distribution of current forest age groups. A significant increase in carbon
density will experience in the next 20 to 50 years, and it will achieve a stable state after
50 years. This relationship indicates that the upper limit of carbon density will be between
55 and 75 years (The year here refers to the average age of the forest stands). The carbon
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density of Lushan City will reach a relatively stable state in 2070, achieving the maximum
carbon sequestration potential in the study area (Figure 4). The change of overall carbon
stock in tree forests from 2019 to 2070 shows an upward trend of decreasing growth rate:
The carbon stock continuously will increase from 9.22 × 105 t to 2.15 × 106 t, and the
overall carbon density will raise from 33.59 t/ha in 2019 to 78.33 t/ha in 2070, increasing to
2.33 times of the original one. The potential carbon sequestration is about 1.23 × 106 t, with
a higher contribution from PF and MCF (Figure 5). PF has the highest carbon sequestration
potential because of its absolute dominance of the land area. The annual carbon sink of
tree forests shows a trend of increasing and then decreasing: the highest annual carbon
sink will occur in 2030 with 3.39 × 104 t, and will decrease to 8.06 × 103 t in 2070 (Figure 5).
The peak yearly carbon sink of diverse dominant species forest patches occurs in different
years due to the varied tree species structure and age composition. Among them, the peak
annual carbon sink of CFF is the earliest, reaching the maximum in 2019; the peak annual
carbon sink of MCF is the latest, reaching the maximum in 2039; the remaining dominant
tree types will reach the peak annual carbon sink in 2022–2032.
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Figure 5. Carbon sequestration potential of different forest types in Lushan City from 2019–2070:
(a) depicts the change of carbon stock of forest types in Lushan, (b) records the contribution of
different forest types to the total carbon stock more visually in percentage; (c) depicts the change of
annual carbon sink of forests types in Lushan; and the contribution of different forest types to the
total annual carbon sink is visually represented in (d); (e) compares the change of carbon stock of
different forest types, and (f) compares the annual carbon sink changes of different forest types and
records the peak and arrival years.

The carbon sequestration potential of natural forests is significantly higher than that
of planted forests (Figure 6). And the carbon stock of natural forests is about 2.31 times
higher than that of planted forests in 2019, increasing to 3.15 by 2070. The annual carbon
sinks in planted forests will peak between 2025 and 2026, while that of natural forests will
peak between 2031 and 2032. The growth rate of carbon density in natural forests is also
consistently higher than that in planted forests, with both reaching the same level between
2035 and 2036. By 2070, the carbon density of natural forests will reach 80.03 t/ha, higher
than that of planted forests at 69.99 t/ha, indicating that natural forests can provide a more
effective carbon sequestration function for Lushan City.
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Figure 6. Carbon sequestration potential of natural and planted forests in Lushan City from
2019–2070: (a) shows the change of carbon stock, the two curves show an upward trend of de-
creasing growth rate, and the natural forest curve is always above the planted forest; (b) shows
the change of annual carbon sink, the two curves show an increasing and then decreasing trend;
(c) shows the change of carbon density, the two curves show an upward trend, and the natural forest
carbon density exceeds the planted forest in 2040. (d) is the change of carbon density growth rate,
and the change trend is similar to (b).

3.4. Exploration of Factors Influencing Carbon Sequestration Potential

As shown in Figure 7, we analyzed the single factors of all samples, in which the
VIP values of slope direction (2.19), slope gradient (1.24), and soil thickness (1.02) were
greater than 1. Slope direction (SD) had the highest importance, indicating that the carbon
sequestration potential was significantly influenced by site characteristics. Adding the
combination factors for analysis, the VIP value of stand characteristics was 1.29 based
on the original key factors. All were higher than their three single factors (forest density
(1.28), vegetation cover (0.44), and canopy density (0.42)), indicating that the combination
of stand characteristics had stronger explanations than the single factors. The effect of
combined factors of site conditions and climatic factors was average and less important
than some single factors. When the effect sizes of the combined factors were compared,
the explanatory effects of both stand characteristics (1.27) and climatic factors (1.16) were
larger than 1, with the explanatory effects of stand characteristics being stronger than those
of site characteristics.

Furthermore, the parameters impacting carbon sequestration capability varied de-
pending on the forest type. The VIP values of single factors of natural forests and the
overall regional forests were not significantly different, and their key factors were all slope
direction factors in site characteristics. It is worth noting that the influencing factors of
carbon sequestration potential of planted forests are different from the overall regional
forests, and the VIP values of two factors, soil thickness (1.67) and vegetation cover (1.42),
are greater than 1. Regarding the combination of characteristics, the climatic characteristics
of both natural and planted forests had stronger explanatory effects than the single factors.
Comparing the effect sizes among the combination characteristics, climate characteristics
had higher explanatory effects on natural and planted forests, respectively. The explanatory
role of site characteristics on the carbon sequestration potential of natural forests was
high (1.18).
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Figure 7. Variable Importance in Projection (VIP) for condition factors. (a) shows the comparison
of VIP values between single factors for overall, natural forest, and planted forest; (b) shows the
comparison of VIP values between combined features for overall, natural forest, and planted forest;
(c) shows the comparison of VIP values between single factors and combined features. Mean elevation
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density (FD), Vegetation cover (VC), Canopy density (CD), Precipitation (PRE), Radiation (RAD),
Temperature (TEM).

4. Discussion
4.1. Estimation Methodology and Estimation Results

The biomass-forest age relationship has become a frequently utilized method for
predicting future forest carbon pools and estimating forest biomass carbon stocks [16,43,44].
Existing research has mostly employed biomass-forest age connections to estimate carbon
sequestration potential in larger-scale study areas, such as national [16] and provincial [45]
scales, as well as incorporating stand age in the present stand growth model framework to
reduce estimation bias [46]. However, unlike the predictive growth equation with DBH and
tree height factors, Liu et al. [20] and Zhou et al. [47] showed that, while many studies have
reported successful applications of fitting biomass-forest age relationships directly using
biomass converted from forest volume [48,49], there are still questions about the accuracy
and precision of volume estimates, particularly concerning reducing the uncertainty of
model parameters [50]. As a result, explicitly fitting the biomass-age relationship using
biomass transformed from volume fails to appropriately depict tree growth [51]. Since the
actual forestry carbon sink projects are frequently carried out for fine scales, more accurate
forecast results of carbon sequestration potential are required. In this study, considering
the complexity of the forest survey samples in the fine-scale study area, the tree growth
equation was re-fitted based on the characteristics of the binary standing volume model
in which the DBH and tree height can visually represent the growth of storage volume,
using the relationship between DBH, tree height, standing volume storage, and tree age.
Compared with the original model, the model constructed in this study further refines the
relationship between volume and age of a forest type using a stochastic simulation process,
which can be applied even with limited forest biomass data and forest age observation,
and provides a reference for the prediction of forest carbon sequestration potential at
fine-scale regions.

In addition, our estimating results are consistent with previous research literature [52–54].
Excluding differences in the age structure of the study area and study methods, they are
generally consistent with the results of previous research on carbon density estimation in
Jiangxi Province (Table 5). Compared with carbon density estimates at the same study scale
in Jiangxi Province, the average carbon density in Lushan City estimated in this study was
higher than the carbon density in Taihe County estimated by Wu et al. [55], and the carbon
density in Xingguo County estimated by Li et al. [56]. A possible reason is that our study
was investigated 16 years later than those two, during which the tree forest maintained
stable growth and carbon density continued to increase. The average carbon density in
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Lushan City is close to 36.0 t/ha, which was estimated by Zhang et al. [24] in the whole
of Jiangxi Province. Compared with the carbon density in Jiangxi Province estimated by
Li et al. [52] and Wu et al. [53] (23.87–27.2 t/ha), the average carbon density in Lushan
City is slightly higher, and its contribution to the forest carbon sequestration function in
Jiangxi Province is greater. Compared with the predicted carbon sequestration potential of
arboreal forests based on biomass-age relationships in previous literature, the results were
similar to those predicted by Wu et al. [55] and Qiu et al. [54], indicating the reasonableness
of the model. Additionally, compared with the national data, the carbon density in Lushan
City in 2020 is lower than the 50.51 t/ha predicted by Zhang et al. [46] and the 59.8 t/ha
predicted by Xu et al. [16], which may be mainly because the tree forests in Lushan City
are dominated by middle-aged and young forests, and the forest management in Jiangxi
Province is primarily rough management with slow growth [57]. The predicted carbon
density in Lushan City in 2050 is close to the predicted values for the national forest carbon
density in 2050, which indicates that the forest vegetation in Lushan City has significant
potential for carbon sequestration.

Table 5. Comparison with the estimated and predicted values of forest carbon density in Jiangxi
Province from previous studies.

Study Area Survey
Time

Status Quo Carbon Density of Different Forest Types (t C/ha)
Average
Carbon
Density
(t C/ha)

Predicted Year Carbon
Density (t C/ha) References

PF CFF BLH BLS MCF MBF MCBF 2020 2030 2040 2050

Lushan City 2019 26.8 41.93 50.18 40.54 34.73 39.45 35.98 33.59 34.69 46.61 58.49 68.04 This study

Taihe County,
Jiangxi Province 2003

Pinus
massoniana
13.76 Pinus
elliottii 37.8

29.09 32.46 33.68 27.79 26.31 35.91 40.37 - - [55]

Xingguo County,
Jiangxi Province 2003

Pinus
massoniana
13.28 Pinus
elliottii 36.89

24.65 59.96 44.23 44.94 18.25 - [56]

The whole
of Jiangxi

2001–
2005

Pinus
massoniana

14.89 Foreign
pine 37.68

29.51 42.64 32.3 33 27.2 - [52]

The whole
of Jiangxi 2011

Pinus
massoniana
9.69 Pinus
elliottii 8.49

20.77 16.18 21.25 27.05 35.46 26.25 23.87 - [53]

The whole
of Jiangxi 2016 34.54 33.16 - - 43.11 54.51 40.69 36 - [24]

The whole
of Jiangxi 2013 - 28.95 30.39 - - 40.55 [54]

Entire
Jiangxi/National 2010 - 20.68 41.76 45.81 48.55 52.52 [58]

National 2010 - - 50.51 58.17 63.73 67.84 [46]
National 2000 - - 59.8 65.1 68.9 71.7 [16]

PF refers to pine forest; CFF refers to Chinese fir forest; BLH refers to hard broad forest; BLS refers to soft broad
forest; and three types of mixed forests: MCF refers to mixed coniferous forest, MBF refers to mixed broadleaf
forests, and MCBF refers to mixed conifer-broadleaf forests.

4.2. Factors Influencing Carbon Sequestration Potential

Based on the growth of forest age of different forest types, we quantified the future
carbon sequestration potential of Lushan City forests. After incorporating information on
stand developmental stages into predicting future forest carbon sequestration potential,
this study found that forest carbon stocks accumulated rapidly at young ages and gradually
saturated at later stages, which is consistent with He et al. [43,59]. After changes in
forest carbon density have stabilized, mature and over-mature forests can also continue to
accumulate carbon as stand age increases [60], and still hold a crucial role in the carbon cycle
despite decreasing growth efficiency. Therefore, the carbon sequestration benefits given by
forests as they grow and expand are ongoing. In addition to forest growth and development,
forest carbon sequestration capability is intimately tied to large-scale afforestation and
regional extension of ecological restoration efforts. In the next five decades, ecological
restoration programs and sustainable forest management in China will increase forest
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area and biomass carbon intensity, making forests of various ages a carbon sink [46]. And
according to the China Forestry Sustainable Development Strategy Research Group, the
quantity and quality of China’s forests are expected to enter a phase of steady development,
which implies that the capacity of increasing forest carbon sequestration potential may be
limited. As a result, to acquire better forest carbon sequestration potential assuming normal
forest growth and development, it is required to investigate the influence of condition
factors on carbon sequestration potential.

The predicted carbon sequestration potential value was used as the dependent variable
in this study. The site characteristics had a significant impact on carbon sequestration po-
tential, with slope direction having the most impact, which was significantly and positively
correlated with the value of carbon sequestration potential. This result is consistent with
the previous regional research findings in Jiangxi Province. Wu et al. [61] examined the
vegetation carbon density of major forests in the Poyang Lake basin. They discovered that
slope direction and gradient had a substantial impact on vegetation carbon density. Since
the slope direction, slope gradient, elevation, and other site features have redistribution
effects on surface light, heat, and water resources, which affect the forest growth and, con-
sequently, the carbon pool. The findings imply that the research area’s carbon sequestration
capacity is greatly influenced by the azimuth of solar irradiation, and the sunny slope (i.e.,
south slope) may yield stronger carbon sequestration [24].

The key factors influencing the carbon sequestration capability of various origins’
forests are diverse, resulting in various management strategies. Natural forests and the
overall forests in the region have comparable crucial features, and they are all tied to site
characteristics. The protection of natural forests should be encouraged, and the slope
direction and slope gradient should be emphasized in the implementation of natural
forest protection projects, which will avoid the reduction of forest carbon sink capacity
caused by problems such as soil erosion. On the other hand, the key factors of planted
forests are soil thickness and vegetation cover. Relatively thicker soil and relatively higher
vegetation cover can provide a higher carbon sink. Therefore, when predicting the carbon
sequestration potential of planted forests in the future, the above factors can be considered
as the main control factors for modeling to improve the prediction accuracy. To provide
favorable conditions for the expansion of carbon sink in a planted forest, more consideration
should also be given to the aforementioned components when developing planted forest
initiatives. Furthermore, when the findings of the multifactor combination were compared,
the climatic combination had a greater impact than the site and stand characteristics. The
growing season was effectively extended by the rises in temperature and precipitation,
which also increased microbial activity, photosynthetic capacity, and plant growth and
respiration [62]. This improved the capacity of forests to store carbon [5]. Therefore, the
climatic combination characteristics can be considered to incorporate into the prediction
model, allowing multiple climate condition scenarios to be established to more correctly
estimate the future carbon sequestration potential of forests.

4.3. Uncertainties and Potential Constraints

Carbon stocks in forest ecosystems are primarily influenced by two aspects. On the
one hand, changes in forest biomass and the accompanying changes in the carbon cycle,
and on the other hand, changes in the forest soil carbon pool, namely the balance between
imports and losses of organic carbon into the soil [9]. Solar radiation also plays an im-
portant role in plant carbon sequestration. For example, sunny slopes can lead to strong
soil mineralization and evapotranspiration, which may limit plant carbon sequestration.
The estimation of carbon sequestration potential is somewhat biased because actual mea-
surements of soil nutrient mineralization and evapotranspiration have not been carried
out. Due to the lack of data on understory vegetation, herbaceous layer, deadwood layer,
dead wood, and soil layer in the FMID, this study did not cover the carbon stocks of the
categories mentioned above and only considered the carbon stocks of live trees, so the
estimation of forest ecosystem carbon stocks in Lushan City was quite underestimated.
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The predictions in this study are also based on certain assumptions, which lead to
some uncertainties in the results: first, the maximum carbon sequestration potential is
an estimate based on spatial and temporal intergeneration, assuming no forest disease or
mortality, and that existing forests grow naturally according to the growth equation, which
only represents the maximum potential that a forest type or age can achieve under ideal
conditions. In actuality, forests are affected by disease and mortality during the growth
process, which may result in exaggerated estimations of carbon sequestration potential [38].
Second, if China’s forestry development and forest cover expand, the fraction of newly
generated forests may fluctuate in the forecast process [6]. On the other hand, there are
high uncertainties in the tree species composition and age groups of newly created forests,
which may lead to inaccurate prediction results [58]. Hence, the newly created forests
are not included in the estimation, and the prediction of carbon sequestration potential is
slightly underestimated.

Finally, the impacts of anthropogenic and natural disturbances on forest carbon se-
questration were not considered. With the increasing emphasis on forest protection through
regulations such as “peak carbon dioxide emissions and carbon neutrality”, it is reasonable
to expect that human activities such as logging will cause minimal direct disruption of
natural forests in the future [6]. However, for the disturbance of planted forests under the
influence of various anthropogenic activities (e.g., afforestation, logging, irrigation), the
future carbon sequestration potential of forests still varies greatly [16,23]. Factors such as
climate change, elevated atmospheric CO2 concentration, and nitrogen deposition may
also affect the accumulation process of forest biomass density, and estimating forest car-
bon sequestration capability based on current climate circumstances may also introduce
some uncertainty [23,54]. A more comprehensive study, including climate changes such as
warming and drought, as well as the effects of other anthropogenic disturbances on future
forest carbon sequestration, should be conducted.

5. Conclusions

Our study provided a better understanding of the relationships between forest growth
and carbon sequestration potential at fine spatial-scales by introducing BEF and tree
growth equations. Moreover, we further explored the effect of the combination of factor
characteristics on the carbon sequestration potential, excluding forest growth effects, which
provides crucial insights for Chinese carbon policy and global carbon neutrality goals.

By 2070, the carbon density of forests in Lushan City will reach a relatively stable
state, and its carbon stock will be close to the maximum, indicating that Lushan forests
will serve as a long-term carbon sink in the next fifty years. Among them, pine forests
and mixed coniferous forests have a higher carbon sequestration contribution. In addition,
the carbon sequestration potential of natural forests was much higher than that of planted
forests, with the gap widening as the woods aged. Thus, conserving natural forests should
be encouraged to sustain carbon sequestration capacity in future afforestation projects, and
replantation site characteristics should be carefully considered in the afforestation projects
to increase carbon sequestration capacity. Slope direction, slope gradient, soil thickness,
and vegetation cover factors are important factors of forestry carbon sink, which should be
paid attention to in implementing forestry carbon sink projects.

More importantly, incorporating DBH and tree height data from the binary standing
volume model can better represent forest growth changes. A stochastic simulation process
could be used to further refine the relationship between the standing volume of forest
types and the age of the trees, which improved the accuracy of the prediction of carbon
sequestration potential at the fine-scale areas. It can also be applied in the case of limited
forest biomass data and stand age observation, enriching the ways of predicting forest
carbon sequestration potential. Future work should also consider climate changes on future
forest carbon sequestration for better achieving global carbon neutrality goals.
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Appendix A

Appendix A contains the specific process of stochastic simulation of volume growth.
The details are as follows:

Under the premise that the mean DBH and tree height of a stand at the same mean age
are normally distributed, the mean volume of a stand should satisfy some joint probability
distribution model of DBH and tree height according to the binary standing volume model
(Equation (1)). In practical applications, we are more interested in the expectation of
volume as a function of tree age. The expectation of volume at a certain average age
can be calculated based on probability density, which can be integrated as shown in
Equation (A1).

E(V)(t) =
∫ +∞

−∞
v · f (v)(t)∂v, (A1)

where, E(V)(t) is the expected volume at the age of t. f (v)(t) is the probability density
distribution function of the volume at the age of t. Therefore, the probability distribution
model of volume, expectation, and mean age function models are theoretically uniquely
determined and solvable; however, their solution process is complex and tedious. To solve
this problem, we construct the stochastic simulation algorithm in the following steps:

(1) Construct the time series vector:
→
t = (t1, t2, · · · , tM) (M is the number of age

groups). In turn, the two normal distribution models obeyed by DBH and tree height
are randomly sampled (each group has a large enough sample size, N = 500) to obtain
two M× N sample matrices: (dij)M×N and (hij)M×N , respectively. The sample matrix of
volume (vij)M×N is obtained by matrix operation of Equation (A2).

vij = a0dij
a1 hij

a2 , (A2)

where, dij, hij and vij are the ith DBH, tree height, and volume sampling data of the jth age
group. a0, a1, a2 are the parameters obtained by fitting the binary standing volume model
(Equation (1)). From Equation (A2), we got a sample matrix of volume (vij)M×N . M is the
length of time series, and N is the number of samples simulated.

(2) µ̂ is the mean vector calculated as the point estimate of µ, indicating the accumula-
tion expectation under the year series as shown in Equation (A3).

µ̂ =
→
ev = (ev1, ev2, · · · , evM), evj =

N
∑

i=1
vij

N
, (A3)

The jth element evj in vector is the average of the accumulation volume in jth column,
indicating the accumulation expectation under a single year.
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(3) A nonlinear fit to
→
t and

→
ev using a continuously derivable logistic curve was

performed in Origin 2019b to obtain the accumulation expectation vij as a function of mean
age: the volume-tree age growth model.
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Figure A1. Variation curves of tree height, DBH, and volume expectation with age for different 
forest types. (a) shows the tree height-standardized age fitting relationship; (b) shows the DBH-
standardized age fitting relationship; (c) shows the accumulation volume expectation-mean age 
fitting relationship after random simulation. PF refers to pine forest; CFF refers to Chinese fir forest; 
BLH refers to hard broad forest; BLS refers to soft broad forest; and three types of mixed forests: 
MCF refers to mixed coniferous forest, MBF refers to mixed broadleaf forests, and MCBF refers to 
mixed conifer-broadleaf forests. (The points in the graph represent forest patches sampling data.). 
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Figure A1. Variation curves of tree height, DBH, and volume expectation with age for different
forest types. (a) shows the tree height-standardized age fitting relationship; (b) shows the DBH-
standardized age fitting relationship; (c) shows the accumulation volume expectation-mean age
fitting relationship after random simulation. PF refers to pine forest; CFF refers to Chinese fir forest;
BLH refers to hard broad forest; BLS refers to soft broad forest; and three types of mixed forests: MCF
refers to mixed coniferous forest, MBF refers to mixed broadleaf forests, and MCBF refers to mixed
conifer-broadleaf forests. (The points in the graph represent forest patches sampling data).
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