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Abstract: Background: Observational studies have suggested that there may be an association
between telomere length (TL) and hearing loss (HL). However, inferring causality from observational
studies is subject to residual confounding effects, reverse causation, and bias. This study adopted
a two-sample Mendelian randomization (MR) approach to evaluate the causal relationship between
TL and increased risk of HL. Methods: A total of 16 single nucleotide polymorphisms (SNPs)
associated with TL were identified from a genome-wide association study (GWAS) meta-analysis of
78,592 European participants and applied to our modeling as instrumental variables. Summary-level
data for hearing loss (HL), age-related hearing loss (ARHL), and noise-induced hearing loss (NIHL)
were obtained from the recent largest available GWAS and five MR analyses were used to investigate
the potential causal association of genetically predicted TL with increased risk for HL, including
the inverse-variance-weighted (IVW), weighted median, MR-Egger regression, simple mode, and
weighted mode. In addition, sensitivity analysis, pleiotropy, and heterogeneity tests were also used to
evaluate the robustness of our findings. Results: There was no causal association between genetically
predicted TL and HL or its subtypes (by the IVW method, HL: odds ratio (OR) = 1.216, p = 0.382;
ARHL: OR = 0.934, p = 0.928; NIHL: OR = 1.003, p = 0.776). Although heterogenous sites rs2736176,
rs3219104, rs8105767, and rs2302588 were excluded for NIHL, the second MR analysis was consistent
with the first analysis (OR = 1.003, p = 0.572). Conclusion: There was no clear causal relationship
between shorter TLs and increased risk of HL or its subtypes in this dataset.

Keywords: Mendelian randomization; telomere length; hearing loss; causal effect; age-related hearing
loss; noise-induced hearing loss

1. Introduction

Hearing loss (HL) is defined as the deterioration of hearing acuity, usually manifested
as an increase in the hearing threshold. The exact cause of HL is not yet known. It
is currently believed to be caused by a combination of genetics, environmental factors,
lifestyle, and others. Common risk factors include congenital disease, age, noise exposure,
use of ototoxic drugs and solvents, chronic inflammation, oxidative stress injuries, diabetes,
and hypertension [1–4]. Age-related hearing loss (ARHL) and noise-induced hearing
loss (NIHL) are the most common subtypes, and HL has a variety of adverse effects on
health and is significantly increased with advancing age, with HL also being described as
an independent risk factor for dementia [5]. According to the World Health Organization
(WHO) estimates from 2019, about 1.57 billion people worldwide suffer from hearing loss
with this number likely to increase to more than 2.45 billion in 2050 [6]. Global burden of
disease research has shown that HL is the third leading cause of disability in the world [7],
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and when we evaluate the cost associated with the number of years associated with HL-
mediated disability, the most recent data suggest that it may exceed USD 750 billion per
annum [8]. This means that as the absolute number and percentage of the aging population
grow, HL will become a major cause of disability.

Telomeres are nucleoprotein complexes located at the ends of chromosomes de-
signed to protect their durability and integrity [9]. With each cellular division, telomeres
shorten [10], and this shortening can lead to gene mutations, leading to DNA damage,
increased apoptosis, and senescence [10]. Telomere length (TL) has also been associated
with several age-related diseases and is considered a marker of biological aging [9,11] and
a potential indicator for chronic disease [12]. Telomeres can be extracted from peripheral
blood leukocytes, and their heritability has been reported to range from 36% to about
84% [13]. Observational studies have also found that TL may be related to HL [14–18], with
one set of gene sequencing data of familial HL revealing that mutation in the telomere-
related gene DFNA25 was a risk factor for HL [16]. In addition, a case-control study
showed that individuals in the highest quartile for relative TL had a 47% lower risk of
NIHL than individuals in the lowest quartile [15]. However, other studies have not widely
replicated this result, and a cross-sectional survey did not find any association between TL
and HL [19]. These contradictory data are likely a byproduct of the fact that evidence from
human observational studies is susceptible to reverse causality and confounding factors,
making it difficult to resolve whether there is a causal relationship between TL and HL.

Given these issues, we decided to use a Mendelian randomization (MR) approach to
evaluate the potential causal association between TL and the risk of HL and its subtypes.
MR is an epidemiological method [20,21], which uses the advantages of germline DNA
variation (stability and random assortment of alleles) to generate so-called “instrumental
variables (IV)” as a proxy for exposure. This concept is similar to the random design
and minimizes the bias caused by confounding factors and reverse causality. In addition,
MR is more cost effective than randomized controlled trials and is also more convenient,
time-effective, and not subject to ethical restrictions. This method is more likely to resolve
accurate causal relationships [22]. Thus, we used MR to explore the causal relationship
between TL and HL and its subtypes. These data might help clarify the underlying
factors behind the etiology of HL and aid in the development of future prevention and
intervention strategies.

2. Materials and Methods
2.1. Genetic Instrument Selection

We obtained the data from 78,592 previous GWAS participants from the European
Network for Genetic and Genomic Epidemiology (ENGAGE), the European Prospective
Investigation into Cancer and Nutrition (EPIC) Cardiovascular Disease (CVD) and InterAct
studies, to extract data for 52 previously identified common SNPs associated with TL as
identified by the GWAS meta-analysis of leukocyte TL (including allele frequency, β value,
SE, and p-value, Supplementary Table S1). We were then left with 21 variants of interest
following GWAS significance adjustment (p < 5 × 10−8). We subsequently used linkage
disequilibrium (LD) to determine whether any of these SNPs were genetically linked and
set our exclusion values at an r2 value of 0.001 [23] and a window size of 10,000 kb. The LD
proxies were defined using 1000 genomes of European ancestry, and SNPs were excluded
if not present in the outcome GWAS. At the same time, we evaluated each instrument
SNP and their proxies in the PhenoScanner GWAS database (http://www.phenoscanner.
medschl.cam.ac.uk/ (accessed on 12 July 2022)) to assess their associations (p < 5 × 10−8)
with potential confounding traits among HL and TL and manually removed these SNPs
from the MR analysis to satisfy the second assumption (no confounders existing). A flow
chart of the step-by-step MR analytical process is shown in Supplementary Figure S4.
We then assessed whether there was any weak instrumental variable bias, that is, we
determined if any of the selected genetic variations were weakly correlated with exposure,
applying the F statistic [24]: (F = R2 (n − k − 1)/k

(
1 − R2 )

, where R2 is the variance of
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exposure explained by selected instrumental variables, n is the sample size, and k is the
number of instrumental variables. F statistic exceeding 10 indicates potential to explain
the phenotypes [20]. Statistical power was calculated using “mRnd”, a publicly available
online tool [25].

2.2. Genetic Summary Data for Hearing Loss

We obtained our causal estimates between exposure and outcomes using the two-sample
MR method. We unified the exposure and outcome SNPs from the same allele and dropped
all palindromic SNPs from the analysis. We used publicly available GWAS summary
statistics from OpenGWAS (https://gwas.mrcieu.ac.uk/ (accessed on 12 July 2022)). The
GWAS summary data for HL from FinnGen biobank included 94,570 participants of
European ancestry (6730 cases and 87,840 controls), while the ARHL GWAS summary
data from FinnGen biobank included 88,448 participants of European descent (608 cases
and 87,840 controls), and the NIHL GWAS summary data from UK Biobank included
453,482 participants of European ancestry (171,586 cases and 281,896 controls. Participants
were assigned case/control status based on whether the participant reported hearing
difficulty or problems with background noise). The relevant institutional review boards
approved all studies, and all participants provided written informed consent.

2.3. Mendelian Randomization Estimates

MR uses instrumental variables to assess the causal relationship between a given expo-
sure and a specific outcome [20,26,27]. MR can prevent confounding and reverse causation
biases in conventional observational studies, and it relies on three assumptions [28,29]:
(1) The instrumental variables need to be significantly associated with TL, (2) the instru-
mental variables must not be associated with any other factors associated with both TL and
HL risk, and (3) the instrumental variables must only affect HL risk via TL (Figure 1).

Figure 1. Schematic diagram of the two-sample Mendelian randomization analysis regarding the
association of genetically predicted telomere length with risk of hearing loss and its subtypes.

2.4. Statistical Analysis

We only included genetic variants in these analyses that were available in all exposure
SNPs or their proxies and in the outcome dataset and after removing the palindromic
SNPs from these datasets. We addressed the first assumption (a true association between
SNPs and TL) by selecting SNPs that strongly predicted TL. We then excluded any traits
without suitable genetic instruments leaving a total of 6 SNPs which were included in

https://gwas.mrcieu.ac.uk/


Int. J. Environ. Res. Public Health 2022, 19, 8937 4 of 11

the MR analyses with HL and ARHL, 15 SNPs in the MR analyses with NIHL. Five MR
methods were then used to assess the relationships between TL and HL subtypes, including
the inverse-variance-weighted (IVW), weighted median (WM), simple median, weighted
simple median, and Mendelian randomization-Egger (MR-Egger) methods [20]. We also
completed a series of sensitivity analyses using conventional IVW, WM, MR-egger, and
MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) to evaluate the robustness of
our findings.

This overlapping approach allowed us to leverage the advantages of each MR method,
so they could complement each other and provide more reliable causal effect data. IVW
is the earliest and most commonly used method for two-sample MR analysis. The MR-
Egger regression test intercept evaluates the evidence for directional pleiotropy, i.e., the
“Instrument Strength Independent of Direct Effect (InSIDE)” assumption, where intercepts
that are significantly different from zero suggest directional pleiotropy [30]. WM allows
some variants to be invalid instruments provided at least half are valid instruments [31]
and we used MR-PRESSO to detect and correct for horizontal pleiotropic outliers [32].
In addition, if significant heterogeneity existed in the research, then the random-effects
model was used. Our statistical analyses were performed using the “TwoSampleMR” and
“MR-PRESSO” packages in R v3.6.3 software [32,33], and significance was set at p < 0.0167
(p = 0.05/3 outcomes = 0.0167).

3. Results
3.1. Selection of Instrumental Variables

Previously reported meta-analysis of GWAS data from participants of European an-
cestry identified 52 potential SNPs for this evaluation. Our data validation reduced this
to 16 SNPs related to TL, which were also independent of any potential confounding
factors and then applied as instrumental variables in our MR evaluations to identify any
causal relationships between TL and HL [29,34,35]. The proportion of variance in average
TL explained by individual SNPs ranged from 0.08% to 0.36% [35], and the F statistic of
these SNPs was much greater than 10, indicating that the possibility of weak instrumental
variable deviation was low. The characteristics of these SNPs are summarized in Table 1.

Table 1. Characteristics of SNPs predictive of telomere length (TL).

SNP Chr Nearby Gene EA MAF β SE p-Value F Statistic

rs10936600 3 LRRC34 T 0.243 −0.086 0.006 6.00 × 10−51 225.300
rs7705526 5 TERT A 0.328 0.082 0.006 5.00 × 10−45 198.300
rs4691895 4 NAF1 C 0.783 0.058 0.006 1.00 × 10−21 91.000
rs9419958 10 STN1 C 0.862 −0.064 0.007 5.00 × 10−19 79.500

rs75691080 20 STM3 T 0.091 −0.067 0.009 6.00 × 10−14 56.500
rs59294613 7 POT1 A 0.293 −0.041 0.005 1.00 × 10−13 55.100
rs8105767 19 ZNF257 G 0.289 0.039 0.005 5.00 × 10−13 52.100
rs3219104 1 PARP1 C 0.830 0.042 0.006 9.00 × 10−11 42.000
rs2736176 6 AIF1 C 0.313 0.034 0.005 3.00 × 10−10 39.400
rs3785074 16 TERF2 G 0.263 0.035 0.006 4.00 × 10−10 38.900
rs7194734 16 MPHOSPH6 T 0.782 −0.037 0.006 7.00 × 10−10 38.100
rs228595 11 ATM A 0.417 −0.028 0.005 1.00 × 10−8 32.200
rs2302588 14 DCAF4 C 0.100 0.048 0.008 2.00 × 10−8 31.900

rs13137667 4 MOB1B C 0.959 0.077 0.014 2.00 × 10−8 31.200
rs55749605 3 SENP7 A 0.579 −0.037 0.007 2.00 × 10−8 31.200
rs62053580 16 RFWD3 G 0.169 −0.039 0.007 4.00 × 10−8 30.200

Note: SNP: single-nucleotide polymorphism; Chr: chromosome; EA: effect allele; MAF: minor allele frequency;
SE: standard error; β: standard deviation change in leukocyte TL per copy of the effected allele.
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3.2. MR Analysis of TL with Risk of HL and Its Subtypes

We selected several independent SNPs related to TL from the genetic data associated
with participants of European ancestry to perform a two-sample MR analysis to evaluate
their causal relationship with HL and its subtypes and removed any sites with heterogeneity
and non-palindromic SNPs. Our two-sample MR analysis used the IVW, WM, MR-Egger
regression, simple mode, and weighted mode to evaluate the interactions between these
inputs and outcomes, and none of these evaluations identified any causal relationship
between genetically predicted TL and risk for HL, ARHL, or NIHL (by the IVW method,
HL: odds ratio (OR) = 1.216, p = 0.382; ARHL: OR = 0.934, p = 0.928; NIHL: OR = 1.003,
p = 0.776). The MR estimates of TL in HL using conventional MR analysis are presented in
Figure 2.

Figure 2. Cont.
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Figure 2. Mendelian randomization (MR) results for telomere length and hearing loss (HL) and its
subtypes. OR: odds ratio; CI: confidence interval; HL: all hearing loss; ARHL: age-related hearing
loss; NIHL: noise-induced hearing loss. A, HL; B, ARHL; C, NIHL; D, NIHL excluding the following
four heterogeneous sites: rs2736176, rs3219104, rs8105767, and rs2302588 post-MR.

3.3. Pleiotropy and Sensitivity Analysis

We then used IVW, WM, MR-Egger, and MR-PRESSO methods to calculate causal
estimates of TL on HL risk using heterogeneity and pleiotropy and then confirmed
these findings using a sensitivity analysis of the causal associations between TL and
HL and its subtypes. MR-PRESSO tests suggested potential directional pleiotropy in
the causal relationship between TL and NIHL (p < 0.001) while the Cochran Q test
and I2 statistics suggested potential heterogeneity and pleiotropic effects in these val-
ues (IVW: Q = 41.55, df = 14, I2 = 65.6%, p = 0.0001; MR-Egger: Q = 40.69, df = 13,
I2 = 66.3%, p = 0.001; Supplementary Figure S2). We then excluded four heterogeneous
sites (rs2736176, rs3219104, rs8105767, and rs2302588) in a second round of MR and found
that this heterogeneity disappeared in the second round of MR for NIHL (IVW: p = 0.73;
MR-Egger: p = 0.65) and pleiotropic disappearance (MR-PRESSO: p = 0.779; Table 2,
Supplementary Figure S3). We also conducted a combined analysis for the SNPs associated
with NIHL using a fixed effects model (p = 0.765, OR = 1.003, 95% CI: 0.982–1.024) and
simultaneously used the “leave one out method” to confirm that our observations were
stable (Supplementary Figure S4). These analyses verified the stability of our findings
(Table 2).
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Table 2. Mendelian randomization estimates for the association between TL and HL and its subtypes.

HLs

IVW WM MR Egger MR_PRESSO

OR (95% CI) p Cochran Q
Statistics (df) I2 p OR (95% CI) p OR (95% CI) p Intercept (se) p Cochran Q

Statistics (df) I2 p p

HL 1.216 (0.783,
1.887) 0.382 2.449 (5) −1.042 0.784 1.341 (0.780,

2.253) 0.268 2.113 (0.316,
14.120) 0.483 −0.027 (0.046) 0.589 2.106 (4) −1.849 0.716 0.866

ARHL 0.934 (0.217,
4.031) 0.928 5.18 (5) 0.035 0.393 0.998 (0.151,

6.593) 0.998 3.119 (0.003,
3310.194) 0.765 −0.058 (0.167) 0.745 5.037 (4) −0.191 0.284 0.520

NIHL 1.003 (0.982,
1.024) 0.766 41.549 (14) 0.639 0.000 1.007 (0.99,

1.023) 0.436 0.988 (0.93,
1.05) 0.706 0.001 (0.002) 0.609 40.687 (13) 0.631 0.0001 <0.001

NIHLa 1.003 (0.990,
1.016) 0.572 7.844 (11) −0.402 0.727 1.007 (0.989,

1.024) 0.449 0.990 (0.965,
1.036) 0.987 0.000 (0.001) 0.818 7.788 (10) −0.412 0.65 0.779

Note: IVW: inverse variance weighting method; WM: weighted median method; MR-Egger: Mendelian ran-
domization Egger method; OR: odds ratio; CI: confidence interval, NIHLa refers to outcomes following the
elimination of the four heterogenous positions at rs2736176, rs3219104, rs8105767, rs2302588 based on the results
of the adjusted MR.

4. Discussion

We conducted two-sample MR studies to determine whether TL phenotypes (ex-
posures) were potentially causally related to HL subtypes (the outcome). Our results
suggested that there was no cause–effect relationship between TL and the risk of HL, and
that, in the absence of heterogeneity and unknown pleiotropy effects, this method provides
robust causal estimates. Nevertheless, multiple lines of evidence suggest that TL is robustly
associated with HL risk [14,15]. In a case-control study, categorical analyses revealed that
subjects within the highest TL tertiles were at a lower risk for ARHL when compared to
those in the lowest and middle tertiles (OR = 0.327, 95% CI: 0.170–0.629, p = 0.0008) [14].
There was also a descending trend of TL as the degree of pure tone threshold average
was reduced suggesting that ARHL might be associated with telomere attrition. A recent
study reported that individuals in the top quartile of TL have a 47% lower hearing loss risk
than those in the bottom quartile (OR = 0.53, 95% CI: 0.38–0.74), with this decline in risk
growing to 55% (OR = 0.45, 95% CI: 0.28–0.73) in females [15]. These results suggest that
TL is closely associated with HL in general, particularly in females with mild HL. However,
because it can be challenging to obtain individual-level data from multiple cohorts, we
could not complete a sex-stratified MR analysis in this study. In addition, cross-sectional
studies have been unable to demonstrate a relationship between TL and HL, suggesting
that TL is not associated with HL (children: OR = 0.99, 95% CI: 0.55–1.78; adult: OR = 1.35,
95% CI: 0.81–2.25) [19], which is consistent with our findings. Despite conflicting evidence
and a lack of longitudinal studies supporting the relationship between TL and HL, many
researchers have highlighted the potential association between these events but have not
evaluated the cause–effect relationships between these observations. To the best of our
knowledge, our study is the first to use the MR method to evaluate these relationships,
and we found no significant correlation between genetic markers for TL and HL and its
subtypes, suggesting that TL may not be directly associated with HL.

Our findings could be explained by several potential mechanisms. HL can be multi-
factorial, caused by genetic, environmental, medication, and lifestyle factors [36,37], and
the pathogenesis of HL, ARHL, and NIHL always involves free radical production, ion
imbalance, excitotoxicity, oxidative stress, and inflammatory response [3,4,38]. Several
studies have shown that ROS can directly damage DNA irrespective of TL thus inducing the
DNA damage response and senescence [39,40]. Chronic inflammation and ROS have also
been shown to cause cell dysfunction without any obvious shortening of the telomeres [41],
and while recent reports have shown that telomere shortening is likely to be a critical
factor in the genetic profile of cells as they age, these are not necessarily causal effects.
A recent report indicated that telomere shortening is not believed to be directly involved in
other signs of aging but only a regulator of the genetic changes in human gene expression
associated with cellular aging, with the majority of the genes affected by TL involved in
apoptosis and cell death [12]. Similarly, there have been several observational studies
that have suggested a potential link between TL and various cancers and non-neoplastic
diseases, but none of these reported any causality when evaluated by MR, with these
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outcomes likely the result of the sensitivity of observational studies to confounding effects
and reverse causality [29,34,42,43]. At present, there is insufficient evidence to suggest that
TL is the driving etiological factor in many diseases, and the pathogenic link between TL
and HL needs to be evaluated in greater detail. Follow-up studies should also include any
new SNPs related to genetic variation associated with telomeres and HL as it is necessary
to keep the relevant instrumental variables up to date in an effort to produce more reliable
conclusions.

To the best of our knowledge, our study was the first to apply MR analysis to HL,
and there are several important strengths. First, compared with traditional observational
research, the causal association of TL and HL was not distorted by reverse causal asso-
ciations and confounding factors since the genetic variations related to TL are randomly
distributed among the population at birth. Second, the F statistic implying the possibility
of weak instrument variable bias was low. Third, our results were robust when the MR
evaluation completed after removing the heterogeneous sites also reported no demonstra-
ble causal relationship between TL and HL. Subsequent application of the “leave one out
method” also confirmed the generally robust nature of our results and highlighted the
application of this approach to causal relationship evaluations for genetic traits. In addition,
the MR-Egger regression results show that there is no horizontal pleiotropy among the
instrumental variables, indicating that our conclusions are both robust and credible.

However, there are some limitations to this study. First, the use of the PhenoScanner
database found that rs2736176 is associated with rheumatoid arthritis, which is involved
in HL [44,45], although a causal relationship was still not found between TL and HL after
removing this SNP. Second, there may be unidentified pleiotropic effects in these datasets,
so future investigators should analyze more MR methods and collect more data to adjust
for confounding risk factors, such as LDSC (Linkage disequilibrium score) regression [46],
CAUSE (Causal Analysis Using Summary Effect Estimates) [47], and GRAPPLE (Genome-
wide mR Analysis under Pervasive PLEiotropy) [48]. Third, we measured leukocyte TL;
however, several studies have shown a strong correlation between the TL in different tissues
and pathogenic outcomes [12,49], and we did not obtain full summary GWAS information
of telomere which renders it difficult to explore a possible bidirectional association between
telomeres and hearing loss (hearing loss may be causally associated with telomere length).
In addition, many of the diagnostic criteria for hearing loss in GWAS are based on self-
reported hearing status rather than audiometry, which may lead to bias. Last, although
the whole study population was of European decent, European populations are ethnically
heterogeneous, and so our study population may not be fully representative.

5. Conclusions

This study is the first to use MR to evaluate the causal relationship between TL and HL
and its subtypes, with the view to determining the causal relationship between TL and HL
using a two-sample MR analysis. Our data did not identify any causal relationship between
TL and NIHL, which suggests that the prevention and control measures used to combat
changes in TL may not benefit HL, and that it cannot be used as an indicator for monitoring
early HL. However, given the continued development of large-scale, multi-center GWAS
cohort studies, in follow-up studies, novel genetic variant-related SNPs associated with
telomeres and HL should be reevaluated using this model to ensure that our evaluations
use the most up to date instrumental variables to complete MR analysis. This study also
reveals that this is a valuable tool for identifying causal relationships and may help to
identify other causal relationships in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph19158937/s1, Supplementary Figure S1. Forest plots describ-
ing the Mendelian randomization analyses evaluating the association between telomere length (TL) and
various hearing loss (HL) types. A, HL; B, age-related HL; C, noise-induced HL (NIHL); D, NIHL ex-
cluding heterogeneous sites rs2736176, rs3219104, rs8105767, and rs2302588. Supplementary Figure S2.
Scatter plots showing the Mendelian randomization analyses evaluating the association between
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telomere length and various hearing loss (HL) types. A, HL; B, age-related HL; C, noise-induced
HL (NIHL); D, NIHL excluding heterogeneous sites rs2736176, rs3219104, rs8105767, and rs2302588.
Supplementary Figure S3. “Leave-one-out” evaluation of the Mendelian randomization analyses
of the associations between leukocyte telomere length and various hearing loss (HL) types. A, HL;
B, age-related HL; C, noise-induced HL (NIHL); D, NIHL excluding heterogeneous sites rs2736176,
rs3219104, rs8105767, and rs2302588. Supplementary Figure S4. Flow chart about the analytical
methods and process of two-sample MR analysis. Supplementary Table S1. SNPs used for the
LTL instruments in the Mendelian Randomization analyses. Table S2. The genetic instruments
for Mendelian randomization analysis of leukocyte telomere length (exposure) and HL (outcome).
Table S3. The genetic instruments for Mendelian randomization analysis of leukocyte telomere length
(exposure) and ARHL (outcome). Table S4. The genetic instruments for Mendelian randomization
analysis of leukocyte telomere length (exposure) and NIHL (outcome).
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