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Abstract: The Qinghai–Tibet Plateau (QTP) is a sensor of global climate change and regional human
activities, and drought monitoring will help to achieve its ecological protection and sustainable
development. In order to effectively control the geospatial scale effect, we divided the study area
into eight geomorphological sub-regions, and calculated the Temperature-Vegetation Drought Index
(TVDI) of each geomorphological sub-region based on MODIS Normalized Difference Vegetation
Index (NDVI) and Land Surface Temperature (LST) data, and synthesized the TVDI of the whole
region. We employed partial and multiple correlation analyses to identify the relationship between
TVDI and temperature and precipitation. The random forest model was further used to study the
driving mechanism of TVDI in each geomorphological division. The results of the study were as
follows: (1) From 2000 to 2019, the QTP showed a drought trend, with the most significant drought
trend in the central region. The spatial pattern of TVDI changes of QTP was consistent with the
gradient changes of precipitation and temperature, both showing a gradual trend from southeast to
northwest. (2) There was a risk of drought in the four seasons of the QTP, and the seasonal variation
of TVDI was significant, which was characterized by being relatively dry in spring and summer
and relatively humid in autumn and winter. (3) Drought in the QTP was mainly driven by natural
factors, supplemented by human factors. The driving effect of temperature and precipitation factors
on TVDI was stable and significant, which mainly determined the spatial distribution and variation
of TVDI of the QTP. Geomorphological factors led to regional intensification and local differentiation
effects of drought, especially in high mountains, flat slopes, sunny slopes and other places, which
had a more significant impact on TVDI. Human activities had local point-like and linear impacts, and
grass-land and cultivated land that were closely related to the relatively high impacts on TVDI of
human grazing and farming activities. In view of the spatial-temporal patterns of change in TVDI in
the study area, it is important to strengthen the monitoring and early warning of changes in natural
factors, optimize the spatial distribution of human activities, and scientifically promote ecological
protection and restoration.

Keywords: climate change; Temperature-Vegetation Drought Index (TVDI); random forest;
geomorphological division; Sanjiangyuan

1. Introduction

Drought represents a natural disaster bearing a wide range of impacts that often
occur at broad spatial scales and can last for a long time. Not only does drought seriously
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affect the growth of vegetation, the water cycle, and human life, but also destroys the
stability of the ecological environment and restricts the development of the social economy.
However, drought is difficult to monitor in time since the occurrence of drought is a slow
and dynamic process. This process begins with the reduction of precipitation, followed
by the loss of soil moisture and the rise of surface temperature, which eventually leads to
vegetation stress and a reduction in productivity [1]. In recent years, many researchers have
proposed drought indices or improved existing indexes, such as the Vegetation Condition
Index (VCI) [2–4], Normalized Difference Water Index (NDWI) [5], Vegetation Health Index
(VHI) [6], and Drought Frequency Index (DFI) [7], which have been used to monitor the
onset, duration, and intensity of drought and to explore the regional applicability of drought
indicators. Among them, the most commonly used drought indices were the Standardized
Precipitation Index (SPI) [8] and the Palmer Drought Severity Index (PDSI) [9]. SPI is based
on the cumulative probability of precipitation at different time scales and was developed to
reflect the impact of changes in water resources on groundwater and agriculture during the
study period, thereby revealing the degree of drought in the study area [10], which is often
used to capture the drought situation at multiple scales [11]. PDSI is a comprehensive index
that uses precipitation and air temperature data to evaluate drought status, and is widely
employed to study agricultural drought [12]. However, SPI only uses precipitation data
and ignores other drought variables, and thus cannot fully capture the degree of drought in
the study area [13]. PDSI has a fixed time scale and cannot be used to evaluate the drought
at long time scales [14]. The index may lag behind emerging drought conditions and may
not capture drought conditions in mountainous areas with complex climate [15].

Therefore, more comprehensive indicators need to be considered. Using the correlation
between the surface temperature and a vegetation index [16], Carlson et al. [17] proposed
the Different Water Index (DWI), which uses the Soil–Vegetation–Atmosphere-Transfer
(SVAT) model to estimate and describe the trapezoid feature of the characteristic space
composed of vegetation cover and surface soil water content. Sandholt et al. [18] proposed
a simplified surface drought index, Temperature-Vegetation Drought Index (TVDI), based
on temperature, radiation balance, and other factors. TVDI is an index which can monitor
the degree of drought in a region by establishing a model based on the relationship between
a vegetation index and a surface temperature index. This method only needs to use
remote sensing images to monitor the severity of drought, which is beneficial to study the
spatial and temporal characteristics of regional drought. Compared with the Standardized
Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index
(SPEI), TVDI is relatively simpler and has higher accuracy [19]. In addition, a conspicuous
feature of TVDI is that it correlates negatively with surface soil moisture [20,21]. Thus, this
method can be used to detect changes in soil moisture [22] and drought conditions [23,24].
Chen et al. [25] demonstrated that TVDI can effectively monitor soil water dynamics during
the growing season in the Huang-Huai-Hai Plain. Chen et al. [26] combined the TVDI
and the VHI method to monitor drought in Central America and assessed the affected
agricultural areas.

TVDI is commonly used to study areas across the entire range of surface moisture
content, from dry to wet, and from bare soil areas with no vegetation cover to areas
completely covered with vegetation [18]. However, affected by factors such as changes
in vegetation cover and complex and variable terrain, the edges of the dry and wet fitted
by TVDI are unstable, and TVDI cannot clearly express the spatial edge in a theoretical
sense [27]. At a large scale, changes in geomorphological types provide precipitation,
air temperature, evapotranspiration, and other factors with spatial heterogeneity, and
then control the differences in regional vegetation spatial distribution and vegetation
cover. Finally, these changes in turn have an impact on the regional climate and the
ecological environment. Therefore, the uncertainty of soil moisture estimation by TVDI will
increase with soil surface heterogeneity [28], and the TVDI method is only suitable for areas
with little topographic variability [29]. The differences in geomorphological divisions not
only reflect the changes of regional geological tectonic movement characteristics, but also
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indicate the differences in ecogeographic systems, such as climate, water resource allocation,
biology, and soil properties on a regional scale. Geomorphological division may effectively
address heterogeneity-related issues that arise when using the TVDI method in dry and
wet edges, and can effectively reduce the error and improve the calculation accuracy.

As an important ecological security barrier in China, the Qinghai–Tibet Plateau (QTP)
plays an important role in water conservation, biodiversity protection, soil and water
conservation, and is a ‘sensor’ of climate change in Asia and the Northern Hemisphere.
The QTP has a very significant warming effect in the background of global warming [30].
Elevated temperatures have increased evapotranspiration and drought probability, which
has seriously restricted the development of local agriculture and the animal husbandry
economy. Moreover, factors such as vegetation cover, the intensity of human activities, and
the distribution of plateau lakes and glaciers have affected drought severity in the QTP.
Therefore, methods to effectively monitor the spatial-temporal variability of drought in
such a large area as the QTP have become the focus of attention.

However, previous studies have shown significant differences in the spatial and
seasonal characteristics of drought in the QTP. For example, Wang et al. [31] pointed
out that the central QTP has become wetter using SPI and SPEI to study the drought
in China from 1961 to 2012. Bin et al. [32] demonstrated that the southeastern QTP is
an area prone to drought, and is a high-risk area by using the SPI method and monthly
precipitation data from 616 meteorological stations. Wang et al. [33] believed that drought
duration, drought severity, and drought frequency decreased in the central QTP from 1950
to 2006. Kai et al. [34] pointed out that there was a significant wet trend in the eastern QTP
from 1961 to 2012 using SPEI, SPI, and the Reconnaissance Drought Index (RDI) method.
Feng et al. [35] believed that in the future this region would become wetter in spring, more
arid in winter, and more arid in summer by using the SPEI-TH (Standardized Precipitation
Evapotranspiration Index-Thornthwaite) method after analyzing the meteorological data of
stations in the QTP from 1970 to 2017. Wang et al. [36] believed that the degree of drought
in the QTP was relieved by wet conditions in spring, slightly wet conditions in summer
and autumn, and more arid conditions in winter from 1994 to 2013. Overall, in terms of
spatial characteristics, drought severity in the central and southeastern QTP were found to
be changing differently, while the drought status in other regions was not clear. In terms of
seasonal characteristics, the drought severity in spring, summer, and autumn differed, and
drought occurred in winter for both regions.

In terms of the driving factors of drought in the QTP, previous studies focused on
the discussion of factors, such as precipitation, temperature, elevation, slope, and aspect,
the distribution of lakes on the plateau, human activities, and other factors. For example,
precipitation is often used to discuss changes in the degree of drought in the region
due to the significant correlation between precipitation and TVDI [37]. Temperature
affects regional heat distribution and is one of the important factors affecting drought
changes [38]. As for geomorphological factors, elevation produces vertical differences in
regional precipitation and temperature [39], and the slope and aspect produce regional
differences in precipitation and air temperature [40]. The QTP has a wide area of lakes,
glaciers, and permafrost, and thus the melting of glaciers and the freezing and thawing of
permafrost affect the seasonal changes of drought in the region [41]. Human activities are
also an important external driving force affecting changes in drought [42]. For example,
the expansion of urban construction decreases vegetation cover, while water resource
utilization for domestic, industrial and mining uses affect groundwater levels and recharge.
Due to the different intensities of human activities, differences in land use will lead to
differences in drought severity [43]. However, in an area as large as the QTP, changes in
drought must be the result of the comprehensive action of many factors, and such research
has received little attention.

Random forest is an algorithm that integrates multiple decision trees through the idea
of integrated learning [44]. This algorithm is one of the most commonly used and most
powerful supervised learning algorithms. It does not require dimensionality reduction
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and feature selection. It can better process high-dimensional data and solve regression and
classification problems. Moreover, it can be trained quickly and implemented easily [45].
The random forest algorithm can obtain estimates that are easier to explain and understand,
such as IncMSE and IncNodePurity. IncMSE, which is the increase in mean squared error,
indicates the increase of the error estimated by the random forest model relative to the
original error after the variable is randomly selected [46]. IncNodePurity, which is the
increase in node purity, indicates the degree of influence for a variable on each decision
tree node [47]. Both indices can judge the importance of the influencing factor, and the
larger the index value, the more important the variable. Moreover, after controlling the
interaction between exploratory variables, the individual marginal effect of each factor can
also be visualized [48]. However, at present, few researchers have systematically compared
the differences and similarities of the relative importance of drought factors in the QTP
using the random forest algorithm.

Therefore, the spatial-temporal differences and driving forces of the arid state in
the QTP still warrant attention. This paper attempts to: (1) analyze the feasibility of
using the TVDI method to study drought in the QTP, (2) clarify the spatial-temporal
variation of drought in the QTP, (3) evaluate the main driving forces affecting the QTP and
comprehend the specific range of various factors that affect drought. Based on the previous
rules of geomorphological division [49], the workflow of our study was to: (1) divide
the QTP into eight geomorphological sub-regions; (2) use the TVDI method to calculate
the annual TVDI and seasonal TVDI of eight regions from 2000 to 2019; (3) analyze the
spatial-temporal variation characteristics of annual and seasonal drought in the QTP, and
summarize the variation of TVDI in the study area; (4) use the partial correlation and
the multiple correlation analyses to investigate the relationship between air temperature,
precipitation, and TVDI; (5) select eight factors in four categories including meteorology,
landform, land use and land cover (LULC), and human activities to construct a random
forest model, explore the main factors driving the drying trends in each geomorphological
sub-division, and rank the contribution of each driving factor. The results of this paper
provide a theoretical basis for the division of drought risk in the QTP, the prevention of
drought hazards and the sustainable development of regional economy.

2. Study Area

The QTP is the highest plateau in the world and the largest plateau in China. It has an
important impact on the formation of geographical elements, such as climate and rivers
in China. The latitude and longitude of the QTP ranges from 25◦59′56′′ N to 39◦47′35′′ N
and 73◦30′22′′ E to 104◦39′50′′ E (Figure 1), covering six provinces, including the Tibet
Autonomous Region and Qinghai Province, the southern parts of the Xinjiang Autonomous
Region, the western parts of Sichuan Province, and small portions of Yunnan Province and
Gansu Province.

Referring to the previous results of geomorphological division of the QTP [49], we
divided the study area into 8 geomorphic areas (Appendix B, Table A2). The topography
of the QTP is complex, with high elevation mountains and many basins, canyons, and
lakes. The eight factors are shown in Figure 2. The elevation of the QTP is higher in the
west and lower in the east. The alpine areas on its edge bear large undulations and low
interior. Affected by its own geographical location, the QTP has formed a unique plateau
climate zone. The precipitation in QTP decreases from southeast to northwest (Figure 2b).
The temperature has a clear latitudinal zonality, decreasing from south to north (Figure 2c).
The land cover types in QTP are dominated by grassland (Figure 2h), which is widely
distributed in all parts of the QTP and mainly has low to medium canopy cover. Other land
cover types include Gobi, bare land, sandy land, saline–alkali land, and other areas with
vegetation cover below 5%, which are distributed in the northern part of the QTP. Forests
are mainly distributed in the southeast of the QTP due to the influence of precipitation
and temperature. Cultivated, urban, and rural built-up lands are mainly distributed in
low-lying, warm valleys with abundant water sources.
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3. Materials and Methods
3.1. Materials
3.1.1. MODIS Data

The relationship between NDVI (Normalized Difference Vegetation Index) and surface
temperature can be used to calculate TVDI [50] to study the spatial-temporal drought
evolution of the QTP. We used NDVI and surface temperature data from 2000 to 2019
from NASA (https://search.earthdata.nasa.gov/, accessed on 1 March 2020). We selected
the MOD13A3 product (MOD/Terra monthly vegetation index data product with spatial
resolution of 1 km) for NDVI data, and the MOD11A2 product (MOD/Terra 8-day land
surface temperature data product with spatial resolution of 1 km) for surface temperature
data. The data projection coordinate system was WGS_1984_UTM_Zone_45N. After batch
splicing, band extraction, resampling, and projection, the data were processed using the
maximum value synthesis method to obtain annual and quarterly NDVI and daytime
surface temperature of the eight geomorphological divisions of the QTP. Using the NDVI
and surface temperature data, we calculated TVDI. We used Savizky–Golay filtering to
eliminate poor quality observations, and the maximum synthesis method was used to
eliminate deviation in the data caused by atmospheric interference and cloud cover.

3.1.2. Soil Moisture Data

There is a negative correlation between soil moisture and TVDI, and the relationship
between soil moisture at a depth of 10 cm and TVDI is more significant [25]. Therefore,
we used the measured 10 cm soil moisture data to verify whether the TVDI method could
capture the drought conditions in the QTP. The soil moisture data were obtained from the
National Qinghai–Tibet Plateau scientific data center (http://www.tpdc.ac.cn/zh-hans/,
accessed on 6 February 2021). Due to the lack of soil moisture measurements at some
sampling points, we selected data collected in summer from 2010 to 2016. After we
eliminated the missing sampling point data in this period, we calculated the mean value.

3.1.3. Driving Factors

Drought severity in the region is not only affected by the natural environment, but also
human activities. Precipitation and temperature are important factors that affect drought
variation, and these two factors determine the spatial distribution of drought grade and
drought frequency in the region [51]. Geomorphic factors lead to regional differentiation of
drought, among which elevation plays a critical role in the spatial-temporal differentiation
of drought spread in plateau mountains [52]. Human activities such as the increase in
domestic water supplies and the expansion of urban areas can accelerate the spread of
drought [53]. Changes in land cover will affect the supply of atmospheric water, thus
affecting the severity of regional drought [54]. Lakes, glaciers and other water areas will
also affect the seasonal variation of regional drought [41]. So, we adopted the random forest
method and selected six driving factors, including precipitation, temperature, elevation,
slope, aspect, the Euclidean distance of water surface land, the Euclidean distance of
built-up land, and LULC to explore the main driving factors of drought severity change in
various geomorphological divisions of the QTP. The source of data for the driving factors is
shown in Table 1, and the coordinate system of the data was WGS_1984_UTM_Zone_45N.

The slope and aspect of the geomorphological factors were extracted from the DEM
data, and the Euclidean distance of water surface body was used to represent the degree and
scope of influence of the water surface body in the QTP, and the human activity factor was
described by the Euclidean distance of built-up land. The land use types were combined
according to the attribute table, and finally the data of six main land use types, including
forest, grassland, cultivated land, water surface body, built-up land were obtained.

https://search.earthdata.nasa.gov/
http://www.tpdc.ac.cn/zh-hans/
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Table 1. Data and data sources.

Data Class Data Data Sources Spatial
Resolution

Time of
Data

Climatic factor
Precipitation National Qinghai Tibet Plateau scientific data center

(http://www.tpdc.ac.cn/zh-hans/,
accessed on 7 April 2021)

1 km
2000–2017

Temperature 2000–2017

Geomorphological
factor

Elevation
China Geological Survey

(https://www.cgs.gov.cn/, accessed on 21 April 2021) 1 km 2015Slope

Aspect

Accessibility
factor

Water surface body National Qinghai Tibet Plateau scientific data center
(http://www.tpdc.ac.cn/zh-hans/,

accessed on 21 April 2021)
1 km 2015

Built-up land

Land use factor LULC
National Qinghai Tibet Plateau scientific data center

(http://www.tpdc.ac.cn/zh-hans/,
accessed on 21 April 2021)

1 km 2015

3.2. Method
3.2.1. TVDI Calculation

TVDI is an index based on the correlation between a vegetation index and a surface
temperature index, and serves to reflect drought severity in a region [18]. After constructing
the NDVI-LST feature space with the same interval of NDVI values combined with the
maximum composite method and the minimum composite method, the TVDI value can be
calculated using Formula (1).

TVDI =
LST − LSTmin

LSTmax − LSTmin
(1)

LSTmin = a1 + b1 × NDVI (2)

LSTmax = a2 + b2 × NDVI (3)

In Formula (1), LST represents the surface temperature of any pixel in the study
area. In Formula (2), LSTmin is the fitted wet-edge function, representing the minimum
surface temperature. In Formula (3), LSTmax is the fitted dry-edge function, representing
the maximum surface temperature [18]. a1 and b1 are the linear fitting coefficients of the
wet-edge function, while a2 and b2 are the linear fitting coefficients of the dry-edge function.
The value of TVDI is between 0 to 1, and the higher the value, the drier the area. In
areas with obvious geomorphic differences and large scale areas, there may be errors in
using the TVDI method to study drought. Therefore, this paper adopts the method of
geomorphological divisions to reduce the uncertainty of the results.

3.2.2. Correlation Analysis

Partial correlation analysis was used to analyze the relationship between TVDI and
precipitation and temperature [55]. The partial correlation coefficient between temperature,
precipitation, and TVDI was obtained using Formula (4).

Rxy,z =
Rxy− RxzRyz√

(1− Rxz2)
√(

1− Ryz2
) (4)

In Formula (4), Rxy, z means that the dependent variable z is fixed, and the partial
correlation coefficient between the independent variables x and y. Rxy, Rxz, and Ryz are
the Pearson correlation coefficients of variables x and y, variables x and z, and variables

http://www.tpdc.ac.cn/zh-hans/
https://www.cgs.gov.cn/
http://www.tpdc.ac.cn/zh-hans/
http://www.tpdc.ac.cn/zh-hans/
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y and z, respectively. If Rxy,z > 0, it means a positive correlation; if Rxy,z < 0, it means a
negative correlation. The larger the coefficient, the higher the correlation. The significance
test was performed using a t-test.

Similarly, in order to study the relationship between TVDI and precipitation and tem-
perature in the QTP, we applied the multiple correlation analysis method. The calculation
formula is shown in Formula (5):

Rxy,z =

√
1−

(
1− R2

xy

)(
1− R2

xy,z

)
(5)

In Formula (5), Rxy,z is the multiple correlation coefficient between the dependent
variable x and the independent variables y and z. The larger the correlation coefficient, the
closer the linear correlation between the elements or variables. The correlation was tested
by F-test.

The partial correlation coefficient between TVDI and annual precipitation and average
annual temperature from 2000 to 2017 was calculated by Formula (5), then the t-test of the
partial correlation coefficient and the F-test of the multiple correlation were performed on
the calculation results. The statistics that meet the classification conditions were divided
into four categories, as shown in Table 2.

Table 2. Criteria for TVDI-driven zoning (It was reprinted with the permission from Ref. [56]
Copyright 2022, Chen).

Types of TVDI Changes
Zoning Criteria

rTVDI P,T rTVDI T,P RTVDI, TP

Precipitation driven t ≥ t0.05 F ≥ F0.05
Temperature driven t ≥ t0.05 F ≥ F0.05

Temperature and precipitation driven t ≤ t0.05 t ≤ t0.05 F ≥ F0.05
Other drive types F ≤ F0.05

In Table 2, rTVDI P,T is the partial correlation coefficient between TVDI and annual
precipitation, rTVDI T,P is the partial correlation coefficient between TVDI and annual
average temperature, RTVDI, TP represents the multiple correlation coefficient between
TVDI and temperature and precipitation, t and F are the statistical values of the t-test and
F-test, respectively, and t0.05 and F0.05 are the 0.05 significance levels of the t-test and the
F-test, respectively.

3.2.3. Linear Trend Analysis

Linear trend analysis is a method of predicting the change trend of a variable by
performing linear regression analysis on a variable that changes over time. The linear trend
analysis method can be used to analyze the change of each pixel. We applied this method
to analyze the changes of TVDI in the QTP in the recent 20 years. Formula (6) was used to
calculate the linear trend rate [57].

TVDI_Slope =
n×∑n

i=1(i× TVDIi)−∑n
i=1 i ∑n

i=1 TVDIi

n×∑n
i=1 i2 − (∑n

i=1 i)2 (6)

In Formula (6), i is the year of 2001, 2002, 2003 . . . 2019, n is the length of the time series;
TVDIi is the TVDI value of the year i, TVDI_Slope is the regression value of TVDI pixels.
TVDI_Slope > 0 indicates that TVDI in the time series is increasing, while TVDI_Slope < 0
means that the TVDI is decreasing.

To test the consistency of the trend of TVDI with time, we used a t-test to judge the level
of significance of the change. The p value was calculated using the obtained TVDI_Slope
of change and the results of the t-test, and the two significance judgment criteria were a
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95% confidence level and a 99% confidence level. According to Table 3, the trend in TVDI
was divided into six levels.

Table 3. Classification criteria of TVDI trend.

Grading Criteria TVDI Trend

TVDI_Slope < 0
p > t0.01 Extremely significant decrease

p ≥ t0.05 and p ≤ t0.01 Significant decrease
p < t0.05 Non-significant decrease

TVDI_Slope > 0
p < t0.05 Non-significant increase

p ≥ t 0.05 and p ≤ t0.01 Significant increase
p > t0.01 Extremely significant increase

3.2.4. Random Forest Algorithm

We selected eight factors: annual precipitation, annual average temperature, elevation,
slope, aspect, Euclidean distance of water surface body, Euclidean distance of built-up land,
and LULC. These eight factors were resampled to a spatial resolution of 4 km × 4 km in
ArcGIS 10.3 software. The degree of influence of these eight factors on TVDI was analyzed
using the Random Forest regression (RF) model, which was implemented by calling the
“Random Forest” package in R studio 3.6 software (R Studio, Boston, MA, USA). Each
group of samples was divided into two subsets, 70% of the training set and 30% of the
test set. On the basis of determining the optimal parameters, the fitting calculation was
performed to obtain the importance ranking (IncNodePurity) and local relative importance
of the driving factors [48]. The larger the IncNodePurity value, the higher the relative
importance of the factors and the deeper the influence on the regional TVDI. The analysis
of relative importance of the driving factors can reveal the relationship between a certain
range of driving factors and TVDI, where the higher the local relative importance value,
the higher the contribution to TVDI.

3.2.5. Verification of TVDI

To verify the accuracy of the TVDI method for monitoring drought, the common
method is to perform correlation analysis between measured soil moisture data and TVDI.
Due to the lack of soil moisture data in some years and some sampling points, we selected
summer soil moisture data from 2010 to 2015 to verify the accuracy of TVDI method and
compare the advantages and disadvantages between the two TVDI data with and without
geomorphological divisions. In Figures 3 and 4, the y-axis represents the measured soil
moisture content at 10 cm, and the x-axis is the TVDI value extracted from the location
of the sampling point. It can be seen from Figures 3 and 4 that there is a clear negative
correlation between soil moisture and TVDI in the summer from 2010 to 2015. With
increased soil moisture, TVDI shows an obvious negative trend. We found TVDI to have
a significant linear relationship (p < 0.01) with soil moisture in each year. Moreover, in
comparing Figures 3 and 4, we found that the correlation between TVDI data retrieved
by geomorphological division and soil moisture data was higher than that between TVDI
data retrieved directly without geomorphological division and soil moisture data, and
the R2 value of the former were all over 0.41. Therefore, the TVDI data retrieved by the
geomorphological division method can better reflect the soil moisture status, and also show
that the TVDI method is suitable for studying the drought status of the QTP.
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(8) The text of “WGS 1984 UTM Zone 45N” in “3.1.3”should be 

modified. 

 
The correct text is as follows: 
WGS_1984_UTM_Zone_45N 

(9) Figure 3 should be modified. 
The TVDI represented by the horizontal axis should be rounded to 2 decimal places.  
The correct picture is as follows: 

 
Figure 3. Correlation between TVDI retrieved directly without 
geomorphological division and 10 cm soil moisture in summer from 
2010 to 2015. 

Figure 3. Correlation between TVDI retrieved directly without geomorphological division and 10 cm
soil moisture in summer from 2010 to 2015.

(10) Figure 4 should be modified. 
The TVDI represented by the horizontal axis should be rounded to 2 decimal places.  
The correct picture is as follows: 

 
Figure 4. Correlation between TVDI retrieved by geomorphological 
division and 10 cm soil moisture in summer from 2010 to 2015. 

Figure 4. Correlation between TVDI retrieved by geomorphological division and 10 cm soil moisture
in summer from 2010 to 2015.

4. Results
4.1. Characteristic of NDVI-LST Feature Space

Figure 5 shows the feature spaces of the eight geomorphological divisions that we
constructed, which basically satisfied the triangular or trapezoidal space theory. The
maximum and minimum LST values corresponding to NDVI were extracted through the
TVDI VTCL plug-in of the ENVI 5.3 software, and the NDVI-LST space was constructed.
When constructing the NDVI-LST feature space of the QP, the range of NDVI value from 0
to 1 was selected. It should be noted that when constructing the NDVI-LST feature space
of the other seven regions, we excluded values of NDVI < 0.2 from the analysis. After
determining the NDVI range of each district, we set the sample size in the plug-in to 1 to
obtain the annual and quarterly NDVI-LST feature spaces from 2000 to 2019. Because the
NDVI-LST feature space of the eight geomorphological divisions in 2001 had the best fit
(the average R2 is 0.69), we took the characteristic space of 2001 as an example. Figure 4
shows that there was an obvious linear relationship between the maximum and minimum
surface temperature and NDVI. With increased NDVI, the maximum surface temperature
decreased gradually, while the minimum surface temperature increased slowly. It can be
seen from Appendix B Table A3 that the average R2 of the HDM was 0.35, with the low
value of R2, poor relative fitting, and low accuracy. Other regions have high R2 values,
a good fit, and high accuracy, among which the QHB, QP, and HMLY were the best (the
average value of R2 is 0.75).
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4.2. Temporal and Spatial Variation Characteristics of TVDI

The dry-edge and wet-edge equations were used to calculate the TDVI value of
each pixel at different times, and the TVDI value was applied as the classification index
of drought in the QTP [58]. TVDI was divided into five grades (Table 4) [21,24,59]: ex-
tremely wet (0 ≤ TVDI ≤ 0.2), wet (0.2 < TVDI ≤ 0.4), normal (0.4 < TVDI ≤ 0.6), dry
(0.6 < TVDI ≤ 0.8), and extremely dry (0.8 < TVDI ≤ 1.0). When the TVDI was between
[0, 0.6], the drought type of the region was no drought; when the TVDI was between
(0.6, 0.8], the drought type of the region was drought; and when the range was between
(0.8, 1.0], the drought type of the region was severe drought.

Table 4. TVDI classification criteria of drought in the QTP.

Classification of TVDI [0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1.0]

Drought rank Extremely wet Wet Normal Dry Extremely dry
Drought types No drought No drought No drought Drought Severe drought

4.2.1. Spatial Variation Characteristics of TVDI

Figure 6 shows that there were obvious regional differences in the spatial distribution
of the mean value of TVDI in the QTP from 2000 to 2019, which was mainly characterized
by drought in the southwest and north, and wet conditions in the northeast and southeast.
Overall, the average annual value of TVDI in the QTP was 0.56, which was normal. How-
ever, the regional drought situation was not consistent. For example, for QHB the average
annual TVDI was 0.66, which we classified as being in drought. The no-drought areas were
distributed in the eastern region of the STR, HMLY, HDM, the Qilian Mountains, and the
Kunlun Mountains. Most of these areas were forest and grassland, accounting for 56.9%
of the area of the QTP. The drought areas were mainly distributed in the southwest QP,
in the west HMLY and most of the KWKM, and grassland was the main land use type,
accounting for 33.4% of the area of the QTP. The severe drought areas accounted for 9.7%
of the QTP, and were mainly distributed in the Qaidam Basin, the western part of AQM,
and the river valleys of HMLY.
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Figure 6. Annual average TVDI classification of the QTP.

The QTP was drier in spring and summer and humid in autumn and winter (Figure 7).
Spring was the driest season of the year. The southern part of the QTP was humid, and
the southwestern and northern parts were dry. Most of the QHB, the southern part of the
QP, and the central and western parts of the HMLY were relatively dry. In summer, the
QTP was generally wet in the south and dry in the north, in which drought severity in the
southwest was reduced and drought severity in the north increased. In terms of spatial
distribution, the QHB, the Altun Mountain, the west of HMLY, and the southwest of QP
were relatively arid. In autumn, extremely wet areas in the QTP decreased, while wet and
normal areas increased. Dry areas were concentrated in the north and southwest, such as
the QHB, QP, and the west of HMLY. In winter, the central part of the QTP was wet, the
western part was dry, and the wet areas increased. Winter was the wettest season of the
year with the smallest arid area. Only the south of QP and the mid of HMLY were in a dry
state. In short, the AQM and QP were prone to spring drought, the HMLY was prone to
autumn drought, the QHB was prone to spring drought and summer drought, and the
central QHB was in a state of drought for a long time, and other areas had no obvious
seasonal drought.
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4.2.2. Temporal Variation Characteristics of TVDI

The QTP has exhibited an obvious trend in drought severity over the past 20 years,
and the central region has become the center of increased drought (Figure 8). The area
with aggravated drought accounted for 52.9% of the area of the QTP, the area with a
significant increase in TVDI accounted for 5.8% of the QTP, and the area with a significant
and extremely substantial increase accounted for 2.3% of the QTP. These two types of
drought variation are mainly distributed in the southeast of QP, the southwest of STR, the
southwest of AQM, the most of KWKM, and the south of CEKM.
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Figure 8. TVDI trends in QTP.

The land use types in these areas were mainly unused land and grassland, and the
regional characteristics were high elevation and low vegetation cover. The areas with
non-significant increase in TVDI accounted for 44.8% of the total area, mainly distributed
in the KWKM, CEKM, QP, STR, and other areas. The areas with non-significant decrease in
TVDI were mainly distributed in the northwest of HMLY, HDM, and QP. Most of these areas
were grassland and forest, and accounted for 47.1% of the whole area. In general, there
were obvious differences in drought severity trends in the QTP, with significant drying
trends in the eastern and southeastern parts of QP and the western and southwestern parts
of STR. There was a risk of drought in the Kunlun Mountains and its north, and the risk of
drought in the HDM and HMLY regions decreased.

The QTP had a drying trend in all seasons except autumn (Figure 9). Spring was the
season with the largest drying trend. The AQM, CEKM, STR, and HMLY were the centers
of increasing drought in spring. The land use types in these areas are mainly grassland
and unused land, accounting for 61.7% of the total area. The areas with a drying trend
in summer were mainly distributed in the mid of HMLY, the southeast of QP, and the
southwest of STR, which accounted for 60% of the entire region. Autumn was the season
with the smallest area with a drying trend, which accounted for 48.9% of the total area of
the region without a drying trend. There were three areas with strong drying trends in
winter, QP, QHB, and AQM, and the areas with drying trends accounted for 58.2% of the
total area. Overall, there was a significant drying trend in spring, the drought risk in the
northern QTP weakened in summer, but the drought risk in the southern part remained
very high. In autumn, most of the areas were the wettest and had a weaker trend in drought.
In winter, the risk of drought in the northern QTP increased significantly.
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4.2.3. Spatial and Temporal Variation Characteristics of TVDI Based on Cluster Analysis

According to the distribution and variation characteristics of TVDI in various regions
of the QTP, the method of cluster analysis was used to deeply explore the law of TVDI
variation in the QTP. Based on annual average TVDI, TVDI_Slope of the annual average
TVDI, and the trend classification of the annual average TVDI, we selected nine indicators
in each district, maximum and minimum annual average TVDI (TVDI-max and TVDI-min),
mean annual average TVDI (TVDI-mean), the standard deviation of annual mean TVDI
(TVDI-SD), the mean value of TVDI_Slope (slope-mean), the area proportion of areas
with non-significant decrease (TVDI-t3), the area proportion of areas with non-significant
increase (TVDI-t4), the area proportion of significantly increased areas (TVDI-t5), and the
area proportion of areas with extremely significant increase (TVDI-t6) (Table 5). We then
used the Pearson correlation to conduct a case-by-case systematic cluster analysis (Figure 9).

Table 5. Indicators of cluster analysis in each geomorphological division.

Geomorphological
Division TVDI-Max TVDI-

Min
TVDI-
Mean

TVDI-
SD

Slope-
Mean TVDI-t3 TVDI-t4 TVDI-t5 TVDI-t6

AQM 1.00 0.00 0.55 0.24 3.75 47.34% 44.11% 6.19% 2.37%
QHB 0.97 0.01 0.66 0.20 1.04 42.64% 51.48% 4.07% 1.82%

KWKM 1.00 0.00 0.55 0.18 1.09 20.64% 69.28% 8.21% 1.87%
CEKM 1.00 0.00 0.54 0.21 1.54 25.59% 62.20% 9.96% 2.25%

QP 0.99 0.00 0.59 0.15 5.94 46.76% 42.58% 6.96% 3.70%
STR 0.94 0.00 0.50 0.10 9.69 41.10% 46.45% 8.04% 4.41%

HMLY 1.00 0.03 0.59 0.18 −3.43 58.71% 37.09% 3.41% 0.79%
HDM 1.00 0.00 0.52 0.15 −1.83 73.79% 24.25% 1.57% 0.40%

The TVDI of the QTP demonstrated obvious gradients in its characteristics. It can be
found from Figure 10 that the QTP are divided into three categories: HMLY and HDM are
one category, QP, STR, and AQM are one category, and the last category includes KWKM,
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CEKM, and QHB. The HMLY and HDM areas are located in the southern part of the QTP,
and their annual average TVDI values were 0.59 and 0.52, respectively, and the drought
severity was at the non-drought level. The standard deviation of their annual TVDI was not
much different, the mean value of slope was less than 0, and the areas with non-significant
decrease had the largest ratio of area to the total area. They were characterized by a low
degree of drought and a trend towards wetter conditions.
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The QP and STR are in the central QTP, and the AQM is in the northern part of
the QTP. The average TVDI of the three areas was between 0.5 and 0.6, and the drought
category was normal. The average slope was large, and the proportion of the area with
non-significant decrease to the total area was between 41.10% and 47.34%. These three
areas were characterized by a lower degree of drought and increased regional drought risk.

The KWKM, CEKM, and QHB are in the northern-central QTP. The average value of
QHB was relatively high, and the drought severity was drought. The standard deviation of
the annual average TVDI of the three places ranged from 0.18 to 0.21, and the average value
of slope was between 1.04 and 1.54. Among the three regions, the difference in results was
small. The ratio of the non-significant decrease area to the total area decreased in the three
regions, and the ratio of the non-significant increase area to the total area was the highest,
which indicated that the three regions were characterized by a higher degree of drought
and had a significant risk of drought in the region. In summary, the drought severity and
drought risk in the QTP increased from the southeast to the northwest, which indicated
that the spatial variation pattern of TVDI was roughly consistent with the spatial variation
of precipitation and temperature in the southeast–northwest gradient.

4.3. Characteristics of TVDI Drivers
4.3.1. Climate Driven Characteristics of TVDI

Figure 11 shows that the temperature, precipitation, and TVDI of the QTP had different
trends. Annual precipitation had a negative trend, average annual temperature had a
positive trend, and the average annual TVDI had a positive trend. The changes of these
three indicated that the study area had a tendency of drought. From 2000 to 2017, the annual
precipitation in the QTP had a negative trend, with a trend of −0.39 mm/year. The annual
precipitation in the QTP decreased from the southeast to the northwest. Among them, the
HMLY and HDM had the most precipitation, and the Qaidam Basin, AQM, and the western
QP had the least precipitation. From 2000 to 2017, the average annual temperature of the
QTP has fluctuated upward at a rate of 0.02 ◦C/year. The spatial distribution of the average
annual temperature for many years was uneven. The areas with lower temperature were
distributed in the Kunlun Mountains, the northern QP, and STR, and the areas with higher
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temperature are distributed in HMLY, the Qaidam Basin, and HDM. From 2000 to 2019, the
TVDI had an insignificant upward trend, with a cyclical change of roughly six years.
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Figure 11. Changes in annual precipitation, average annual temperature and average annual TVDI
of the QTP.

There are regional differences in the effects of precipitation and temperature on the
TVDI of the QTP. The influence of meteorological factors on TVDI was quantitatively
analyzed using the partial correlation coefficient of TVDI, annual precipitation, and annual
average temperature obtained by pixel-by-pixel calculation. Figure 12a shows that the
partial correlation coefficients between TVDI and annual precipitation in the QTP ranged
from −0.97 to 0.93. The areas where TVDI were positively correlated with annual precipi-
tation accounted for 53.56% of the total area of the whole region, which were distributed
in the HMLY, STR, and QHB. The areas with a negative correlation accounted for 46.44%
of the total area, which were mostly distributed in the QP and HDM. According to the
spatial characteristics of partial correlation between TVDI and average annual temperature
in the QTP, Figure 12b shows that the partial correlation coefficient between TVDI and
temperature ranged from −0.89 to 0.98. Among them, the areas with a positive correlation
accounted for 64.06% of the entire region, and most of them were distributed in the QP, STR,
and the east wing of the HMLY, KWKM and CEKM. The areas with a negative correlation
accounted for 35.94% of the area and were mainly distributed in the west wing of the HMLY
and HDM.
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After calculating the t-test of the partial correlation coefficient and the F-test of the
multiple correlation coefficient, according to Table 1, the driving force of the climatic factor
of the QTP was obtained (Figure 13). The factors affecting the change in drought severity
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in the QTP were complex. The drought in most areas was affected by other factors. The
areas driven by a single factor of temperature or precipitation were distributed in clusters,
and the areas dominated by temperature and precipitation were scattered. The distribution
of the areas driven by precipitation was concentrated, accounted for 1.32% of the total area,
and were mainly located in the Qaidam Basin and scattered in the STR and HMLY. The
land use types in these areas were mainly unused land and the vegetation coverage was
low. The areas driven by temperature accounted for 3.65% of the total area of the region,
which were distributed in all regions of the QTP and concentrated in areas with higher
elevation, such as QP. The areas driven by precipitation and temperature account for 5.95%
of the total area, which were widely distributed in various regions of the QTP, mostly in
HMLY, HDM, and AQM.
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4.3.2. Driver Characteristics of TVDI

Figure 14 shows that the evolution of drought in the QTP was affected by various
factors, but different topography, vegetation types, and other factors led to differences in
the main driving factors of each geomorphological division. The drought situation in the
AQM was mainly driven by precipitation, and secondly affected by temperature. In the
KWKM area, the driving effect of the Euclidean distance factor to the water surface body
was more significant. The driving factors of QP drought were mainly temperature and
Euclidean distance of water surface body, and other factors had less influence. The drought
severity in the HMLY was driven by precipitation, followed by temperature and elevation.
The drought conditions of QHB, CEKM, STR, and HDM were comprehensively affected
by precipitation and temperature, and other factors had relatively little effect. In general,
the influence of climatic factors (temperature and precipitation) on the drought conditions
of the QTP was relatively stable, geomorphological factors (slope, aspect and elevation)
played an important role in the drought conditions in each region, and accessibility factors
(Euclidean distance of water surface body and Euclidean distance of built-up land) and
land use factors had relatively little influence.
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According to the random forest model, we obtained a local dependence map of
the driving factors in each geomorphological division (Figure 15), to further explore the
relationship between each driving factor and TVDI. We found that the overall trends of the
relative importance of driving factors in each region were similar, but there were obvious
differences in the sensitivity intervals of the driving factors.

First, the relative importance of annual average temperature increased between−20 ◦C
and 20 ◦C, and maintained a high level from 0 ◦C to 16 ◦C. The relative importance of HDM
peaked at 16 ◦C, and the relative importance of other regions peaked from 0 ◦C to 5 ◦C.

Second, the relative importance of annual precipitation fluctuated and decreased from
0 mm to 1500 mm, and the impact on regional drought was more profound when the
precipitation was less than 500 mm. The trend of the relative importance of the QHB and
CEKM showed a double peak, and the trend of the relative importance of other regions
had a single peak.

Third, the relative importance of elevation had a fluctuating and negative trend overall,
but there were obvious differences in the sensitive range of elevation in each area. The
relative importance of HMLY elevation had two peaks, about 0 m and 4700 m, respectively,
and the relative importance of elevation in other areas ranged from 3000 m to 5200 m.

Fourth, the relative importance of the slope changed similarly in different areas, with
an upward trend from 0◦ to 5◦, a downward trend from 5◦ to 30◦, and remained stable
above 20◦.

Fifth, the relative importance of the aspect had a clear peak, rising first and then falling
between 0◦ and 360◦, and had a high level from 175◦ to 200◦ (sunny slope).

Sixth, the relative importance of the Euclidean distance of built-up land did not
change significantly in the HMLY, KWKM, and QHB, and the relative importance of other
regions had a downward trend. The Euclidean distance of built-up land was the most
sensitive from 0 m to 1000 m. Seventh, the relative importance of the Euclidean distance of
water surface body was on the rise, at a high level from 1600 m to 3000 m, and remained
stable above 3000 m. Finally, the relative importance of land use types varied significantly
among different types, with grassland and cultivated land generally being the highest,
built-up land and other land use being higher, and the forest and water surface body being
the lowest.
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5. Discussion
5.1. Analysis of NDVI-LST Feature Space

Considering the characteristics of LST and NDVI data in the study area, determining
a reasonable range of NDVI for regression fitting and obtaining the appropriate dry- and
wet-edge equation was the key for calculating TVDI. When the vegetation coverage is less
than 15%, NDVI is a poor indicator of vegetation cover in the region [60]. Moreover, when
determining the NDVI range in the feature space, the corresponding LST minimum value in
the low-value area of NDVI has a tail decline phenomenon [61]. The above two phenomena
may lead to the deviation of the simulated dry and wet edge from the theoretical boundary.
Therefore, when determining the NDVI range of the feature space in our study, to avoid
regional differences and the occurrence of tail subsidence, except for the QP, we did not use
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NDVI values < 0.2 in the other seven regions, which ensured that the dry and wet edges of
each region conformed to the theoretical boundary.

Combined with Figure 4 and Appendix B Table A3, it can be concluded that the feature
spaces in different phases and different regions were triangular. Thus, as NDVI increased,
the maximum and minimum values of LST gradually approached and converged at one
point. The overall characteristics of the data in the study area were consistent, so the
NDVI-LST relationship could be used to accurately simulate the drought state [62]. The
fitting of the dry and wet edges in the eight geomorphological regions were all good, which
indicated that the NDVI-LST feature space of each region can accurately reflect the LST
distribution and NDVI characteristics. Among them, the dry- and wet-edge coefficients
(R2) of the QHB, QP, and HMLY were the most stable and had the best fit, while the dry-
and wet-edge coefficients (R2) of the HDM fluctuated greatly and the fit was relatively poor,
which may be related to deep-cut landforms and higher vegetation coverage [23].

5.2. Analysis of Spatial and Temporal Variation Trend of TVDI

The overall spatial distribution of the QTP was drought in the southwest and north,
and wet in the northeast and south, which was consistent with previous research results [31].
The QTP was drier in spring and summer, and wetter in autumn and winter. In spring
and summer, the western part of the QTP was relatively dry, which was caused by the
vegetation in the growing season, a large demand for water, high temperature, high
evapotranspiration, and less precipitation in the region. In autumn, with the decrease of
temperature and water evaporation, the water required for vegetation growth decreases,
and snowfall occurs in high-elevation areas, which replenishes water resources, increasing
the soil water content in the central part of the QTP, thus alleviating the drought. In winter,
under the combined influence of land-source water vapor and ocean-source water vapor,
the central region of the QTP is obviously humid [63]. In addition, it is also affected by
factors such as the decrease of temperature, vegetation dormancy, the expansion of snow
cover area and the increase of snow depth [64].

In the past 20 years, the degree of drought in more than half of the QTP has increased
significantly, and the central QTP has become the center of aggravated drought. Other stud-
ies have demonstrated similar findings [65,66]. The decrease in precipitation and increase
in evapotranspiration in the QTP decreased soil moisture and caused a drying trend [67].
The QTP demonstrates a drying trend in other seasons except autumn, which was also
concluded by Feng et al. [35] using the SPEI method. As the seasons changed, the drought
risk varied in different regions, such as AQM. The AQM was prone to spring drought and
combined with the drying trend in the region, the risk of drought was further increased.

Affected by the climatic gradient, the drought pattern of the QTP generally had a
southeast–northwest gradient. According to the statistical characteristics of TVDI in eight
geomorphological areas, the QTP could be divided into three categories by cluster analysis.
The first category included the HMLY and HDM, which had a low degree of drought and
a wetting trend. The second category included the QP, STR, and AQM, which had a low
degree of drought and a drying trend. The third category included the KWKM, CEKM,
and QHB, which had a higher degree of drought and an increased risk of drought. The
drought severity and variation characteristics of these three regions were different, which
was not only related to differences in precipitation, temperature, elevation, land use type,
and vegetation cover, but also affected by significant geomorphological effects. As the
Yangtze River, Yellow River, Yarlung Zangbo River, and other rivers flow through the
HMLY and HDM areas, there was abundant precipitation, sufficient water resources and
high soil humidity. The QP, STR, and AQM are located in inland areas, with high elevation,
low temperature, and less precipitation. However, lakes, glaciers, and other water bodies
have large areas, so water resources are more abundant and the regional drought is low.
The KWKM, CEKM, and QHB are located deep inland and receive little precipitation. The
land use type is dominated by grassland and unused land and drought conditions are
susceptible to climate change.
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5.3. Analysis of Driving Force of TVDI Change

The change of TVDI in the QTP was mainly affected by climate factors, but there were
slight differences in the driving factors of TVDI in each geomorphological division. The
AQM and HMLY were dominated by precipitation, the QP was dominated by temperature,
and the QHB, CEKM, STR, and HDM were affected by temperature and precipitation. The
driving factor of TVDI in the KWKM was the Euclidean distance of water surface body,
which was due to the wide distribution of glaciers and lakes affected by monsoon [68].
The leading factors of TVDI in all regions of the QTP echo the results of climate drivers
by partial correlation analysis, which also indirectly showed the reliability of the random
forest method. In addition, the random forest results of TVDI data obtained by direct
inversion without geomorphological division also showed that the QTP was dominated by
climate factors, followed by geomorphological characteristics, which was consistent with
the results we obtained.

5.3.1. Meteorological Factors

There were various factors affecting drought in the QTP, among which precipitation
and temperature played a significant role [69,70]. Precipitation affects water resources,
and temperature affects evapotranspiration, which interact and jointly affect drought in
the QTP. In recent years, the decrease of precipitation and the increase of temperature in
the QTP have changed the soil moisture [71], which has affected the growth of vegetation,
weakened the ability of soil to retain water, and led to increased drought in the QTP. Among
them, increased temperature has increased snow melt and evapotranspiration in the study
area [41], which is an important reason for the spatial-temporal change of drought in
the QTP [72]. Combined with analysis of relative importance, there were large spatial
differences in the relationship between TVDI and climate factors in the QTP. When the
annual average temperature was greater than 0 ◦C, the relationship between the TVDI
and the annual average temperature of the QTP was the most sensitive. When the annual
precipitation was less than 500 m, this factor had the most important impact on the change
of TVDI. The areas with high temperature and low precipitation are in the western parts
of HMLY, the southern parts of QP, and the northwestern parts of KWKM and the QHB.
Due to the combined influence of precipitation and temperature, these regions are prone to
drought and extreme drought.

Climate change largely affects the duration of drought [73]. A warming climate will
increase the risk of drought [74], especially the frequency and duration of drought in arid
areas [75]. The reduction of regional precipitation will lead to stronger and more frequent
drying periods and the intensification of evaporation induced by global warming, and this
situation will increase the probability of drought in the region [76]. From the climate driven
zone map, it was found that drought in the central QTP was dominated by temperature,
and drought in the northern basin was driven by precipitation, of which temperature was
more driven than precipitation. The Qaidam Basin is located deep within the interior of the
continent and is surrounded by high mountains, which affects the moist air flow into the
basin, resulting in less precipitation in the region. The TVDI in QHB was dominated by
precipitation and had a positive correlation with the annual precipitation. With decreased
precipitation, the drought in this area increased. The drought in QP was dominated by
temperature, and there was a positive correlation between TVDI and temperature in this
area. Affected by the temperature rise of the QTP in the recent 20 years, QP has become the
central area with an enhanced drying trend.

5.3.2. Geomorphological Factors

Geomorphological characteristics are important factors that affect the construction of
regional basic factors such as mountains, climate, vegetation, roads, and human activities.
The uplift of the QTP has not only formed a unique plateau climate [77], but also had
a profound impact on the composition of modern atmospheric circulation patterns, the
establishment of the Asian monsoon system [78], regional and global climate change, the
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development and evolution of desert loess, plateau ice and snow, lake and river water
systems and ecosystems, and the origin and evolution of human beings [79]. Among
them, the thermal effect of the QTP has an impact on the Asian monsoon and precipitation
variability [80], resulting in regional differentiation of precipitation and heat generation [81],
which directly or indirectly cause drought, water shortage, and deserts. The distribution of
water and heat in the region affected by elevation results in a gradient of drought conditions
in the QTP [82], especially in HMLY. The HMLY Valley area is blocked by the southern high
mountains to the water vapor from the North Indian Ocean, resulting in a large amount of
precipitation falling on the windward slope, and the area has been in a dry state for a long
time. At elevations between 3000 m and 5200 m, the impact on TVDI is most significant,
with rainfall and temperature changing positively in the high-altitude range [35].

Slope affects soil properties, soil nutrient content, and vegetation types to a certain
extent. With the increase of slope, precipitation infiltration is difficult, and the loss rate of
soil water intensifies, which further affects the likelihood of drought in the region [83]. The
smaller the slope, the better the soil moisture retention. Slopes less than 5◦ were the most
sensitive to TVDI in the study area. Such areas are mainly distributed in the central and
northern QTP, with high elevation and local precipitation less than 500 mm, and slope had
a low degree of influence on TVDI.

Aspect affects the amount of solar radiation, water content, and evapotranspiration
received by the slope, resulting in aspect-related differences in drought conditions [40].
When located on a sunny slope, TVDI was most sensitive to aspect. Compared with the
shady slope, the sunny slopes have longer sunshine hours, receive more solar radiation,
and better develop vegetation, which increases the regional evapotranspiration intensity,
reduces soil water content, and causes drought differentiation. Compared with factors
such as temperature, precipitation, and elevation, the aspect had less influence on the
TVDI, which indicated that the humidity change caused by the aspect had a relatively small
impact on the regional drought change.

5.3.3. Accessibility Factors

With economic development and the expansion of urban land, the impact of human
activities on regional drought has increased [84–87] and the impact of human activities
on drought is greater than the duration of drought [88]. There are two aspects to the
impact of human activities on drought. First, human activities directly act on surface
water and groundwater resources, consume and change the occurrence and regeneration
conditions of water resources, and cause or exacerbate drought [89]. Second, due to urban
and rural construction, traffic route development, deforestation, wasteland removal, and
other activities that change the land surface, the soil moisture and roughness are reduced
and the surface reflectivity of the underlying surface is increased, thereby changing the
production and confluence law and evaporation composition, which ultimately leads to
localized reductions in precipitation and increased drought. In terms of the accessibility
impact of cities and towns, the closer to cities and towns, the more intense human activities
become and the greater their effects on landform and surface cover. Therefore, the impact
of the Euclidean distance of built-up land demonstrated significant distance attenuation,
and its sensitive range was mostly between 0 m to 1000 m. Due to the relatively small
proportion of built-up land in the QTP, it had little impact on the overall changes in drought
on the QTP.

There are many frozen soils, glaciers, and lakes in the QTP, especially in KWKM and
QP. Soil moisture in the areas surrounding rivers and water bodies gradually declines as
one moves further away from the water bodies, which causes a wet to arid trend as the
distance from water bodies increases. Under the background of global warming and the
imbalance of water towers in Asia, the glaciers in the QTP are in a state of continuous
melting, their solid water is melting rapidly, and their liquid water is increasing [90]. This
affects the hydrological process in the study area and relieves the drought pressure in some
areas [91]. In our study, the Euclidean distance to water surface body was used to analyze
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the impact of glaciers, lakes, and other waters on TVDI. We found that the Euclidean
distance of water surface body had the characteristics of distance attenuation on the impact
of regional drought. When it was greater than 1600 m, the relationship between TVDI
and this factor was the most sensitive. In addition, the formation and melting of glaciers
and permafrost produce obvious seasonal differences in the drought situation of the QTP.
In summer, the QTP had high temperature, high evaporation, and a large demand for
water by vegetation, but its drought degree was less affected by glacier and frozen soil
melting than in spring [92]. In winter, the soil of the QTP gradually freezes, the regional
evapotranspiration decreases, and the soil water holding capacity increases, making winter
the wettest season of the year. In the short term, glacier melting will alleviate drought in
some areas, but long-term glacier melting will reduce the ability of arid areas to cope with
drought and increase the risk of drought.

5.3.4. Land Use Type Factor

Differences in vegetation cover and surface roughness of different land use types
lead to differences in their impact on TVDI [93]. The results of local dependence analysis
showed that grassland and cultivated land had the greatest impact on TVDI, followed
by urban and rural built-up land and other land, and that the forest and water bodies
had the lowest impact. The crops in the QTP are mainly highland barley, and the sowing
and growing season spans from March to September. The cultivated land is generally
adjacent to built-up land and is greatly affected by human activities [94]. The ecosystem
stability of cultivated land and built-up land is relatively weak, and the soil water holding
capacity is weak, which affects the change of TVDI [95]. Forest is mainly distributed in the
southeastern QTP, which has rich water resources, good soil coverage, less evaporation,
strong soil water holding capacity, and non-significant impact on TVDI [96]. The water
area includes lakes, permanent glaciers, reservoirs, ponds, beaches, and other water bodies,
which are humid and have low drought risk. Since the water changes to the surrounding
area, the soil moisture gradually decreases with a trend from wet to drought. Grassland
and unused land are the most widely distributed in the study area and are easily affected
by climate fluctuations, have relatively low vegetation coverage, poor stability, and strong
ground evaporation, and thus have a more significant impact on TVDI.

5.4. Applications and Limitations

As an important ecological security barrier in China, the QTP plays a role in water
conservation, biodiversity protection, and soil and water conservation. It is a ‘sensor’ of
climate change in Asia and the Northern Hemisphere. Drought affects regional vegetation
status, the water cycle, and human life, and can thereby destroy the stability of the ecological
environment and restrict social and economic development. Using geomorphological
division, we applied the TVDI method to identify the temporal and spatial variation of
drought in the QTP from 2000 to 2019 in an effort to provide a scientific basis for the
prevention and control of regional drought and promote sustainable development of the
region. Under the background of global warming, we found that the QTP had a tendency
of drought, and the central QTP has become the hotspot of increased drought severity. In
response to the potential challenges of drought risk, the government should actively adjust
and optimize drought prevention and control measures. In areas with low drought risk,
such as HDM and HMLY, the government should strengthen the ecological protection of
cultivated land and important areas such as rivers, lakes, and surrounding areas, control the
intensity of human reclamation activities, and closely monitor changes in the hydrological
conditions of grasses. In areas with perennial droughts, such as QHB, KWKM, and CEKM,
where the drying trend was aggravated, a multi-geographical synchronous monitoring
system should be established to identify and monitor drought dynamics. In sandy and bare
areas, ecosystems need to be restored. In agricultural farming areas, the planting structure
needs to be optimized, and high-efficiency, water-saving agricultural methods need to be
developed. In pastoral areas, the scale and quantity of grazing should be controlled, and
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the protection of grasslands should be strengthened by taking measures such as zoning
and rotation grazing.

There were some aspects of our study that could be improved. In terms of the TVDI
calculation, the TVDI of each area was calculated based on the geomorphological division,
and then the TVDI of the whole area was obtained by mosaic. However, this method led to
discontinuity of the TVDI value at the geomorphological edge, or the edge effect. Although
we used the TVDI classification to weaken the edge effect, the moving window method
can be tested to eliminate the edge effect in the future. In terms of index selection, the
effects of natural factors, such as stratigraphic lithology, geological structure, surface water,
and groundwater have not been fully considered, and the impact on human activities has
not been adequately described. Future research can further explore the mechanisms of
drought in the QTP and divide the regional drought risks based on drought severity and
drying trends. Methods such as GWR can be used in comparison with or combined with
RF methods to improve the accuracy of model interpretation.

6. Conclusions

Here, we selected the QTP as the study area. However, considering the influence of
the huge spatial scale effects of the study area on TVDI inversion, we divided the QTP into
eight geomorphological areas. TVDI inversion was carried out for each area and the data
for the whole area were synthesized using the TVDI grading method. Partial correlation
and multiple correlation analyses were used to explore the effects of precipitation and
temperature on TVDI. Then, eight factors, including meteorology, geomorphology, land
cover, and human activities, were selected to construct a random forest model to identify
the mechanisms driving changes in TVDI. We gathered four main findings.

First, in the past 20 years drought frequency and severity in the QTP has increased,
especially in the central region. The spatial distribution of TVDI was wet in the southeast
and arid in the northwest, with conspicuous regional differences. The main areas with
increasing TVDI were distributed in the southeast of QP, the southwest of STR, and the
Kunlun Mountains. The main areas where TVDI remained unchanged and decreased were
distributed in the HDM and HMLY where vegetation cover was high.

Second, the seasonal differences of drought were significant in the QTP. Spring was
the driest season of the year, and there was a significant drying trend in the central and
northern QTP. It was relatively dry in summer, the drought risk in the north of QTP was
weakened, and the risk in the south was still very high. Autumn was relatively wet, and
the region had a downward trend in drought severity. Winter was the wettest season of the
year, but the risk of drought increased significantly in the northern part of the QTP.

Third, the spatial pattern of TVDI changes in the QTP was generally consistent with
changes in precipitation and temperature, which had a gradual change from southeast to
northwest. According to the spatial distribution and variation of aridity, we divided the
study area into three categories. The first category, the HMLY and HDM in the southern
region, had low drought severity and was becoming more humid. The second category, the
QP, STR, and AQM in the central and northern regions, had low drought severity but had a
positive trend in drought severity. The third category, the KWKM, CEKM and QHB in the
north-central region, had higher drought severity and a positive trend in drought severity.

Finally, the driving effect of each factor on TVDI was significantly different in the
QTP. Except in the KWKM, temperature and precipitation were the dominant factors in the
variation of TVDI in the QTP, and regions with higher temperature and less precipitation
had a more significant impact on TVDI. Geomorphological factors play an important
role in the change of TVDI. The areas with an elevation of 3000~5200 m, slopes less than
5◦, and sun-facing slopes had a more significant impact on the change of TVDI. The
influence of the Euclidean distance of urban and rural built-up land and water bodies
showed distance attenuation, and the sensitive areas of these two factors were <1000 m
and >600 m, respectively. Among the land use types, grassland and cultivated land had a
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more significant impact on TVDI changes, while forest and water bodies had less impact
on TVDI changes.
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Appendix A

Table A1. Full name of abbreviation in the text.

Abbreviation Full Name

TVDI Temperature-Vegetation Drought Index
QTP The Qinghai–Tibet Plateau

AQM The high valley areas of Altun–Qilian Mountains
QHB The high mountain areas of Qaidam-Yellow River-Huangshui River Basin

KWKM The high mountain areas of Karakorum and Western Kunlun Mountain
CEKM The high mountain areas of Central and Eastern Kunlun Mountains

QP The lake and basin areas of Qiangtang Plateau

STR The mountains Sources of the Yangtze River, Yellow River, and Lancang River (Three Rivers
or Sanjiangyuan) and the valley bottom of the upper reaches of Three Rivers.

HMLY The high mountain areas of Himalayan
HDM The high mountain and valley areas of Hengduan Mountains

Appendix B

Table A2. Basic information of each geomorphological division.

Geomorphological
Division Area (km2) Annual Average

of TVDI
Annual Average of
Temperature (◦C)

Annual
Precipitation (mm)

Average
Elevation (m)

Average
Slope (◦)

AQM 182,475.56 0.55 −4.06 260.01 3768.06 5.55
QHB 231,433.86 0.66 2.18 250.69 3158.97 2.51

KWKM 207,715.72 0.55 −5.62 42.70 4765.07 8.70
CEKM 237,445.70 0.54 −4.40 262.23 4387.32 4.82

QP 511,338.20 0.59 −4.09 200.31 4988.01 2.70
STR 420,819.40 0.50 −3.59 513.88 4570.68 4.23

HMLY 513,158.23 0.59 −0.29 528.40 4492.26 8.99
HDM 316,219.62 0.52 2.07 699.36 3934.06 10.83

http://data.tpdc.ac.cn
http://data.tpdc.ac.cn
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Table A3. Dry-edge and wet-edge equations of eight geomorphological divisions from 2000 to 2019.

Geomorphological
Division Year Dry-Edge Equation R2 Wet-Edge Equation R2

AQM

2000 Dy = 46.4 − 9.89*X 0.27 Wy = 11.7 + 11.3*X 0.50
2001 Dy = 48.6 − 15.2*X 0.68 Wy = 13.8 + 8.89*X 0.81
2002 Dy = 46.0 − 15.9*X 0.78 Wy = 11.7 + 9.81*X 0.79
2003 Dy = 43.3 − 6.96*X 0.35 Wy = 11.1 + 11.8*X 0.85
2004 Dy = 46.5 − 12.8*X 0.69 Wy = 11.4 + 11.1*X 0.57
2005 Dy = 46.6 − 12.6*X 0.81 Wy = 8.89 + 14.2*X 0.41
2006 Dy = 49.3 − 19.0*X 0.93 Wy = 12.1 + 11.7*X 0.75
2007 Dy = 50.4 − 18.7*X 0.70 Wy = 10.2 + 14.3*X 0.59
2008 Dy = 49.3 − 21.7*X 0.78 Wy = 11.0 + 11.6*X 0.66
2009 Dy = 42.5 − 6.92*X 0.27 Wy = 10.8 + 12.6*X 0.66
2010 Dy = 48.4 − 16.8*X 0.85 Wy = 9.60 + 15.5*X 0.59
2011 Dy = 43.4 − 10.1*X 0.60 Wy = 8.41 + 16.7*X 0.70
2012 Dy = 41.8 − 6.87*X 0.39 Wy = 8.60 + 14.1*X 0.71
2013 Dy = 47.2 − 15.2*X 0.62 Wy = 10.9 + 12.9*X 0.58
2014 Dy = 43.8 − 8.21*X 0.45 Wy = 11.5 + 10.5*X 0.59
2015 Dy = 47.1 − 15.9*X 0.63 Wy = 10.6 + 11.1*X 0.88
2016 Dy = 53.1 − 20.1*X 0.92 Wy = 14.5 + 8.93*X 0.52
2017 Dy = 50.1 − 22.7*X 0.82 Wy = 8.76 + 15.5*X 0.67
2018 Dy = 48.5 − 18.5*X 0.75 Wy = 8.97 + 12.7*X 0.59
2019 Dy = 45.2 − 12.1*X 0.69 Wy = 7.19 + 14.4*X 0.54

QHB

2000 Dy = 60.9 − 29.2*X 0.78 Wy = 12.8 + 7.97*X 0.52
2001 Dy = 57.7 − 25.7*X 0.69 Wy = 10.9 + 12.4*X 0.78
2002 Dy = 55.7 − 27.4*X 0.92 Wy = 11.3 + 10.0*X 0.57
2003 Dy = 54.3 − 17.7*X 0.59 Wy = 12.4 + 9.58*X 0.81
2004 Dy = 53.4 − 20.7*X 0.83 Wy = 10.9 + 11.2*X 0.90
2005 Dy = 56.0 − 27.9*X 0.92 Wy = 10.6 + 10.5*X 0.80
2006 Dy = 57.2 − 28.2*X 0.86 Wy = 14.6 + 7.29*X 0.74
2007 Dy = 59.0 − 30.4*X 0.79 Wy = 12.1 + 9.59*X 0.78
2008 Dy = 55.9 − 24.2*X 0.77 Wy = 12.5 + 9.22*X 0.71
2009 Dy = 54.5 − 23.6*X 0.80 Wy = 12.5 + 8.88*X 0.79
2010 Dy = 53.9 − 22.1*X 0.96 Wy = 13.0 + 5.95*X 0.14
2011 Dy = 56.4 − 26.5*X 0.86 Wy = 11.3 + 11.7*X 0.73
2012 Dy = 53.5 − 23.4*X 0.92 Wy = 9.76 + 12.6*X 0.91
2013 Dy = 56.5 − 27.4*X 0.87 Wy = 14.4 + 7.99*X 0.58
2014 Dy = 57.4 − 22.8*X 0.57 Wy = 12.4 + 9.00*X 0.61
2015 Dy = 57.6 − 28.3*X 0.84 Wy = 12.4 + 8.87*X 0.73
2016 Dy = 59.6 − 29.1*X 0.86 Wy = 15.2 + 6.56*X 0.63
2017 Dy = 56.5 − 25.8*X 0.82 Wy = 11.6 + 10.0*X 0.84
2018 Dy = 55.0 − 24.4*X 0.85 Wy = 10.3 + 9.28*X 0.75
2019 Dy = 56.1 − 28.3*X 0.91 Wy = 12.8 + 3.60*X 0.45

KWKM

2000 Dy = 55.9 − 44.6*X 0.75 Wy = −4.8 + 36.0*X 0.34
2001 Dy = 55.8 − 46.5*X 0.73 Wy = −6.4 + 44.8*X 0.38
2002 Dy = 53.3 − 38.6*X 0.78 Wy = −5.7 + 41.0*X 0.44
2003 Dy = 56.2 − 44.7*X 0.79 Wy = −5.9 + 39.0*X 0.41
2004 Dy = 54.6 − 43.4*X 0.79 Wy = −0.2 + 19.6*X 0.11
2005 Dy = 51.8 − 38.2*X 0.77 Wy = −7.4 + 38.5*X 0.44
2006 Dy = 56.1 − 45.8*X 0.72 Wy = −0.8 + 31.9*X 0.39
2007 Dy = 53.0 − 37.2*X 0.74 Wy = −0.6 + 37.0*X 0.34
2008 Dy = 52.1 − 36.2*X 0.77 Wy = −3.1 + 36.3*X 0.42
2009 Dy = 54.3 − 43.4*X 0.70 Wy = −4.7 + 40.6*X 0.39
2010 Dy = 52.8 − 40.6*X 0.82 Wy = −6.5 + 32.5*X 0.41
2011 Dy = 55.5 − 40.6*X 0.78 Wy = −2.8 + 31.4*X 0.28
2012 Dy = 56.2 − 45.1*X 0.83 Wy = −7.1 + 33.4*X 0.46
2013 Dy = 55.6 − 39.3*X 0.76 Wy−−3.1 + 35.8*X 0.31
2014 Dy = 53.5 − 38.3*X 0.79 Wy = −8.3 + 45.4*X 0.51
2015 Dy = 53.2 − 38.2*X 0.79 Wy = −7.3 + 35.4*X 0.33
2016 Dy = 54.9 − 38.9*X 0.81 Wy = −8.9 + 45.0*X 0.50
2017 Dy = 52.0 − 31.3*X 0.77 Wy = −2.9 + 27.2*X 0.31
2018 Dy = 55.7 − 37.0*X 0.76 Wy = −9.2 + 43.6*X 0.53
2019 Dy = 54.4 − 38.8*X 0.70 Wy = −6.0 + 32.0*X 0.40
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Table A3. Cont.

Geomorphological
Division Year Dry-Edge Equation R2 Wet-Edge Equation R2

CEKM

2000 Dy = 49.7 − 17.7*X 0.65 Wy = 10.0 + 11.4*X 0.59
2001 Dy = 46.4 − 17.7*X 0.71 Wy = 11.6 + 8.75*X 0.67
2002 Dy = 44.7 − 13.8*X 0.77 Wy = 9.82 + 11.6*X 0.79
2003 Dy = 42.1 − 2.04*X 0.03 Wy = 9.56 + 11.1*X 0.77
2004 Dy = 42.1 − 8.66*X 0.70 Wy = 10.4 + 9.08*X 0.65
2005 Dy = 44.2 − 17.2*X 0.82 Wy = 10.9 + 6.97*X 0.39
2006 Dy = 47.9 − 18.9*X 0.76 Wy = 11.4 + 10.5*X 0.71
2007 Dy = 46.0 − 16.1*X 0.61 Wy = 10.5 + 9.32*X 0.71
2008 Dy = 42.8 − 9.09*X 0.37 Wy = 10.8 + 9.99*X 0.74
2009 Dy = 43.4 − 14.3*X 0.69 Wy = 5.75 + 14.1*X 0.59
2010 Dy = 44.0 − 12.7*X 0.71 Wy = 7.84 + 7.88*X 0.23
2011 Dy = 43.2 − 12.6*X 0.79 Wy = 10.2 + 10.6*X 0.74
2012 Dy = 45.4 − 18.0*X 0.88 Wy = 8.15 + 10.6*X 0.67
2013 Dy = 47.3 − 19.0*X 0.83 Wy = 10.4 + 10.9*X 0.67
2014 Dy = 45.4 − 10.4*X 0.26 Wy = 8.99 + 11.8*X 0.67
2015 Dy = 46.1 − 15.4*X 0.69 Wy = 11.1 + 9.57*X 0.72
2016 Dy = 46.9 − 14.6*X 0.71 Wy = 11.5 + 10.0*X 0.55
2017 Dy = 46.8 − 17.2*X 0.82 Wy = 8.92 + 10.2*X 0.62
2018 Dy = 43.5 − 14.3*X 0.81 Wy = 7.32 + 12.1*X 0.76
2019 Dy = 44.1 − 15.7*X 0.76 Wy = 6.38 + 10.5*X 0.52

QP

2000 Dy = 49.9 − 30.3*X 0.82 Wy = 6.68 + 14.1*X 0.61
2001 Dy = 47.3 − 29.5*X 0.87 Wy = 6.81 + 16.8*X 0.71
2002 Dy = 49.1 − 26.3*X 0.84 Wy = 7.04 + 16.5*X 0.69
2003 Dy = 48.3 − 30.0*X 0.88 Wy = 5.93 + 17.1*X 0.78
2004 Dy = 46.9 − 23.7*X 0.84 Wy = 7.46 + 15.2*X 0.68
2005 Dy = 49.4 − 28.8*X 0.86 Wy = 6.84 + 17.3*X 0.69
2006 Dy = 49.9 − 30.5*X 0.89 Wy = 6.90 + 17.9*X 0.66
2007 Dy = 4.9 − 21.5*X 0.65 Wy = 6.17 + 18.2*X 0.64
2008 Dy = 46.2 − 28.5*X 0.87 Wy = 5.29 + 17.0*X 0.74
2009 Dy = 50.5 − 26.2*X 0.80 Wy = 7.67 + 14.1*X 0.58
2010 Dy = 50.5 − 27.6*X 0.75 Wy = 2.17 + 22.1*X 0.68
2011 Dy = 47.8 − 30.3*X 0.86 Wy = 6.33 + 15.7*X 0.65
2012 Dy = 50.7 − 26.7*X 0.75 Wy = 5.47 + 17.7*X 0.65
2013 Dy = 51.5 − 33.1*X 0.85 Wy = 8.32 + 12.4*X 0.58
2014 Dy = 48.8 − 23.1*X 0.65 Wy = 7.07 + 12.7*X 0.57
2015 Dy = 49.7 − 30.0*X 0.78 Wy = 7.17 + 16.5*X 0.61
2016 Dy = 49.8 − 30.3*X 0.80 Wy = 6.71 + 14.5*X 0.71
2017 Dy = 45.4 − 21.7*X 0.61 Wy = 6.75 + 12.9*X 0.64
2018 Dy = 52.6 − 28.5*X 0.62 Wy = 8.08 + 7.84*X 0.67
2019 Dy = 50.9 − 35.6*X 0.73 Wy = 8.23 + 6.56*X 0.62

STR

2000 Dy = 43.9 − 6.73*X 0.33 Wy = 4.06 + 17.0*X 0.72
2001 Dy = 42.0 − 8.80*X 0.67 Wy = 2.24 + 20.0*X 0.78
2002 Dy = 43.9 − 6.73*X 0.33 Wy = 4.06 + 17.0*X 0.72
2003 Dy = 39.8 + 3.17*X 0.07 Wy = 4.70 + 14.9*X 0.66
2004 Dy = 42.6 − 4.75*X 0.46 Wy = 5.31 + 13.6*X 0.70
2005 Dy = 44.1 − 13.5*X 0.87 Wy = 5.95 + 12.4*X 0.86
2006 Dy = 42.8 − 8.80*X 0.57 Wy = 6.79 + 14.2*X 0.78
2007 Dy = 42.7 − 2.36*X 0.03 Wy = 5.65 + 16.3*X 0.79
2008 Dy = 37.3 + 6.57*X 0.54 Wy = 2.18 + 16.1*X 0.44
2009 Dy = 43.8 − 8.60*X 0.56 Wy = 3.96 + 18.0*X 0.87
2010 Dy = 42.4 − 3.37*X 0.22 Wy = 0.63 + 21.1*X 0.74
2011 Dy = 393 − 4.56*X 0.34 Wy = 5.75 + 13.8*X 0.66
2012 Dy = 42.6 − 9.66*X 0.71 Wy − 5.89 + 8.53*X 0.27
2013 Dy = 44.8 − 12.2*X 0.78 Wy = 7.45 + 15.2*X 0.82
2014 Dy = 44.1 − 9.94*X 0.42 Wy = 0.85 + 19.4*X 0.81
2015 Dy = 43.7 − 7.17*X 0.70 Wy − 6.60 + 14.8*X 0.75
2016 Dy = 47.8 − 11.3*X 0.69 Wy = 3.75 + 19.6*X 0.79
2017 Dy = 45.3 − 11.4*X 0.69 Wy = 5.24 + 14.2*X 0.75
2018 Dy = 45.6 − 9.84*X 0.38 Wy = 4.46 + 15.0*X 0.76
2019 Dy = 42.6 − 9.37*X 0.65 Wy = 4.54 + 14.0*X 0.65
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Table A3. Cont.

Geomorphological
Division Year Dry-Edge Equation R2 Wet-Edge Equation R2

HMLY

2000 Dy = 53.1 − 20.3*X 0.82 Wy = −12.0 + 17.6*X 0.73
2001 Dy = 51.9 − 21.6*X 0.88 Wy = −7.3 + 16.5*X 0.82
2002 Dy = 53.5 − 22.4*X 0.92 Wy−−8.9 + 18.2*X 0.76
2003 Dy = 51.7 − 20.2*X 0.93 Wy = −12.0 + 16.7*X 0.73
2004 Dy = 52.0 − 19.2*X 0.87 Wy = −9.0 + 13.9*X 0.70
2005 Dy = 52.9 − 21.5*X 0.87 Wy = −10.0 + 14.5*X 0.75
2006 Dy = 52.0 − 20.9*X 0.92 Wy = −3.6 + 9.67*X 0.46
2007 Dy = 56.2 − 22.6*X 0.68 Wy = −9.1 + 18.3*X 0.73
2008 Dy = 48.9 − 16.9*X 0.92 Wy = −11.0 + 18.3*X 0.76
2009 Dy = 55.2 − 21.2*X 0.71 Wy = −9.2 + 19.0*X 0.81
2010 Dy = 56.1 − 23.8*X 0.81 Wy = −9.0 + 14.2*X 0.71
2011 Dy = 50.6 − 19.6*X 0.89 Wy = −8.3 + 11.9*X 0.69
2012 Dy = 54.3 − 22.1*X 0.89 Wy = −13.0 + 17.6*X 0.73
2013 Dy = 52.7 − 20.4*X 0.95 Wy = −4.7 + 11.6*X 0.48
2014 Dy = 54.4 − 21.1*X 0.77 Wy = −12.0 + 19.6*X 0.83
2015 Dy = 52.5 − 19.9*X 0.88 Wy = −8.8 + 14.3*X 0.66
2016 Dy = 51.6 − 18.6*X 0.87 Wy = −3.1 + 10.0*X 0.41
2017 Dy = 51.4 − 19.0*X 0.87 Wy = −5.7 + 14.3*X 0.74
2018 Dy = 55.4 − 22.9*X 0.87 Wy = −8.7 + 15.7*X 0.83
2019 Dy = 54.5 − 21.9*X 0.78 Wy = −11. + 18.3*X 0.84

HDM

2000 Dy = 47.6 − 14.8*X 0.43 Wy = −1.1 + 6.43*X 0.57
2001 Dy = 48.3 − 16.9*X 0.60 Wy = 2.75 + 8.98*X 0.27
2002 Dy = 48.3 − 15.9*X 0.50 Wy = 4.75 + 6.75*X 0.43
2003 Dy = 51.4 − 17.0*X 0.42 Wy = −0.1 + 10.4*X 0.50
2004 Dy − 45.1 − 12.1*X 0.38 Wy = 1.06 + 4.81*X 0.23
2005 Dy = 51.0 − 18.1*X 0.43 Wy = 0.87 + 4.39*X 0.24
2006 Dy = 50.3 − 18.2*X 0.59 Wy = 7.95 + 2.48*X 0.09
2007 Dy = 47.8 − 14.3*X 0.48 Wy = −0.7 + 11.1*X 0.42
2008 Dy = 48.2 − 16.4*X 0.50 Wy = −3.1 + 13.5*X 0.63
2009 Dy = 49.3 − 14.4*X 0.38 Wy = 5.60 + 2.31*X 0.07
2010 Dy = 47.6 − 14.3*X 0.37 Wy = 2.64 + 6.33*X 0.46
2011 Dy = 47.9 − 16.4*X 0.65 Wy = 4.88 + 1.54*X 0.02
2012 Dy = 49.6 − 13.1*X 0.26 Wy = 2.93 + 3.44*X 0.12
2013 Dy = 49.3 − 14.5*X 0.33 Wy = 7.73 + 5.00*X 0.20
2014 Dy = 49.1 − 12.0*X 0.24 Wy = 2.89 + 4.76*X 0.17
2015 Dy = 53.2 − 17.9*X 0.40 Wy = 6.14 + 1.77*X 0.02
2016 Dy = 46.8 − 12.8*X 0.30 Wy = 3.83 + 3.42*X 0.15
2017 Dy = 48.6 − 14.3*X 0.37 Wy = 3.43 + 8.85*X 0.56
2018 Dy = 47.7 − 12.6*X 0.30 Wy = −0.0 + 7.89*X 0.54
2019 Dy = 48.9 − 12.0*X 0.23 Wy = 3.13 + 6.85*X 0.30
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