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Abstract: (1) Background: COVID-19 is still affecting people’s daily lives. In the past two years
of epidemic control, a traffic control policy has been an important way to block the spread of the
epidemic. (2) Objectives: To delve into the blocking effects of different traffic control policies on
COVID-19 transmission. (3) Methods: Based on the classical SIR model, this paper designs and
improves the coefficient of the infectious rate, and it builds a quantitative SEIR model that considers
the infectivity of the exposed for traffic control policies. Taking Changsha, a typical city of epidemic
prevention and control, as a study case, this paper simulates the epidemic trends under three traffic
control policies adopted in Changsha: home quarantine, road traffic control, and public transport
suspension. Meanwhile, to explore the time sensitivity of all traffic control policies, this paper sets
four distinct scenarios where the traffic control policies were implemented at the first medical case,
delayed by 3, 5, and 7 days, respectively. (4) Results: The implementation of the traffic control
policies has decreased the peak value of the population of the infective in Changsha by 66.03%, and it
has delayed the peak period by 58 days; with the home-quarantine policy, the road traffic control
policy, and the public transport suspension policy decreasing the peak value of the population of
the infective by 56.81%, 39.72%, and 45.31% and delaying the peak period by 31, 18, and 21 days,
respectively; in the four scenarios where the traffic control policies had been implemented at the first
medical case, delayed by 3, 5, and 7 days, respectively, the variations of both the peak value and the
peak period timespan of confirmed cases under the home-quarantine policy would have been greater
than under the road traffic control and the public transport suspension policies. (5) Conclusions: The
implementation of traffic control policies is significantly effective in blocking the epidemic across the
city of Changsha. The home-quarantine policy has the highest time sensitivity: the earlier this policy
is implemented, the more significant its blocking effect on the spread of the epidemic.

Keywords: COVID-19; urban epidemic control; traffic control policy; infectious disease model

1. Introduction

Over the last three years, the whole world has been involved in the fight against
COVID-19 [1]. Having mutated from the initial culprit of the original symptoms to the
asymptomatic Delta variant in 2021 to the current Omicron variant with extremely strong
infectivity [2,3], COVID-19 has brought about unprecedented physical injuries and mental
traumas to human beings [4,5]. Despite huge progress in medical science and epidemic
prevention and control [6,7], the daily number of global cases goes up and up by millions
in a day. As of April 2022, the total number of confirmed cases had reached 505 million,
with a total death toll of 6.21 million people worldwide [8].
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Traffic control has had a key role in blocking the spread of the epidemic [9,10] by the
main principle of diminishing population aggregation and mobility [11,12]. To block the
development of the epidemic, most countries have adopted traffic control policies to varying
degrees. The kind of traffic control policies adopted, the effectiveness of controls, and the
date of implementation have all varied as a result of the epidemic’s characteristics and
differences [13–15]. Therefore, studying the effectiveness and the practicality of different
traffic control policies in blocking citywide epidemic spread is vitally significant to citywide
epidemic prevention and control.

In the existing research, the methods for evaluation of the effectiveness of COVID-19
prevention and control policies are generally divided into two classes: The first class
are classical epidemic models typified by SI and SIR [16,17], on the basis of which many
scholars have put forward a series of variant models such as SIRQ, SEAHIR, and SEIQR
models according to the characteristics of COVID-19. Scholars have studied the separate
effectiveness of such prevention and control measures as public health governance, social
distancing, and vaccination using these models [18–20]. This class of models can clearly
and effectively describe the epidemic development of COVID-19 in different situations, and
they can predict the peak value and the peak period of the epidemic for decision-makers.
However, they are ill-designed in the parameter of the infectious rate and ill-considered
in factors of how traffic control policies influence epidemic development. The other class
of methods are predominated by generalized linear regression analyses. These models
usually set policy factors and evaluate the effectiveness of the control policy according to
the effect values of such policy factors through regressive calculation of panel data [21–23].
Unfortunately, this class of methods are neither able to simulate the big picture of epidemic
development nor able to predict the peak period and the peak value of the epidemic. The
relevant work they have done is detailed in Table 1. From previous studies, it is concluded
that researchers set up more populations to study the policy effect or the evolution of the
epidemic situation in the traditional room-to-room model of infectious diseases, but they
lack the research to discuss the policy effect from the angle of infection rate design. The
purpose of this paper is to propose a model for evaluating the effects of policies designed
from infection rates.

Table 1. Related work on policy evaluation models.

Related Work Modeling Method Description This Paper

[18]
Equation-based
model SEIR

• Consider “Quarantine” (Q), a SEIQR
model was developed.

• Assessed the importance of social
distancing and lockdown in changing
human behavior.

• Changes in infection rates under
different policies are not considered.

• Infection rates were designed to
consider the timeliness, scope of
impact, and administrative level of
policy enactment.

• Calibration of policy effect coefficients
using population migration data
based on the DID model.

• The effectiveness and the differences
of the three traffic control policies in
Changsha are discussed.

• The development process of the
epidemic was simulated and the peak
and peak periods were obtained for
different policies.

[19] Equation-based
model SEIR

• Consider “Asymptomatic” (A),
“Isolated” (I), and “Hospitalized” (H),
a SEAHIR model was developed.

• Assessed the impact of
non-pharmaceutical measures.

• Not designed considering infection
rates under different
non-pharmaceutical measures.

[20] Equation-based
model SIR

• Consider “Dead” (D), a SIRD model
was developed.

• Quantifying the importance of social
distance for prevention and control.

• No consideration of the infectious
properties of the exposed population.
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Table 1. Cont.

Related Work Modeling Method Description This Paper

[21]

Equation-based
model DID
(Difference-in-
Difference
model)

• Considering policy effects and
population mobility coefficients on
the base DID.

• Studied the impact of transportation
policy on the flow of passengers on
the ground drop.

• Only the final results are shown, not
the development of
COVID-19 outbreak.

[22] Equation-based
model DID

• The impact of different stages of
transportation policies on population
mobility in Changsha was studied.

• No in-depth study of the interdiction
effect of traffic control policies on
the outbreak.

[23]

An equation-based
econometric
approach to
empirically

• Regression modeling of policy effects
for different epidemic phases.

• Assessing the role of policies to limit
population mobility and
non-pharmaceutical interventions

• No prediction of outbreak
development and peak.

The research method diagram of this paper is shown in Figure 1. Considering the
infectivity of the exposed for traffic control policies, this paper develops a quantitative
SEIR model out of the classical SIR model by giving mere consideration to the infectivity of
the exposed in pertinence to the characteristics of the population involved with COVID-19
and by designing and improving the coefficient of the infectious rate and introducing the
parameter of traffic control policy effect. Taking Changsha as the study case, based on the
big data from Baidu Qianxi, this paper utilizes the empirical model DID (Difference-in-
Difference model) to calibrate the policy effect parameter of this city. Finally, it evaluates
the effectiveness and the practicality of the three traffic control policies implemented in
Changsha: home quarantine, road traffic control, and public transport suspension. The
study can provide technical reference for urban traffic control policymaking in the face of
similar public health emergencies.

Figure 1. The research method diagram.
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This paper is structured as follows: Section 2 introduces the relevant materials needed
for the study; Section 3 introduces the COVID-19 spreading models; Section 4 presents the
results; and Section 5 offers a discussion, and it concludes the paper.

2. Materials
2.1. Regional Overview and Traffic Control Policies

Changsha, the capital of Hunan Province, is only 279 km from Wuhan, which is the
epicenter of the 2020 epidemic. Changsha was under massive pressure to prevent and to
control the epidemic. Fortunately, Changsha never suffered from any massive outbreak of
the epidemic in 2020, and it has achieved a good effect of prevention and control. Therefore,
the study on the traffic control policies in Changsha can be enlightening and of exemplary
significance to some extent.

On 24 January 2020, Changsha started its first-level public health emergency response.
Following that, the Changsha municipality headquarters for COVID-19 prevention and
control raised the alarm to citizens urging them to avoid unnecessary outings and keep
quarantined at home. On 27 January, the Changsha Transportation Bureau set epidemic pre-
vention and control points at all entrances to Changsha for health code checks, supervision
over disinfection and protection, and traffic control of expelling intruders from high- and
medium-risk areas and only letting in and not letting out. On 28 January, some bus/coach
routes went out of service in the high- and medium-risk areas of Changsha, where the
metros were subjected to a skip-station operation. See Table 2 for the key time nodes and
implementation ranges.

Table 2. Contents of all key measures.

Order Date Traffic Control Policy Range of Control

1 25 January 2020 home quarantine downtown Changsha
2 27 January 2020 road traffic control high-risk and medium-risk areas
3 28 January 2020 public transport suspension downtown Changsha

2.2. Dataset

The data of COVID-19 cases used in this study originated from the Changsha Health
Commission [24], and they were collected during the period of 21 January to 28 February
2020, as shown in Figure 2. This study also used the big data from the Baidu Qianxi website
(http://qianxi.baidu.com/, accessed on 12 February 2021), which was collected during the
period of 1 January to 15 March 2020, as shown in Figure 3:

Figure 2. Cumulative confirmed cases in Changsha.

http://qianxi.baidu.com/
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Figure 3. Intracity activity intensities within Changsha in the same period of 2020 versus 2019.

3. Methods

SIR is a classical epidemic dynamic model which can effectively simulate the gener-
ation, development, propagation, and elimination of epidemics. The SIR model usually
sets the study area as an enclosed compartment, and it divides the population therein into
three types: the susceptible (S) subpopulation, the infective (I) subpopulation, and the
removed (R) subpopulation. Parameters such as the infectious rate and the cure rate are set
in this model, and they are subject to state transition from one subpopulation to another
according to certain rules [16]. Considering the difference of COVID-19 from traditional
epidemics that it has a certain latent period, improvements were made on the base of the
SIR model by including the exposed (E) subpopulation for a more reasonable simulation of
COVID-19 development.

3.1. Construction of the SEIR Model Considering the Infectivity of the Exposed

This model is based upon the following definitions and hypotheses:

• that the susceptible (S) subpopulation is a healthy population that has never been
infected with the virus and that is non-immune;

• that the exposed (E) subpopulation is a population that carries the virus and that has
an infective capacity during the latent period;

• that all of the infective (I) subpopulation are cured or quarantined immediately after
being confirmed and lose infectivity;

• that the recovered (R) subpopulation would not be reinfected after being cured;
• that for the total population size N, mere consideration is given to the effective size of

the active population rather than to the births and the deaths within the population
and to immigration into and emigration from the population, with all the time;

• that in the early stage of the epidemic, the cumulative confirmed cases are new cases in
a single day, whereas the cumulative cured cases are new cured cases in a single day.

A system of differential equations is set up as shown in Equations (1)–(5), and the
model definitions is shown in Figure 4:

dS(t)
dt

= − rβ0E(t)S(t)
N

(1)
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dE(t)
dt

=
β0E(t)S(t)

N
− αE(t) (2)

dI(t)
dt

= αE(t)− γI(t) (3)

dR(t)
dt

= γI(t) (4)

N(t) = S(t) + E(t) + I(t) + R(t) (5)

Figure 4. Model Definitions. A is the population that usually lives in the urban area of Changsha, and
the proportion of the active population in the urban area is θ. This population constitutes S. Due to
COVID-19 having an exposed period, S has a β probability of being converted to E after contact with
population E. In E, there is a α probability of being converted to I by nucleic acid detection. Traffic
control policies can cut off the contact between S and E, which in turn reduces the infection rate of E.

All parameters are explained in Table 3.

Table 3. Explanation of connotations of all parameters.

Parameter Connotation Parameter Connotation

S(t) size of subpopulation S at time t r number of the exposed to the susceptible per day
E(t) size of subpopulation E at time t β0 initial infection probability after exposure to the exposed

I(t) size of subpopulation I at time t α
probability of the exposed subpopulation transmuting

into the infective
R(t) size of subpopulation R at time t γ cure rate

A size of the resident population in
downtown Changsha θ proportion of citywide effective active population

3.2. Traffic Control Policy Evaluation Model Based on the SEIR Model Considering the Infectivity
of the Exposed

Traffic control policies reduce the infectious rate by decreasing the average number
of people to whom the exposed are exposed, thereby reaching the goal of containing
epidemic spread. After the outbreak of COVID-19, traffic control policies would have
an exponential-scale effect on the variation of population mobility intensity [25,26]. This
paper assumes that traffic control policymaking can usually have an exponential-scale
effect on the transmission of COVID-19 cases. The parameter of the infectious rate is set as
Equation (6):

β(x) = β0 × eKx(t,g,s) (6)

where x(t, g, s) indicates the prevention and the control effort of the traffic policy in question
is a function of the promulgation time (t), administrative grade of implementation (g), and
control sphere (s); K is a policy effect parameter; β0 is the initial infectious rate. The
quantitative model for traffic control policies is shown as Equations (7)–(11):

S(t + 1) = S(t)− r
β0ekx(t,g,s)E(t)S(t)

N
(7)

E(t + 1) = E(t) + r
β0ekx(t,g,s)E(t)S(t)

N
− αE(t) (8)

I(t + 1) = I(t) + αE(t)− γI(t) (9)
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R(t + 1) = R(t) + γI(t) (10)

N(t) = S(t) + E(t) + I(t) + R(t) (11)

See Table 3 for the connotations of parameters.

3.3. Parameter Calibration Models
3.3.1. Calibration Model on Initial Infectious Rate β0 and Cure Rate γ

This paper selects the least square method (LSM) to calibrate the initial infectious rate
β0 and the cure rate γ, taking the parameters with the least sum of squared errors between
the actual values of LSM and the predicted values as the optimal solutions. Transforming
Equation (7) gives:

S(t + 1)− S(t) = −r
β0ekx(t,g,s)E(t)S(t)

N
(12)

Let S(t + 1)− S(t) = Y, −r ekx(t,g,s)E(t)S(t)
N = X, and assume ϕ =

m
∑

t=1
(Yt − y)

2
. When ϕ

takes the minimum, take the derivative of β0 to give:

dϕ

dβ0
= 2

m

∑
t=1

(β0Xt
2 − YtXt) (13)

Let dϕ
dβ0

= 0. Solve for the infectious rate β0 as expressed in Equation (14):

β0 =

N
m
∑

t=1
[S(t + 1)− S(t)]

−rekx(t,g,s)
m
∑

t=1
E(t)S(t)

(14)

Likewise, solve for the cure rate γ as expressed in Equation (15):

γ =

m
∑

t=1
[R(t + 1)− R(t)]

m
∑

t=1
I(t)

(15)

3.3.2. Calibration Model on Policy Effect Parameter K

The policy effect parameter K reflects the effect of implementing traffic control policies.
This paper selects the empirical DID Model, which is mostly used in econometrics for
public policy or program implementation effect, to calibrate the policy effect parameter.
The design of this model is formulated by Equation (16):

ln(Si,t) = ω0 + ω1 · Ri,t + K · Ti,t · Ri,t + ω3 · Ti,t + εi,t (16)

where ln(Si,t) is the log value of intracity population mobility intensity in city i within time
period t; Ti,t is a dummy variable of groups, with the treatment group being 1 and the
control group being 0; Ri,t is the traffic control stage when Changsha started epidemic pre-
vention and control (while Hunan Province started the first-level public health emergency
response) on 24 January 2020, taking 1 during 24 January~5 February (on 6 February Hunan
started progressive resumption of work and production and removed traffic prevention and
control) or 0 during other time periods; ω0 is a constant; ω1 is the policy effect coefficient;
ω3 is the treatment group coefficient; K is the coefficient of the interaction term Ti,t · Ri,t,
the one that calls for particular attention and that is solved by a regression model; and εi,t
is a disturbing term.
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3.4. Model Parameter Calibration

To ensure the accuracy and the reasonability of the model result calculation, the
parameters of the established model are calibrated in combination with the actual epidemic
data of Changsha and available outcomes. The effective number of contacts r directly affects
β0. According to the literature [27], we set 10 scenarios such as r = (5,15) for β0 estimation.
The regression analysis was then performed on the estimated and the actual values of these
10 cases, and the results were significantly correlated, as shown in Table 4, indicating the
robustness of the estimation method. Comparing the β0 values under different r values, the
Pearson correlation coefficient of infection rate at r = 15 was the closest to 1 and the best fit.
To test the robustness and the sensitivity of the cure rate γ estimation results, we selected
Changsha to exclude all other prefecture-level case data in Hunan Province to re-estimate
the cure rate, and we found that there was still a significant correlation. They are shown in
Figure 5. After determining β0, the values of β1, β2, and β3 were calculated by considering
the administrative level of different policies as well as the time of promulgation and the
scope of influence, respectively, as shown in Table 5 for the specific values. Meanwhile, the
relative errors between some of the actual cases and theoretical cases were analyzed, as
shown in Table 6. The fitting results of all parts are shown in Figure 6. Overall, this model
can simulate the epidemic in Changsha.

Table 4. The calculated β0 values for different values of r.

r β0 R2 adj-R2 p Sig.

5 0.049 0.907 0.899 0.808 0.000
6 0.048 0.927 0.918 0.820 0.000
7 0.046 0.937 0.929 0.826 0.000
8 0.045 0.945 0.937 0.831 0.000
9 0.043 0.954 0.947 0.836 0.000
10 0.041 0.960 0.952 0.840 0.000
11 0.040 0.968 0.961 0.844 0.000
12 0.039 0.974 0.967 0.848 0.000
13 0.037 0.980 0.973 0.852 0.000
14 0.036 0.985 0.975 0.855 0.000
15 0.035 0.991 0.981 0.858 0.000

Figure 5. Regressive analysis of actual cases and theoretical cases.
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Table 5. Values of all parameters.

Parameter Name Value Source Notes

r 5~15 individuals Literature [27]
The number of people with effective exposure

varies by date and adjustment of prevention and
control policies.

α 0.048~0.5 Literatures [28,29] Taken as the reciprocal of the latent period,
which lasts 2~21 days

θ 2% Literature [30] None
β0 0.035 calculated by Formula (14) None
γ 0.001 calculated by Formula (15) None

K −0.597 *** calculated by Formula (16) The numerical estimates have
significant correlation

A 8,000,000 Changsha Bureau of Statistics [31] resident population 10.048 million, including
8 million in urban area, throughout 2021

β1 0.011 calculated by Formula (6) infectious rate under the home-quarantine policy
β2 0.019 calculated by Formula (6) infectious rate under the road traffic control

β3 0.017 calculated by Formula (6) infectious rate under the public transport
suspension policy

Descriptions: *** means p < 0.001.

Table 6. Relative error analysis of some data.

Date I-Actual I-Estimation Relative Error R-Actual R-Estimation Relative Error

25 February 2020 242 240 −0.63% 159 135 −15.29%
26 February 2020 242 241 −0.55% 164 142 −13.55%
27 February 2020 242 241 −0.48% 172 149 −13.45%
28 February 2020 242 241 −0.40% 174 156 −10.36%
29 February 2020 242 241 −0.32% 178 163 −8.37%

1 March 2020 242 241 −0.24% 185 170 −7.97%
2 March 2020 242 242 −0.16% 186 177 −4.62%

Figure 6. Fitting results of actual cases and theoretical cases.
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4. Results
4.1. Epidemic Development Trend in the Absence of Traffic Control Policies

Had Changsha not taken traffic control measures at the initial stage of the outbreak of
the epidemic, assuming that the virus had not mutated, the medical technology had been
maintained at the same level as in the current stage, and allowing the epidemic to develop
naturally, the epidemic trend in Changsha would have been as shown in Figure 7. Without
having adopted the traffic control policies, both the peak value of the exposed (E-peak)
and the peak value of the infective (I-peak) would have appeared on the 40th day of the
epidemic, the E-peak would be 22,051 and the I-peak would be 15,606; compared with
the real epidemic situation, the I-peak without having adopted the traffic control policies
would have been 64 times the actual population of the infective, whereas the E-peak would
have been 128 times the actual population of the exposed.

Figure 7. Comparison between the epidemic development trend without a traffic control policy and
the actual epidemic development trend.

4.2. Epidemic Development Trend in the Presence of Traffic Control Policies

With the development of the epidemic, Changsha promulgated the three traffic control
policies, home quarantine, road traffic control, and public transport suspension, on January
25th, 27th, and 28th, respectively. Assuming that the three traffic control policies were
all implemented after Changsha started the first-level public health emergency response,
compared with if none of the traffic control policies had been adopted, the I-peak dropped
by 66.03%, the E-peak dropped by 65.70%, and the peak period of the infective population
(I-population) was delayed by 58 days. Ignoring the superposed net effect of all measures,
a simulation was performed for each of the traffic control measures. Compared with if
none of the traffic control policies had been adopted, the home-quarantine policy decreased
the I-peak and the E-peak by 56.81% and 56.76%, respectively, and it delayed the peak
periods of the I-population and the exposed population (E-population) by 30 and 31 days,
respectively; the implementation of the road traffic control policy decreased the I-peak
and the E-peak by 39.72% and 39.51%, respectively, and it delayed both the peak periods
of the I-population and the E-population by 18 days; the promulgation of the public
transport suspension policy decreased the I-peak and the E-peak by 45.31% and 45.06%,
respectively, and it delayed the peak periods of the I-population and the E-population by 22
and 23 days, respectively. Overall, all three policies can decrease the I-population and the
E-population to varying degrees; the effect is optimal when all three traffic control policies
are implemented simultaneously; the home-quarantine policy has the optimal effect among
the three. The details are shown in Figure 8:
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Figure 8. Epidemic development trends under all traffic control measures.

4.3. Blocking Effects of Different Traffic Control Policies on Epidemic Spread

To analyze the blocking effects of the implementation time of different traffic control
policies on the epidemic spread across Changsha, the following four scenarios were set
for each of the three traffic control policies: administering traffic control on the first day
of the occurrence of medical cases, denoted as T = F, and delaying the time of actual
implementation of traffic control policies by 3, 5, and 7 days, denoted as T = −3, T = −5,
and T = −7, respectively, relative to the time of actual implementation of traffic control
policies denoted as T = 0. The epidemic trends under all traffic control policies implemented
at distinct points-in-time are shown in Figures 9–11:

Figure 9. Epidemic trend under the home-quarantine policy promulgated at distinct time nodes.
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Figure 10. Epidemic trend under the road traffic control policy promulgated at distinct time nodes.

Figure 11. Epidemic trend under the public transport suspension policy promulgated at distinct
time nodes.

If the home-quarantine policy had been implemented at T = F, compared with the
condition of T = 0 of this policy, the peak period would have been delayed by 18 days,
while the E-peak and the I-peak would have decreased by 14.04% and 14.20%, respectively;
compared with the condition of the no traffic control policy, the peak period was delayed
by 54 days, while the E-peak and the I-peak decreased by 62.63% and 62.94%, respectively;
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if T = −3, T = −5, and T = −7, compared with the condition of T = 0 of this policy, the
epidemic prevention and control would have become bad, and the E-peak and the I-peak
would have increased by more than 17%. The later the policy was implemented, the larger
the peak and the earlier the peak period would have arrived.

If the road traffic control policy and public transport suspension policy had been
promulgated at T = F, compared with T = 0 of these policies, the peak period would have
been delayed by 3 days and 5 days, respectively, while the E-peak would have decreased by
0.14% and 0.04%, respectively, and the I-peak would have decreased by 0.11% and 0.05%,
respectively. The early implementation of these two measures would not have improved
outbreak prevention and control. If T = −3, T = −5, T = −7, compared with the condition
of T = 0 of these policies, the E-peak and the I-peak would have increased by more than
16%, as shown in Table 7 and in Figures 12 and 13.

Table 7. Comparative analysis between epidemic trends under different policies.

Policy Scenarios E-Peak I-Peak Peak-Day
Comparison with T = 0 Comparison with No Policy

Peak Delay Change of E Change of I Peak Delay Change of E Change of I

P1 1

T = F 8227 5783 94 −16 −14.04% −14.20% −54 −62.63% −62.94%
T = 0 9571 6740 78 None None None −38 −56.52% −56.81%

T = −3 11,240 7929 66 12 17.44% 17.64% −26 −48.94% −49.19%
T = −5 11,757 8293 62 16 22.84% 23.04% −22 −46.60% −46.86%
T = −7 12,296 8678 58 20 28.47% 28.75% −18 −44.15% −44.39%

P2 1

T = F 13,298 9398 61 −3 −0.14% −0.11% −21 −36.90% −39.78%
T = 0 13,317 9408 58 None None None −18 39.51% −39.72%

T = −3 15,488 10,952 51 7 16.30% 16.41% −11 −29.65% −29.82%
T = −5 16,218 11,476 48 10 21.78% 21.98% −8 −26.33% −26.46%
T = −7 16,873 11,946 46 12 26.70% 26.98% −6 −23.36% −23.45%

P3 1

T = F 12,090 8531 67 −5 −0.04% −0.05% −27 −45.08% −45.35%
T = 0 12,095 8535 62 None None None −22 −45.06% −45.30%

T = −3 14,096 9968 53 9 16.54% 16.79% −13 −35.97% −36.13%
T = −5 14,758 10,431 51 11 22.02% 22.21% −11 −32.96% −33.16%
T = −7 15,385 10,878 49 13 27.20% 27.45% −9 −30.12% −30.30%

1 The home-quarantine policy is denoted as P1, the road traffic control policy as P2, and the public transport
suspension policy as P3.

Figure 12. Comparison between T = F, −3, −5, −7, and T = 0 of different policies.
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Figure 13. Comparison between T = F, −3, −5, −7 of different policies and no traffic control policy.

5. Discussions and Conclusions
5.1. Discussions

Enlightened by the classical SIR model and the research by scholars on the variant
epidemic models pertinent to COVID-19, we have proposed a quantitative SEIR model
considering the infectivity of the exposed for traffic control policies, designed the parameter
of the infectious rate, included the policy effect parameter, and utilized the population
migration data closely related to COVID-19 for calibration [32]. This model can provide a
tool for preliminary decision-making effect evaluation for policymakers to make the most
reasonable control policy. Plus, we believe the model will be useful for the effectiveness
evaluation of policies in other regions after modifying the parameters. This modeling ideal
can also provide a reference for the effectiveness evaluation of policies in other fields.

According to the evaluation results of the traffic control policies in Changsha, these
policies can not only reduce the infective population but also delay the peak period effec-
tively. This result is in general agreement with the conclusions obtained by Kraemer [33]
and Bisanzio [34], which means effective physical isolation measures can mitigate the
pressure on the local medical system, the logistics service, and on public governance. There
exists a certain difference in the effects of the three preventive policies: home quarantine,
road traffic control, and public transport suspension—with the home-quarantine policy
having a superior effect to the other two and validating a related study done by Liu [35].
The reason is that the home-quarantine policy was implemented at an earlier time than
the road traffic control and the public transport suspension policies and that the admin-
istrative grade and control sphere of the first policy’s promulgator was superior to the
counterparts of the second and the third policies. On the other hand, this second fact
also reminds decision-makers that in order to raise the influence of a policy to be imple-
mented, a highly effective way is to implement it in advance and promote its promulgator’s
administrative grade.

However, not all earlier implemented policies are more effective. From the results
in Table 5 and Figure 11, adopting the road traffic control policy and the public transport
suspension policy at the first case in Changsha would have resulted in a decrease of
0.14% and 0.04%, respectively, a limited improvement compared with T = 0. COVID-19 is
prevented and controlled mainly by cutting off population mobility and aggregation [11],
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while road traffic control and public transport suspension only cut off the pathway of
population mobility without preventing local population aggregation in substance [36].
However, home quarantine divides a community population into individual families
and is a key approach to reduce the outward spread of cases and the chances of cross
infections [37]. Therefore, home quarantine is most effective if implemented at the first case,
which is highly consistent with the findings of Lai [38]. The variations of the peak value and
the peak period timespan of confirmed cases under the home-quarantine policy would have
been greater than those under the road traffic control and the public transport suspension
policies if all policies had been delayed by 3, 5, and 7 days, respectively, showing that
the home-quarantine policy has the highest sensitivity to implementation time. It is also
important to note that the blocking measures of public transport suspension and home
quarantine are closer in effect, possibly because both policies are controlled by the city
government for the whole of Changsha. Both policies result in the loss of the ability of
city residents to move quickly over short distances and a reduction in gathering time.
Road traffic control differs from these two in that road traffic control takes a hierarchical
approach. High- and medium-risk areas in Changsha are completely disrupted, while
private cars in low-risk areas can pass normally with health code and trip code checks
as well as body temperature tests. Therefore, there is still a small population movement,
which may increase the risk of epidemic transmission and result in prevention and control
that will be less effective than public transport suspension. Decision-makers can make a
judgment on the epidemic in a city and select the most appropriate point in time to make
the most appropriate traffic control policy to block the spread of COVID-19.

There are still many limitations to this study. Firstly, in the mathematical modeling,
the group of asymptomatic infected persons was not considered in order to make the model
more computationally convenient, which may lead to overestimation of the infection rate.
Second, the application of the model is only applicable to concentrated outbreaks, not to
localized episodic outbreaks, and further model improvement is needed for the evaluation
of later regular traffic prevention and control policies. Finally, the setting of the scenario
for the numerical simulation is too simple. Further precise settings are possible, e.g., in
1 daytime unit.

5.2. Conclusions

Based on the classical SIR model, this paper has reviewed the infectivity of the exposed,
designed and improved the infectious rate by introducing the parameter of the traffic
control policy effect, and built a quantitative SEIR model considering the infectivity of the
exposed for traffic control policies. Taking Changsha as the study case and based on the big
data from Baidu Qianxi, this paper has utilized the empirical model DID to calibrate the
policy effect parameter of this city. Finally, the three traffic control policies implemented in
Changsha—home quarantine, road traffic control, and public transport suspension—have
been evaluated. The main conclusions drawn are as follows:

1. Based on the classical SIR model, a SEIR model considering the infectivity of the
exposed for traffic control policy evaluation has been built. Compared with other
traditional SIR models, this model has allowed for the infectivity signature of the
exposed and designed the parameter of the infectious rate. This model can evaluate
the blocking effects of traffic control policies on the spread of cases in a way.

2. According to the calculation results from the model, compared with the natural
development state of the epidemic in Changsha, adopting traffic control policies has
decreased the peak values of the infective and the exposed by 66.03% and 65.70% and
delayed the peak period by 58 days. Among them, the home-quarantine policy is
more significantly effective in decreasing the infective and the exposed populations in
Changsha, and it can delay the peak period of the epidemic longer, compared to the
road traffic control and the public transport suspension policies.

3. According to the results in different scenarios, the home-quarantine policy has higher
time sensitivity than the road traffic control and the public transport suspension
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policies: the earlier this traffic control policy is implemented, the more significant its
blocking effect on the spread of the epidemic. If simplex traffic control were the only
need in an early stage, the home-quarantine policy would be the optimal choice.

In future work, we can consider modeling localized episodic COVID-19 outbreaks,
which can include asymptomatic infected individuals as well as infected individuals with
different symptom levels as the study population. Additionally, because of the extremely
rapid mutation of COVID-19 strains, the characteristics of different strains can be modeled.
What can be further studied is that we only discussed the effect of traffic control policies, it
is also very meaningful to study other government interventions. Of course, in the future,
a larger sample size of data can be obtained and deep learning methods can be used to
improve the credibility of the model.
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