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Abstract: Coal mining leads to stress loading–unloading variation in front of the working face, which
influences the occurrence of disasters. In order to study the influence mechanism of stress loading–
unloading to the coal failure, a series of experiments of gas-bearing coal deformation and failure
under triaxial stress were conducted and acoustic emission (AE) was monitored. In this study, the
effect of gas pressure on the mechanical behavior of gas-bearing coal in conventional triaxial stress
(CTS) experiments and fixed axial stress and unloading confining stress (FASUCS) experiments was
analyzed, and the damage evolution rules of gas-bearing coal in the CTS experiments and FASUCS
experiments were determined using AE. The results show that with the increasing of gas pressure, the
peak strength and peak strain of gas-bearing coal in the CTS experiments and FASUCS experiments
gradually decrease, and the peak of AE ring-down counts lags behind the peak strength. Compared
with the CTS experiments, the strength of gas-bearing coal in the FASUCS experiments is lower and
the precursor information appears later. The trends in calculated stress and damage coefficient D
are consistent with the stress path during unloading, and both begin to rise sharply after the sample
enters the plastic stage. Therefore, AE ring-down counts, damage coefficient D, and calculated stress
can be used as precursor information for failure of coal and rock, which has great significance for the
further study of coal-rock material and for early hazard warning.

Keywords: gas-bearing coal; fixed axial stress and unloading confining stress; damage coefficient;
acoustic emission

1. Introduction

Gas-bearing coal is a gas–solid multiphase discontinuous medium containing complex
ir-regular primary cracks and secondary fractures [1–3]. During coal mining, changes in the
external stress field cause the migration and flow of gas inside the coal body, affecting the
adsorption and desorption of gas [4–6]. At the same time, the adsorption and desorption
of gas will also lead to the change in the mechanical properties of the coal body [7]. The
stress state of the original rock where the coal seam is located is often altered [8,9], and
coal-rock will be intermittently unloaded [10,11]. At this time, the coal-rock is more prone
to instability and damage, which may lead to coal and gas outburst accidents or other
hazards [12,13].

Previous scholars have studied the mechanical properties of coal and rock under
true triaxial [14] and unloading conditions [15]. Palm studied the stress–strain relations
for uniform monotonic deformation under triaxial loading [16]. Taheri et al. studied
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the strength and deformation characteristics of cement-mixed gravelly soil in multiple-
step triaxial compression [17]. Thomas et al. carried out an experimental study on the
damage evolution of brittle rock under triaxial confinement with full circumferential strain
control [18]. The results showed that there is a difference in the ultimate strength of
coal during the processes of loading and unloading, and the shear failure and tensile–
shear composite failure modes occur in coal under different loading and unloading paths.
However, coal under natural conditions is mostly in the form of gas-bearing coal. Chen et al.
described the evolution of damage during cyclic loading and unloading under various
confining pressure, which was based on the theory of elastic–plastic damage mechanics [19].
Pirzada et al. studied CO2-sorption-induced damage in coals in unconfined and confined
stress states [20]. They showed that the existence of gas has a key influence on the strength
and deformation characteristics of coal-rock. Some scholars studied gas-bearing coal in
the triaxial state more deeply. Wang et al. carried out conventional triaxial creep tests of
gas-bearing coal with different load levels and conducted a mathematical fitting study
on the experimental curves [21]. Xu et al. analyzed the effects of gas pressure on surface
modulus, strength, and failure time using unloading tests under different gas pressure
conditions [22].

Acoustic emission (AE) is an elastic wave in a solid caused by an ir-reversible change
in the internal structure of the material [23,24]. In the 1930s, Obert discovered AE phenom-
ena and applied AE techniques to monitor ore body stability and predict rock burst [25].
Dunegan et al. adjusted the range of AE test frequencies to the ultrasonic range (tens to
hundreds of kHz), which greatly reduced the influence of background noise and laid a
good foundation for the practical application of AE [26]. Since then, AE technology has
been applied to geotechnical and concrete engineering around the world [27–29], espe-
cially to monitor and predict rock disasters and coal and gas outbursts in underground
mines [30,31]. Kurita carried out some research on AE of rock expansion before rock fail-
ure [32]. Shkuratnik et al. studied the AE response in coal samples under uniaxial and
triaxial compression and analyzed AE counts, cumulative counts, and stress and strain
relationships [33]. Kong et al. studied the acoustic emission law during gas coal loading
and analyzed the damage evolution [34]. Su et al. studied the difference of AE charac-
teristics in coal fractures with different stress paths under pseudo-triaxial conditions [35].
Browning et al. discussed the AE characteristics of sandstone under true triaxial loading
and carried out a typing study of the effect of crack angle on acoustic emission signals [36].
The research shows that the AE count and the cumulative count, respectively, characterize
the processes of coal failure from different angles and the brittle fracture of the tensile–shear
composite in the unloaded state. In recent years, AE has been widely used in coal mine
monitoring and early warning systems, especially for hazard warnings for gas-bearing coal.

Previous scholars have begun to simulate the mechanical state under real mining
stress conditions through more complicated experimental designs. However, most of
them are pseudo-triaxial tests in which confining stress cannot be controlled in different
directions. A few studies that have implemented true triaxial tests are often directed at rock
or non-gas-bearing coal. A true triaxial test of gas-bearing coal is lacking. In view of these
deficiencies, this study conducted a true triaxial test of gas-bearing coal while recording
the AE signal. The damage mode and precursor signals of gas-bearing coal in mining
stress conditions were studied from the following aspects: mechanical characteristics, AE
characteristics, and damage mechanism. This test is of practical significance for studying
the deformation mechanism and obtaining precursor warning information for gas and
coal-rock hazards.

2. Materials and Methods
2.1. Experimental System

The true triaxial deformation and failure test of gas-bearing coal included an axial
loading and unloading system, a lateral pressure loading and unloading system, a sealed
cavity, an AE monitoring system, and a gas seepage system. The schematic is shown in
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Figure 1. The experimental system can simultaneously evaluate mechanical deformation of
multiphase (gas, solid, liquid) porous media, adsorption and expansion deformation, fail-
ure, seepage, coupled loading and unloading gas–liquid–solid seepage, and gas/hydraulic
fracture characteristics. It can measure the dynamic change of permeability in three di-
mensions: X, Y, and Z; and it can synchronously monitor the AE responses during the
experiment. It can simulate the loading and unloading process caused by deep rock stress
and mining stress in natural environments. The axial compression loading subsystem and
the lateral loading subsystem control the loading and unloading stress of the coal-rock
sample in the central sealed cavity in all three dimensions. At the same time, the crack
propagation and damage of the multiphase medium under load are monitored.
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Figure 1. Schematic diagram of the experimental system. (a) The true triaxial gas-bearing coal
deformation and failure experimental system; (b) axial loading subsystem; (c) confining stress control
subsystem; (d) experiment chamber; (e) gas seepage subsystem; (f) AE monitoring subsystem.

2.1.1. Triaxial Loading and Unloading System

The triaxial cylinder was installed in the servo-controlled hydraulic machine, as shown
in Figure 1. The YAW4306 mechanical test equipment included presses, numerical control
systems, and Power Test V3.3 control programs. The loading system provided closed loop
control, constant stress control, and stress retention. The maximum load capacity was
3000 kN, and the loading speed could be adjusted between 60 and 60,000 N/s with an
accuracy of ±1%. The loading device had two control modes: displacement control and
force control. These modes are available for uniaxial compression and stretching, cyclic
loading, creep testing, and other tests. The main stress (σ1) was applied by the servo-
controlled hydraulic cylinder. The intermediate principal stress (σ2) and the secondary
principal stress (σ3) were supplied by three external hydraulic pumps.

2.1.2. AE Monitoring System

The Express-8 AE system (Physical Acoustics Corporation, Princeton, NJ, USA) was
used for AE monitoring. The system has 24 AE data-acquisition channels. R15α sensor
manufactured by Physical Acoustics Corporation was used in the experiments. The signal
collected by the AE sensor is amplified by a preamplifier and transmitted to the 16-bit
analog-to-digital (A/D) converter module. The parameters and data in the digital sig-
nal were stored in a buffer, and then transferred to a computer for further processing
and display.
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2.2. Sample Preparation

The samples were taken from Henan Province, China. The samples were processed
according to the standards specified in the international rock mechanical test. The sample
is a cube of size 100 mm × 100 mm × 100 mm. The roughness of each surface did not
exceed ±0.5 mm to ensure that the sample was evenly stressed during compression and
to avoid stress concentration that could affect the accuracy of the experimental results. In
total, 21 samples were required for this test, which were divided into 7 groups. The first
4 groups were used for the conventional triaxial test, and the last 3 groups were used for
the unloading test.

2.3. Experimental Program

In order to simulate the mining process in the working face, two test paths, namely,
CTS—Figure 2a—experiments and FASUCS—Figure 2b—experiments, were selected. We
selected twelve samples to determine the conventional triaxial compressive strength of
coal when it adsorbed gas at different pressures of 0 MPa, 0.2 MPa, 0.5 MPa, 0.8 MPa,
respectively. Nine samples were selected to conduct the experiments of fixed axial stress
and unloading confining stress. The test conditions of each coal sample are shown in
Table 1. The specific experiment program is as follows:

1. The stress of 1 MPa was applied to the chamber at the axial direction. Then, the coal
and chamber were vacuumed for 8 h, and gas at the pressure of 0.2 MPa, 0.5 MPa,
and 0.8 MPa was injected into the chamber and absorbed for 24 h.

2. Before the test, the AE sensors were placed on both sides of the axial rigid pressure bar
and fixed with magnetic suction. The sensor and the pressure bar were connected via
Vaseline. After that, pencil lead break was made to ensure that the AE signal could be
adequately collected. The preamplifier threshold was set to 45 dB. A slight tap before
the experiment was performed to determine that the two channels could acquire the
AE signal well.

3. The conventional triaxial test applied stress to σ1 = σ2 = σ3 = 19 MPa using the
hydrostatic loading method, and the axial pressure was increased to the sample
failure at a loading speed of 500 N/s. The strength of the coal sample was obtained.

4. In the experiments, the stress of σ1, σ2, and σ3 were synchronously applied to 19 MPa,
then the axial stress was increased to 80–90% of the conventional triaxial strength.
After that, σ2 and σ3 were simultaneously unloaded at 0.01 MPa/s and 0.005 MPa/s,
respectively, until the sample failure. AE data acquisition took place during the
entire loading process of the conventional triaxial text. For the unloading test, AE
data acquisition was started after σ1 = 12 MPa. All data were collected until the
sample failed.
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Table 1. Experimental conditions of coal samples.

Loading Mode Number Gas Pressure (MPa) Confining Stress (MPa) Unloading Rate
(σ2(MPa/s))

Unloading Rate
(σ3(MPa/s))

Conventional
triaxial loading

1 0
19 None None2 0

3 0

4 0.2
19 None None5 0.2

6 0.2

7 0.5
19 None None8 0.5

9 0.5

10 0.8
19 None None11 0.8

12 0.8

Fixed axial stress
and unloading
confining stress

13 0.2
19 0.01 0.00514 0.2

15 0.2

16 0.5
19 0.01 0.00517 0.5

18 0.5

19 0.8
19 0.01 0.00520 0.8

21 0.8

3. Results
3.1. Conventional Triaxial Test
3.1.1. Mechanical Properties and Deformation Characteristics

Three parallel tests were set up for each experiment, and the triaxial intensity val-
ues were averaged from three trials. Each of the following sets of tests only shows the
curve from one of the trials. Figure 3 shows conventional triaxial test stress–strain curves
(samples 5, 7, 11). When the gas pressure increased, the peak stress of the coal sample
decreased under the conventional triaxial stress. When the strain applied to the load was
reduced, the time required for failure was shorter. The sample did not expand under the
condition of no gas pressure. In the presence of gas pressure, the sample showed a certain
degree of expansion. The peak strength of gas-bearing coal in the CTS experiments were
68.46 MPa, 55.93 MPa, and 40.04 MPa at the gas pressure of 0.2 MPa, 0.5 MPa, and 0.8 MPa,
respectively, which reveals that gas influenced the peak strength of gas-bearing coal in the
CTS experiments.

3.1.2. Acoustic Emission Characteristics

Figure 4 shows the AE diagram for the conventional triaxial test of gas-bearing coal
(samples 5, 7, 11). The AE signals can be divided into three stages: (I) quiet period, (II) active
period, and (III) acceleration period. The compact and elasticity stages of coal occur in
the quiet period. At this stage, closure and elastic deformation of the pore fractures occur.
Therefore, only a few AE signals are generated, and the cumulative ring-down count is
also stable.
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The active period refers to the later period of time after the coal enters the plastic stage.
The number of AE ring-down counts during this period increases compared with the quiet
period. At 0.5 MPa shown in Figure 4b, there were three abrupt increases in AE ring-down
counts, but the durations were very short. At 0.2 MPa, shown in Figure 4a, and 0.8 MPa,
shown in Figure 4c, AE ring-down counts increased steadily. During this period, the slope
of the cumulative ring-down counting curve increased, but the overall trend of increase
was gentle. At this time, the coal sample entered the stage of plastic deformation, and the
pore fissures began to develop.

The acceleration period refers to the period from macrofracture development to failure
(stress drop) of the coal. Acoustic emission ring-down counts increased sharply during
this period. The slope of the cumulative curve of AE ring-down counts rises sharply until
the stress reaches the peak and the coal body breaks. Therefore, the AE signals during the
acceleration period can be regarded as precursors to coal damage. At 0.2 MPa, 0.5 MPa,
and 0.8 MPa, the time from the beginning of the acceleration period to the time of coal
damage was 232 s, 108 s, and 42 s, respectively. The higher the gas pressure is, the longer
the duration of the quiet period and the active period is and the shorter the duration of the
acceleration period is, which indicates that with the increasing of gas pressure, the speed
from crack expansion to complete failure of gas-bearing coal is accelerated.
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3.2. Fixed Axial Stress and Unloading Confining Stress
3.2.1. Mechanical Properties and Deformation Characteristics

According to the peak stress values at different gas pressures obtained from the
conventional triaxial stress experiments, the fixed axial pressure is 58 MPa when gas
pressure is 0.2 MPa, 50 MPa when gas pressure is 0.5 MPa, and 40 MPa when gas pressure
is 0.8 MPa. Figure 5 shows the stress–strain curve of specimens 13, 18, and 19. In the
experiments, the difference in stress was used to measure the strength of sample, namely,
σ1-σ2 is the stress difference in direction A and σ1-σ3 is the stress difference in direction B.

When gas pressure increased, the radial strain, the axial strain, the volume strain,
and the stress difference from unloading to cracking all decreased. Figure 5a shows that
when the lateral stress unloads, the stress–strain curve gradually increases, and the slope
increases significantly before the unloading. When the gas pressure is 0.2 MPa, the stress
difference (σ1-σ2 and σ1-σ3) of the coal sample is 53.42 MPa and 44.43 MPa; when the gas
pressure is 0.5 MPa, the stress difference of the coal sample is 45.93 MPa and 36.13 MPa;
when the gas pressure is 0.8 MPa, the maximum stress difference of the coal sample is
36.66 MPa and 25.83 MPa. It obviously indicates that the strength of coal decreases with
the increasing of gas pressure. In the experiments, before unloading the confining pressure,
the stress–strain curve increases linearly, the specimen is in elastic deformation, and the
elastic modulus remains constant. When the confining stress begins to unload, the slope
of the stress−strain curve increases rapidly, and the difference between σ1-σ2 and σ1-σ3
increases gradually. The strain increases rapidly before the complete fracture. However, the
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increment of strain rises with the increase in gas pressure. With the increase in gas pressure
from 0.2 MPa to 0.8 MPa, the strain increment rises from 0.0018 to 0.0036.
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Figure 5b shows that before confining-stress unloading, the volumetric strain increases
continuously, and the sample is compressed. After confining pressure begins to unload,
the volumetric strain decreases continuously. Compared with the axial stress difference
strain curve, it can be found that at the beginning of confining-pressure unloading, the axial
strain changes slightly. At this time, the reason for the decrease in volumetric strain is that
the horizontal strain increases rapidly, which leads to the expansion deformation of the
sample. With the increasing of gas pressure, the expansion deformation decreases gradually.
Figure 5c,d show that the radial strain begins to increase gradually after the lateral pressure
begins to be removed. Moreover, because of the different speeds of lateral-pressure relief in
the two directions, the growth rate and absolute value of ε2 during rupture are significantly
higher than ε3, and the ε3 curve is more stable.
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Axial strain and radial strain under different experimental conditions show different
rules; therefore, the deformation modulus and Poisson’s ratio of coal body will change. The
deformation modulus and Poisson’s ratio can be calculated by Formula (1) [37].

E = (σ1 − 2µσ2)/ε1
µ = (Bσ1 − σ2)/[σ2(2B − 1)− σ1]
B = ε2/ε1

(1)

where E is the deformation modulus and µ is the Poisson’s ratio. Figure 6 shows the
deformation modulus curve of the coal in the FASUCS experiments at different gas pressure
conditions. Before the failure of coal samples, the deformation modulus of samples under
gas pressures of 0.5 MPa and 0.8 Mpa is larger than that under gas pressure of 0.2 Mpa.
Figure 7 shows the Poisson’s ratio curve of the coal in the FASUCS experiments at different
gas pressure conditions. Under different gas pressures, the curve of the elastic stage shows
a downward trend, and Poisson’s ratio decreases gradually. When the confining stress
unloaded, the Poisson’s ratio increases. A comparison of the three tests shows that with the
increasing of gas pressure, the Poisson’s ratio is decreasing and the curve is steepening.
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3.2.2. Acoustic Emission Characteristics

Figure 8 shows the AE responses during the unloading tests at the different gas
pressures. Figure 8a–c correspond to specimens 13, 18, and 19, respectively. Combined
with the stress–strain curve of Figure 5, the following rules exist in the unloading tests.
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Before the confining stress unloads, the coal is in the linear elastic stage, and the
stress–strain curve is linear. At this stage, few paroxysmal AE signals are generated.

The AE signals during the unloading test are slightly different from that during the
conventional triaxial test. In conventional triaxial tests, the quiet and active period of
AE signals can be easily distinguished, and the cumulative ring-down count curve rises
smoothly. However, it is difficult to distinguish between the quiet and active periods in
the unloading test because AE ring-down counts increased suddenly and lasted for a long
time. The cumulative ring-down count curve shows a sharp upward trend. This increasing
trend is more obvious after the unloading begins. After three or four sharp increases, it
enters the acceleration period. AE ring-down counts increase sharply, and the cumulative
ring-down count curve rises sharply until the stress curve falls. AE ring-down counts
gradually decrease after the peak value.

With the increasing of gas pressure, the time of the acceleration period is 111 s, 67 s,
and 51 s, respectively. Therefore, the increasing gas pressure will shorten the time until coal
rupture, and it will intensify the rate and degree of coal body rupture, so that the failure
occurs more rapidly and more intensely.

4. Discussion
4.1. Damage Based on AE Ring-Down Counts
4.1.1. Damage Model

It is believed that AE signals occur in the process of loading and failure of materials
and are proportional to the strain energy released by internal peeling, fracture, and crack
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propagation [38,39]. Therefore, the number and energy of AE pulses are used to describe
the damage characteristics of coal.

According to Kachanov’s theory, the damage variable is defined as D [40],

D =
Ad
A

(2)

where Ad is the area of the microdefect on the load-bearing section and A is the area of the
initial lossless section.

Assuming that the cumulative AE ring-down count of the complete destruction of the
whole cross-sectional area A of coal is N0, then the AE ring-down count Nm of a unit area
element failure is [41],

Nm =
N0

A
(3)

When the damaged section area of coal sample is Ad, the cumulative acoustic emission
ring-down count Nd is [42],

Nd = Nm•Ad =
N0

A
Ad (4)

Consequently, it can be concluded that,

Nd
N0

=
Ad
A

(5)

Combining Equations (1) and (5), the damage variable can be expressed as follows:

D =
Nd
N0

(6)

During the experiments, due to insufficient stiffness of the testing machine or different
failure conditions of the coal sample, the sample still has a certain residual strength after
the peak, and the damage degree does not reach 1. Therefore, the coal damage can be
corrected [43]:

D = Dr
Nd
N0

(7)

where Dr is damage critical value. In the Equation (7), N0 is the cumulative acoustic emis-
sion ring-down count when the damage variable reaches Dr. To simplify the calculation, the
damage critical value Dr is calculated as shown Equation (8) [44]. According to Equation (8),
when the sample completely loses its bearing capacity, that is, when the residual strength is
0, the damage critical value is 1.

Dr = 1 − σr

σp
(8)

Combining Equations (7) and (8),

D = (1 − σr

σp
)

Nd
N0

(9)

According to the damage mechanical model [45], the constitutive relationship of
coal-rock material is

σ = Eε(1 − D) (10)

Combining Equations (9) and (10), the stress can be calculated as follows:

σ = Eε[1 − (1 − σr

σp
)

Nd
N0

] (11)
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4.1.2. Damage Analysis

According to the Formula (3), AE pulses measured on specimens in the conventional
triaxial test and unloading tests are normalized. The cumulative damage results of the
specimens are shown in Figures 9 and 10. In combination with Formula (4), the strain–
damage curve based on the number of AE ring-down counts at different strain levels is
obtained and compared with the measured values, as shown in Figures 11 and 12.
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In conventional triaxial tests, the coal damage process can be divided into three stages
according to the increasing calculated stress values. In the first stage, the coal sample is
in the compaction stage and the elastic change stage, and only a small amount of minute
damage is generated. In the second stage, internal pore fissures develop, and the damage
coefficient D increases. In the third stage, which is the precursor of coal failure and
instability as mentioned above, the damage coefficient D continues to rise rapidly, and
the calculated stress also increases rapidly and dramatically. Then, the calculated stress
increases more gradually until the measured value reaches a peak.

In the unloading test, most of the specimens before unloading are in the elastic defor-
mation stage. At this stage, only a small amount of damage appears, and the calculated
stress increases slowly and slightly. When the confining stress unloaded, the plastic defor-
mation and plateau segment appear. The speed of damage development and the growth
rate of calculated stress increase rapidly. After the measured stress reaches its peak value,
the calculated stress continues to rise. However, the damage under triaxial conditions is
seldom studied. According to the results of this experiment, the residual stress increase in
calculated stress after the measured stress reaches its peak may be due to the existence of
lateral pressure, which limits the rate of lateral strain. When the coal body breaks macro-
scopically, there is still a large amount of energy in the coal body that has not yet been
released. Moreover, because the sample size was large, there are also more macrofractures
in the coal body. After the main fracture occurs, there are still a large number of porous
fissures in the process of development and penetration. Therefore, after the measured stress
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reaches its peak value, the damage does not stop, and the calculated stress will continue to
increase. The calculated stress will not decrease until the amount of confining stress relief
makes most of the cracks in the coal reach full penetration. However, in this study, the
experiment was stopped a few seconds after the measured stress reached its peak value.
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4.2. Effect of Gas Pressure on Mechanical Behavior of Coal Samples

In the conventional triaxial test and unloading test, the coal experienced four stages
from loading to failure: compaction stage, elastic stage, plastic failure stage, and residual
deformation stage. The emphasis of this paper is on the elastic stage and the plastic failure
stage. The mechanical model represented by the unloading test is more comparable with the
stress state of coal under field mining conditions. Figure 13 is a fitting curve of peak stress
and peak stress difference. From the experimental results, the strength of coal decreases
with the increasing of gas pressure in both the conventional triaxial test and unloading test.
This is consistent with previous studies [46]. The conventional triaxial test fitting curve
shows that the strength of coal decreases rapidly as gas pressure increases. The strength of
coal in the unloading test is also weakening, but the trend of accelerated decline is subtle.
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The decrease in the strength of gas-bearing coal is mainly due to the mechanical
properties of the gas in the coal. The gas migration in the coal body occurs mainly by
adsorption and seepage. Therefore, during the failure process of gas-bearing coal, gas
has two effects on mechanical parameters. First, in the early stage of gas adsorption, the
gas entering the interior of the coal body is mainly transported in the free state. The free
gas molecules expand the volume of the coal body and reduce the density of the coal
body. Moreover, the continuous flow of high-pressure gas accelerates the development of
primary and new cracks and accelerates the instability of the coal mass during the process
of loading. When the adsorption equilibrium of gas in the coal body has been reached, the
surface tension of coal-adsorbed gas and the attraction between coal molecules decrease.
Macroscopically, the viscosity between the media particles is reduced, eventually reducing
the stress and energy of the coal sample and reducing the peak intensity. These two aspects
affect the strength and deformation characteristics of the coal together.

Figure 14 is a fitting curve for the duration of precursor signals in the conventional
triaxial test and unloading test. Analysis of AE ring-down counts shows that although
the final coal samples have been destroyed and destabilized, the precursor signals in the
unloading test appear later, and the maintenance time is shorter. The higher gas pressure
promotes greater energy release during the process of coal deformation, which amplifies
the sudden drop in the stress curve.
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5. Conclusions

1. Gas pressure obviously influenced the peak strength of gas-bearing coal in the CTS
experiments. The peak strength of gas-bearing coal decreases from 68.46 MPa at
0.2 MPa to 40.04 MPa at 0.8 MPa. With the increase in gas pressure, the speed from
crack expansion to complete failure of gas-bearing coal is accelerated.

2. Acoustic emission of gas-bearing coal in the CTS experiments can be divided into three
stages: quiet period, active period, and acceleration period. The duration time of the
quiet period and the active period becomes longer with the increase in gas pressure.

3. The bearing capacity of the samples decreased significantly under the fixed axial
unloading confining pressure path. When the gas pressure increases from 0.2 MPa
to 0.8 MPa, the maximum of stress difference (σ1-σ2) decreases from 53.42 MPa to
36.66 MPa, and the maximum of stress difference (σ1-σ3) decreases from 44.43 MPa
to 25.83 MPa. Before unloading the confining pressure, the volume of the sample
compresses with the increase in axial stress, and the volumetric strain increases contin-
uously. The volume expands when the confining stress unloaded, and the expansion
of the sample along the direction of the minimum principal stress is significantly
higher than that of the intermediate principal stress. With the increase in gas pressure,
the Poisson’s ratio decreases continuously.

4. In the FASUCS experiments, the boundary between the quiet period and the active
stage of acoustic emission signals is blurred, and paroxysmal signals are generated
occasionally during this process. After entering the rapid fracture stage of the sample,
ring-down count and energy of the AE accelerated and increased continuously. With
the increase in gas pressure, the duration of the accelerating rising stage is shortened.

5. Taking acoustic emission ring-down count as the damage variable, the stress–strain
constitutive equation was established, and the calculated stress variation trend was
consistent with the experimental results. The trends in calculated stress and damage
coefficient D are consistent with the stress path during unloading, and both begin to
rise sharply after the sample enters the plastic stage.
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