Peroxymonosulphate Activation by Basolite® F-300 for Escherichia coli Disinfection and Antipyrine Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism and Chemiclas
2.2. Culture Conditions
2.3. Experimental Set-Up
2.3.1. Disinfection
2.3.2. Antipyrine Degradation
2.3.3. Disinfection and Antipyrine Degradation Assays
2.4. Analysis
2.4.1. Disinfection Efficiency
2.4.2. Antipyrine Concentration
2.4.3. Total Organic Carbon (TOC) Analysis
2.4.4. Microscopy Basolite® F-300 Characterization
2.4.5. Iron Leaching
2.5. Optimization of Disinfection Process
3. Results
3.1. E. coli Disinfection
3.2. Antipyrine Removal
3.2.1. Antipyrine Adsorption
3.2.2. Antipyrine Degradation in PMS-Basolite® F-300 System
3.2.3. E. coli Disinfection and Antipyrine Degradation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Narayanan, M.; El-sheekh, M.; Ma, Y.; Pugazhendhi, A.; Natarajan, D.; Kandasamy, G.; Raja, R.; Kumar, R.M.S.; Kumarasamy, S.; Sathiyan, G.; et al. Current Status of Microbes Involved in the Degradation of Pharmaceutical and Personal Care Products (PPCPs) Pollutants in the Aquatic Ecosystem. Environ. Pollut. 2022, 300, 118922. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Niu, X.; Yao, C.; Yang, W.; Lu, G. Distribution, Removal, and Risk Assessment of Pharmaceuticals and Their Metabolites in Five Sewage Plants. Int. J. Environ. Res. Public Health 2019, 16, 4729. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kar, P.; Shukla, K.; Jain, P.; Gupta, R.K. An Activated Carbon Fiber Supported Fe2O3@bismuth Carbonate Heterojunction for Enhanced Visible Light Degradation of Emerging Pharmaceutical Pollutants. React. Chem. Eng. 2021, 6, 2029–2041. [Google Scholar] [CrossRef]
- Zhang, Y.; Chu, W. Cooperation of Multi-Walled Carbon Nanotubes and Cobalt Doped TiO2 to Activate Peroxymonosulfate for Antipyrine Photocatalytic Degradation. Sep. Purif. Technol. 2022, 282, 119996. [Google Scholar] [CrossRef]
- García-Cambero, J.P.; Beltrán, F.J.; Encinas, A.; Rivas, F.J.; Oropesa, A.L. The Added Value of a Zebrafish Embryo-Larval Model in the Assessment of Wastewater Tertiary Treatments. Environ. Sci. Water Res. Technol. 2019, 5, 2269–2279. [Google Scholar] [CrossRef]
- Muñoz-Palazon, B.; Rosa-Masegosa, A.; Vilchez-Vargas, R.; Link, A.; Gorrasi, S.; Gonzalez-Lopez, J.; Gonzalez-Martinez, A. Biological Removal Processes in Aerobic Granular Sludge for Treating Synthetic Hospital Wastewater: Effect of Temperature. J. Water Process Eng. 2022, 47, 102691. [Google Scholar] [CrossRef]
- Wang, J.; Shen, J.; Ye, D.; Yan, X.; Zhang, Y.; Yang, W.; Li, X.; Wang, J.; Zhang, L.; Pan, L. Disinfection Technology of Hospital Wastes and Wastewater: Suggestions for Disinfection Strategy during Coronavirus Disease 2019 (COVID-19) Pandemic in China. Environ. Pollut. 2020, 262, 114665. [Google Scholar] [CrossRef]
- Mackuľak, T.; Cverenkárová, K.; Vojs Staňová, A.; Fehér, M.; Tamáš, M.; Škulcová, A.B.; Gál, M.; Naumowicz, M.; Špalková, V.; Bírošová, L. Hospital Wastewater—Source of Specific Micropollutants. Antibiotics 2021, 10, 1070. [Google Scholar] [CrossRef]
- Lastra, A.; Botello, J.; Pinilla, A.; Urrutia, J.I.; Canora, J.; Sánchez, J.; Fernández, P.; Candel, F.J.; Zapatero, A.; Ortega, M.; et al. SARS-CoV-2 Detection in Wastewater as an Early Warning Indicator for COVID-19 Pandemic. Madrid Region Case Study. Environ. Res. 2022, 203, 111852. [Google Scholar] [CrossRef]
- Orias, F.; Perrodin, Y. Characterisation of the Ecotoxicity of Hospital Effluents: A Review. Sci. Total Environ. 2013, 454, 250–276. [Google Scholar] [CrossRef]
- Escudero-Oñate, C.; Ferrando-Climent, L.; Rodríguez-Mozaz, S.; Santos, L.H.M.L.M. Occurrence and Risks of Contrast Agents, Cytostatics, and Antibiotics in Hospital Effluents. Handb. Environ. Chem. 2018, 60, 71–100. [Google Scholar] [CrossRef]
- Akiyama, T.; Savin, M.C. Populations of Antibiotic-Resistant Coliform Bacteria Change Rapidly in a Wastewater Effluent Dominated Stream. Sci. Total Environ. 2010, 408, 6192–6201. [Google Scholar] [CrossRef] [PubMed]
- Skulcov, A.B.; Miroslav, G.; Janíkov, M.; Celec, P.; Kone, B.; Grabic, R.; Filip, J.; Beli, N.; Ryba, J.; Kereke, K. Effervescent Ferrate(VI)-Based Tablets as an Effective Means for Removal SARS-CoV-2 RNA, Pharmaceuticals and Resistant Bacteria from Wastewater. J. Water Process Eng. 2021, 43, 102223. [Google Scholar] [CrossRef] [PubMed]
- Galarde-López, M.; Velazquez-Meza, M.E.; Bobadilla-del-Valle, M.; Carrillo-Quiroz, B.A.; Cornejo-Juárez, P.; Ponce-de-León, A.; Sassoé-González, A.; Alpuche-Aranda, C.M. Surveillance of Antimicrobial Resistance in Hospital Wastewater: Identification of Carbapenemase-Producing Klebsiella Spp. Antibiotics 2022, 11, 288. [Google Scholar] [CrossRef]
- Del Álamo, A.C.; Pariente, M.I.; Molina, R.; Martínez, F. Advanced Bio-Oxidation of Fungal Mixed Cultures Immobilized on Rotating Biological Contactors for the Removal of Pharmaceutical Micropollutants in a Real Hospital Wastewater. J. Hazard. Mater. 2022, 425, 128002. [Google Scholar] [CrossRef]
- Tran, T.; Nguyen, T.B.; Ho, H.L.; Le, D.A.; Lam, T.D.; Nguyen, D.C.; Hoang, A.T.; Do, T.S.; Hoang, L.; Nguyen, T.D.; et al. Integration of Membrane Bioreactor and Nanofiltration for the Treatment Process of Real Hospital Wastewater in Ho Chi Minh City, Vietnam. Processes 2019, 7, 123. [Google Scholar] [CrossRef][Green Version]
- Paulus, G.K.; Hornstra, L.M.; Alygizakis, N.; Slobodnik, J.; Thomaidis, N.; Medema, G. The Impact of On-Site Hospital Wastewater Treatment on the Downstream Communal Wastewater System in Terms of Antibiotics and Antibiotic Resistance Genes. Int. J. Hyg. Environ. Health 2020, 222, 635–644. [Google Scholar] [CrossRef]
- Martínez-Pachón, D.; Echeverry-Gallego, R.A.; Serna-Galvis, E.A.; Villarreal, J.M.; Botero-Coy, A.M.; Hernández, F.; Torres-Palma, R.A.; Moncayo-Lasso, A. Treatment of Wastewater Ef Fl Uents from Bogotá, Colombia by the Photo-Electro-Fenton Process: Elimination of Bacteria and Pharmaceutical. Sci. Total Environ. 2021, 772, 144890. [Google Scholar] [CrossRef]
- Zhu, L.; Shuai, X.; Xu, L.; Sun, Y.; Lin, Z.; Zhou, Z.; Meng, L.; Chen, H. Mechanisms Underlying the Effect of Chlorination and UV Disinfection on VBNC State Escherichia Coli Isolated from Hospital Wastewater. J. Hazard. Mater. 2022, 423, 127228. [Google Scholar] [CrossRef]
- Mateus, A.; Torres, J.; Marimon-Bolivar, W.; Pulgarín, L. Implementation of Magnetic Bentonite in Food Industry Wastewater Treatment for Reuse in Agricultural Irrigation. Water Resour. Ind. 2021, 26, 100154. [Google Scholar] [CrossRef]
- Berruti, I.; Nahim-Granados, S.; Abeledo-Lameiro, M.J.; Oller, I.; Polo-López, M.I. Uv-c Peroxymonosulfate Activation for Wastewater Regeneration: Simultaneous Inactivation of Pathogens and Degradation of Contaminants of Emerging Concern. Molecules 2021, 26, 4890. [Google Scholar] [CrossRef] [PubMed]
- Joveini, H.A.; Javid, A.; Hassani, A.; Kashefiolasl, M. Investigation on Removal of High Organic Load of Industrial Wastewater by Cascade Filters (Bio-Filters with Different Media). Int. J. Environ. Sci. Technol. 2022, 19, 1765–1774. [Google Scholar] [CrossRef]
- Unal, B.O. Membrane Autopsy Study to Characterize Fouling Type of RO Membrane Used in an Industrial Zone Wastewater Reuse Plant. Desalination 2022, 529, 115648. [Google Scholar] [CrossRef]
- Foroughi, M.; Khiadani, M.; Kakhki, S.; Kholghi, V.; Naderi, K.; Yektay, S. Effect of Ozonation-Based Disinfection Methods on the Removal of Antibiotic Resistant Bacteria and Resistance Genes (ARB/ARGs) in Water and Wastewater Treatment: A Systematic Review. Sci. Total Environ. 2022, 811, 151404. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.D.M.; Boivin, S.; Kodamatani, H.; Ikehata, K.; Fujioka, T. Potential of UV-B and UV-C Irradiation in Disinfecting Microorganisms and Removing N-Nitrosodimethylamine and 1,4-Dioxane for Potable Water Reuse: A Review. Chemosphere 2022, 286, 131682. [Google Scholar] [CrossRef] [PubMed]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Hübner, U. Evaluation of Advanced Oxidation Processes for Water and Wastewater Treatment e A Critical Review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- Nagels, M.; Verhoeven, B.; Larch, N.; Dewil, R.; Rossi, B. Corrosion Behaviour of Lean Duplex Stainless Steel in Advanced Oxidation Process (AOP) Based Wastewater Treatment Plants. Eng. Fail. Anal. 2022, 136, 106170. [Google Scholar] [CrossRef]
- Chaparinia, F.; Soltani, R.D.C.; Safari, M.; Godini, H.; Khataee, A. Treatment of Aquatic Medium Containing Common and Emerging Contaminants Using an Aero-Electrochemical Process Based on Graphite Cathode and Three Metal Oxides Alloy as Anode: Central Composite Design and Photo/Sono-Enhancement. Chemosphere 2022, 297, 134129. [Google Scholar] [CrossRef]
- Tang, L.; Liu, Y.; Wang, J.; Zeng, G.; Deng, Y.; Dong, H.; Feng, H.; Wang, J.; Peng, B. Enhanced Activation Process of Persulfate by Mesoporous Carbon for Degradation of Aqueous Organic Pollutants: Electron Transfer Mechanism. Appl. Catal. B Environ. 2018, 231, 1–10. [Google Scholar] [CrossRef]
- Omac, B.; Moreira, R.G.; Castell-Perez, E. Integration of Electron Beam Technology into Fresh Produce Wash Water Line: Effect of Inoculum Suspension Medium and Water Quality Parameters on the Radioresistance of Salmonella Typhimurium ATCC 13311. J. Food Saf. 2022, 42, 1–12. [Google Scholar] [CrossRef]
- Rodríguez-chueca, J.; Giannakis, S.; Marjanovic, M.; Kohantorabi, M.; Reza, M.; Grandjean, D.; Felippe, L.; Alencastro, D. Solar-Assisted Bacterial Disinfection and Removal of Contaminants of Emerging Concern by Fe2+ Activated HSO5− vs. S2 O82− in Drinking Water. Appl. Catal. B Environ. 2019, 248, 62–72. [Google Scholar] [CrossRef]
- Bouzayani, B.; Bocos, E.; Elaoud, S.C.; Pazos, M.; Sanromán, M.Á.; González-Romero, E. An Effective Electroanalytical Approach for the Monitoring of Electroactive Dyes and Intermediate Products Formed in Electro-Fenton Treatment. J. Electroanal. Chem. 2018, 808, 403–411. [Google Scholar] [CrossRef]
- Fdez-Sanromán, A.; Acevedo-García, V.; Pazos, M.; Sanromán, M.Á.; Rosales, E. Iron-Doped Cathodes for Electro-Fenton Implementation: Application for Pymetrozine Degradation. Electrochim. Acta 2020, 338, 1–11. [Google Scholar] [CrossRef]
- Domingues, F.S.; Geraldino, H.C.L.; Freitas, T.K.F.D.S.; Almeida, C.A.D.; Figueiredo, F.F.D.; Garcia, J.C. Photocatalytic Degradation of Real Textile Wastewater Using Carbon Black-Nb2O5 Composite Catalyst under UV/Vis Irradiation. Environ. Technol. 2021, 42, 2335–2349. [Google Scholar] [CrossRef]
- Abdi, J.; Sisi, A.J.; Hadipoor, M.; Khataee, A. State of the Art on the Ultrasonic-Assisted Removal of Environmental Pollutants Using Metal-Organic Frameworks. J. Hazard. Mater. 2022, 424, 127558. [Google Scholar] [CrossRef]
- Wang, Z.; Meng, C.; Zhang, W.; Zhang, S.; Yang, B.; Zhang, Z. Honeycomb-like Holey Co3O4 Membrane Triggered Peroxymonosulfate Activation for Rapid Degradation of Organic Contaminants. Sci. Total Environ. 2022, 814, 152698. [Google Scholar] [CrossRef]
- Rosales, E.; Buftia, G.; Pazos, M.; Lazar, G.; Sanromán, M.A. Highly Active Based Iron-Carbonaceous Cathodes for Heterogeneous Electro-Fenton Process: Application to Degradation of Parabens. Process Saf. Environ. Prot. 2018, 117, 363–371. [Google Scholar] [CrossRef]
- Fdez-Sanromán, A.; Martinez-Treinta, R.; Pazos, M.; Rosales, E.; Sanromán, M.Á. Heterogeneous Electro-Fenton-like Designs for the Disposal of 2-Phenylphenol from Water. Appl. Sci. 2021, 11, 12103. [Google Scholar] [CrossRef]
- Chu, Y.; Tan, X.; Shen, Z.; Liu, P.; Han, N.; Kang, J.; Duan, X.; Wang, S.; Liu, L.; Liu, S. Efficient Removal of Organic and Bacterial Pollutants by Ag-La0.8Ca0.2Fe0.94O3-Δ Perovskite via Catalytic Peroxymonosulfate Activation. J. Hazard. Mater. 2018, 356, 53–60. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Liu, X.; Zhang, J.; Wen, X.; Song, Y. High Yield M-BTC Type MOFs as Precursors to Prepare N-Doped Carbon as Peroxymonosulfate Activator for Removing Sulfamethazine: The Formation Mechanism of Surface-Bound SO4•− on Co-Nx Site. Chemosphere 2022, 295, 133946. [Google Scholar] [CrossRef]
- Giannakis, S.; Lin, K.Y.A.; Ghanbari, F. A Review of the Recent Advances on the Treatment of Industrial Wastewaters by Sulfate Radical-Based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 2021, 406, 127083. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Hao, X.; Wang, J.; Yang, Z.; Yang, Q. Green Synthesis of Stable Structure Spindle FeCo-LDH through Fe-MOF Template for Efficient Degradation of 2, 4-D. J. Water Process. Eng. 2022, 46, 102602. [Google Scholar] [CrossRef]
- Yang, R.; Chang, Q.; Li, N.; Yang, H. Synergistically Enhanced Activation of Persulfate for Efficient Oxidation of Organic Contaminants Using a Microscale Zero-Valent Aluminum/Fe-Bearing Clay Composite. Chem. Eng. J. 2022, 433, 133682. [Google Scholar] [CrossRef]
- Qu, S.; Yuan, Y.; Yang, X.; Xu, H.; Mohamed, A.K.; Zhang, J.; Zhao, C.; Liu, L.; Wang, B.; Wang, X.; et al. Carbon Defects in Biochar Facilitated Nitrogen Doping: The Significant Role of Pyridinic Nitrogen in Peroxymonosulfate Activation and Ciprofloxacin Degradation. Chem. Eng. J. 2022, 441, 135864. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, Z.; Zhang, H.; Shen, X.; Qiu, Y.; Yin, D.; Wang, S. Persistent Free Radicals on N-Doped Hydrochar for Degradation of Endocrine Disrupting Compounds. Chem. Eng. J. 2020, 398, 125538. [Google Scholar] [CrossRef]
- Pascanu, V.; Miera, G.G.; Inge, A.K.; Martín-Matute, B. Metal-Organic Frameworks as Catalysts for Organic Synthesis: A Critical Perspective. J. Am. Chem. Soc. 2019, 141, 7223–7234. [Google Scholar] [CrossRef][Green Version]
- Tebeje, A.; Worku, Z.; Nkambule, T.T.I.; Fito, J. Adsorption of Chemical Oxygen Demand from Textile Industrial Wastewater through Locally Prepared Bentonite Adsorbent. Int. J. Environ. Sci. Technol. 2022, 19, 1893–1906. [Google Scholar] [CrossRef]
- Wang, P.; Ding, Y.; Zhu, L.; Zhang, Y.; Zhou, S.; Xie, L.; Li, A. Oxidative Degradation/Mineralization of Dimethyl Phthalate (DMP) from Plastic Industrial Wastewater Using Ferrate(VI)/TiO2 under Ultraviolet Irradiation. Environ. Sci. Pollut. Res. 2022, 29, 15159–15171. [Google Scholar] [CrossRef]
- Otaghsaraei, S.S.; Kazemeini, M.; Hasannia, S.; Ekramipooya, A. Deep Oxidative Desulfurization via RGO-Immobilized Tin Oxide Nanocatalyst: Experimental and Theoretical Perspectives. Adv. Powder Technol. 2022, 33, 103499. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, H.; Xu, L.; Song, S.; Zhang, C.; Yu, Q. Parameter Calibration of Coconut Bran Substrate Simulation Model Based on Discrete Element and Response Surface Methodology. Powder Technol. 2022, 395, 183–194. [Google Scholar] [CrossRef]
- Kang, C.; Zhao, Y.; Tang, C.; Addo-Bankas, O. Use of Aluminum-Based Water Treatment Sludge as Coagulant for Animal Farm Wastewater Treatment. J. Water Process Eng. 2022, 46, 102645. [Google Scholar] [CrossRef]
- Arabameri, A.; Moghaddam, M.R.A.; Azadmehr, A.R.; Shabestar, M.P. Less Energy and Material Consumption in an Electrocoagulation System Using AC Waveform Instead of DC for Nickel Removal: Process Optimization through RSM. Chem. Eng. Process. Process Intensif. 2022, 174, 108869. [Google Scholar] [CrossRef]
- Valekar, A.H.; Lee, M.; Yoon, J.W.; Kwak, J.; Hong, D.; Oh, K.; Cha, G.; Kwon, Y.; Jung, J.; Chang, J.; et al. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol under Mild Conditions over Zr-MOFs: Exploring the Role of Metal Node Coordination and Modi Fi Cation. ACS Catal. 2020, 10, 3720–3732. [Google Scholar] [CrossRef]
- Guo, K.; Hussain, I.; Jie, G.; Fu, Y.; Zhang, F. Strategies for Improving the Photocatalytic Performance of Metal-Organic Frameworks for CO2 Reduction: A Review. J. Environ. Sci. 2022, 125, 290–308. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, X.; Li, T.; Zhang, Y.; Xu, H.; Sun, Y.; Gu, X.; Gu, C.; Luo, J.; Gao, B. MIL Series of Metal Organic Frameworks (MOFs) as Novel Adsorbents for Heavy Metals in Water: A Review. J. Hazard. Mater. 2022, 429, 128271. [Google Scholar] [CrossRef]
- Hassan, N.; Shahat, A.; El-Deen, I.M.; El-Afify, M.A.M.; El-Bindary, M.A. Synthesis and Characterization of NH2-MIL-88(Fe) for Efficient Adsorption of Dyes. J. Mol. Struct. 2022, 1258, 132662. [Google Scholar] [CrossRef]
- Bedia, J.; Belver, C.; Ponce, S.; Rodriguez, J.; Rodriguez, J.J. Adsorption of Antipyrine by Activated Carbons from FeCl3-Activation of Tara Gum. Chem. Eng. J. 2018, 333, 58–65. [Google Scholar] [CrossRef]
- Puga, A.; Rosales, E.; Sanromán, M.A.; Pazos, M. Environmental Application of Monolithic Carbonaceous Aerogels for the Removal of Emerging Pollutants. Chemosphere 2020, 248, 125995. [Google Scholar] [CrossRef]
- Hayoun, B.; Escudero-Curiel, S.; Bourouina, M.; Bourouina-Bacha, S.; Sanromán, M.A.; Pazos, M. Preparation and Characterization of High Performance Hydrochar for Efficient Adsorption of Drugs Mixture. J. Mol. Liq. 2022, 353, 118797. [Google Scholar] [CrossRef]
- Berardozzi, E.; Tuninetti, J.S.; Einschlag, F.S.G.; Azzaroni, O.; Ceolín, M.; Rafti, M. Comparison of Arsenate Adsorption from Neutral PH Aqueous Solutions Using Two Different Iron-Trimesate Porous Solids: Kinetics, Equilibrium Isotherms, and Synchrotron X-Ray Absorption Experiments. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1185–1194. [Google Scholar] [CrossRef]
- Bi, H.; Liu, C.; Li, J.; Tan, J. Insights into the Visible-Light-Driving MIL-101 (Fe)/g–C3N4 Materials-Activated Persulfate System for Efficient Hydrochloride Water Purification. J. Solid State Chem. 2022, 306, 122741. [Google Scholar] [CrossRef]
- Bao, Y.; Chen, T.; Zhu, Z.; Zhang, H.; Qiu, Y.; Yin, D. Mo2C/C Catalyst as Efficient Peroxymonosulfate Activator for Carbamazepine Degradation. Chemosphere 2022, 287, 132047. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Dai, J.; Yang, D.; Li, C.; Yan, Y.; Wang, Y. 2D/2D Confinement Graphene-Supported Bimetallic Sulfides/g-C3N4 Composites with Abundant Sulfur Vacancies as Highly Active Catalytic Self-Cleaning Membranes for Organic Contaminants Degradation. Chem. Eng. J. 2021, 418, 129383. [Google Scholar] [CrossRef]
- Li, Z.; Ning, S.; Zhu, H.; Wang, X.; Yin, X.; Fujita, T.; Wei, Y. Novel NbCo-MOF as an Advanced Peroxymonosulfate Catalyst for Organic Pollutants Removal: Growth, Performance and Mechanism Study. Chemosphere 2022, 288, 132600. [Google Scholar] [CrossRef]
- Li, Y.; He, Y.; Zhuang, J.; Shi, H. Hierarchical Microsphere Encapsulated in Graphene Oxide Composite for Durable Synergetic Membrane Separation and Fenton-like Degradation. Chem. Eng. J. 2022, 430, 133124. [Google Scholar] [CrossRef]
- Zhao, S.; Li, S.; Long, Y.; Shen, X.; Zhao, Z.; Wei, Q.; Wang, S.; Zhang, Z.; Zhang, X.; Zhang, Z. Ce-Based Heterogeneous Catalysts by Partial Thermal Decomposition of Ce-MOFs in Activation of Peroxymonosulfate for the Removal of Organic Pollutants under Visible Light. Chemosphere 2021, 280, 130637. [Google Scholar] [CrossRef]
- Liu, Y.; Zou, H.; Ma, H.; Ko, J.; Sun, W.; Lin, K.A.; Zhan, S.; Wang, H. Highly Efficient Activation of Peroxymonosulfate by MOF-Derived CoP/CoOx Heterostructured Nanoparticles for the Degradation of Tetracycline. Chem. Eng. J. 2022, 430, 132816. [Google Scholar] [CrossRef]
- Sun, H.; Rizwan, M.; Vijay, P.; Tad, M.O.; Wang, S. Submicron Sized Water-Stable Metal Organic Framework (Bio-MOF-11) for Catalytic Degradation of Pharmaceuticals and Personal Care Products. Chemosphere 2018, 196, 105–114. [Google Scholar] [CrossRef]
- Bai, Y.; Nie, G.; He, Y.; Li, C.; Wang, X.; Ye, L. Cu-MOF for Effectively Organic Pollutants Degradation and E. Coli Inactivation via Catalytic Activation of Peroxymonosulfate. J. Taiwan Inst. Chem. Eng. 2022, 132, 104154. [Google Scholar] [CrossRef]
- Emam, H.E.; El-shahat, M.; Abdelhameed, R.M. Observable Removal of Pharmaceutical Residues by Highly Porous Photoactive Cellulose Acetate @ MIL-MOF Film. J. Hazard. Mater. 2021, 414, 125509. [Google Scholar] [CrossRef]
- Zhao, F.; Fang, S.; Gao, Y.; Bi, J. Removal of Aqueous Pharmaceuticals by Magnetically Functionalized Zr-MOFs: Adsorption Kinetics, Isotherms, and Regeneration. J. Colloid Interface Sci. 2022, 615, 876–886. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Ning, S.; Li, Z.; Wang, X.; Fujita, T.; Wei, Y.; Yin, X. Synthesis of Bimetallic NbCo-Piperazine Catalyst and Study on Its Advanced Redox Treatment of Pharmaceuticals and Personal Care Products by Activation of Permonosulfate. Sep. Purif. Technol. 2022, 285, 120345. [Google Scholar] [CrossRef]
- Ye, Z.; Oriol, R.; Yang, C.; Sirés, I.; Li, X.Y. A Novel NH2-MIL-88B(Fe)-Modified Ceramic Membrane for the Integration of Electro-Fenton and Filtration Processes: A Case Study on Naproxen Degradation. Chem. Eng. J. 2022, 433, 133547. [Google Scholar] [CrossRef]
- Kaur, M.; Kumar, S.; Sushil, M.; Kansal, K. Construction of Multifunctional—NH2-UiO-66 Metal Organic Framework: Sensing and Photocatalytic Degradation of Ketorolac Tromethamine and Tetracycline in Aqueous Medium. Environ. Sci. Pollut. Res. 2022, 2022, 1–21. [Google Scholar] [CrossRef] [PubMed]
Independent Variable | Factor Level | ||
---|---|---|---|
−1 | 0 | 1 | |
x1 (PMS) mg/L | 30.7 | 92.2 | 153.7 |
x2 (Basolite® F-300) mg/L | 0 | 32.9 | 65.8 |
Run | PMS (mg/L), x1 | Basolite® F-300 (mg/L), x2 | Disinfection Efficiency (5 min) |
---|---|---|---|
1 | 153.7 | 0.0 | 5.10 |
2 | 92.2 | 65.8 | 4.97 |
3 | 30.7 | 32.9 | 2.43 |
4 | 30.7 | 65.8 | 2.83 |
5 | 92.2 | 32.9 | 4.86 |
6 | 92.2 | 32.9 | 5.05 |
7 | 153.7 | 32.9 | 5.62 |
8 | 153.7 | 65.8 | 6.24 |
9 | 30.7 | 0.0 | 2.03 |
10 | 92.2 | 0.0 | 4.45 |
11 | 92.2 | 32.9 | 4.96 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Values | p-Values |
---|---|---|---|---|---|
Model | 18.34 | 4 | 4.58 | 105.45 | <0.0001 significant |
x1 | 16.03 | 1 | 16.03 | 368.67 | <0.0001 significant |
x2 | 0.91 | 1 | 0.91 | 20.86 | 0.0038 significant |
x1 x2 | 0.003 | 1 | 0.003 | 0.079 | 0.7882 |
x12 | 1.50 | 1 | 1.50 | 67.43 | 0.0011 significant |
Std. Dev | 0.21 | R2 | 0.986 | ||
Mean | 4.41 | Adj R2 | 0.977 | ||
CV % | 4.73 | Pred R2 | 0.934 | ||
Adeq Precision | 29.16 |
Pseudo-First-Order Model | ||||
---|---|---|---|---|
[Basolite® F-300] (mg/L) | [Antipyrine] (mg/L) | R2 | qe (mg/g) | k1 (min−1) |
65.8 | 10 | 0.989 | 2.27 | 0.383 |
65.8 | 50 | 0.994 | 6.82 | 0.363 |
263 | 10 | 0.996 | 4.81 | 0.236 |
263 | 50 | 0.995 | 12.65 | 0.506 |
Pseudo-Second-Order Model | ||||
[Basolite® F-300] (mg/L) | [Antipyrine] (mg/L) | R2 | qe(mg/g) | k2(g/mg·min) |
65.8 | 10 | 0.997 | 2.36 | 0.359 |
65.8 | 50 | 0.990 | 6.98 | 0.145 |
263 | 10 | 0.981 | 5.03 | 0.092 |
263 | 50 | 0.997 | 12.89 | 0.138 |
PMS Concentration (mg/L) | |||
---|---|---|---|
Parameters | 307.4 | 230.5 | 153.7 |
R2 | 0.990 | 0.997 | 0.997 |
k (min−1) | 0.013 | 0.008 | 0.005 |
Concentration of Basolite® F-300 (mg/L) | ||||
---|---|---|---|---|
Parameters | 263 | 131.5 | 65.8 | 0 |
R2 | 0.971 | 0.969 | 0.993 | 0.993 |
k (min−1) | 0.013 | 0.010 | 0.008 | 0.006 |
MOF | Pollutant | Process | Cycles/Efficiency | Ref. |
---|---|---|---|---|
Basolite® F-300 | Antipyrine (AP) and E. coli | PMS activation | AP—1st cycle: 100%, 4th cycle: 93% E. coli—1st cycle: 100%, 4th cycle: 100% | This study |
CA@Ti-MIL-NH2 | Paracetamol | Adsorption and degradation/ visible light | 1st cycle: 96% 5th cycle: 85% | [70] |
Fe3O4@MOF-525 | Tetracycline (TC) | Photocatalysis | 1st cycle: 98% 4th cycle: 94% | [71] |
NbCo-PZ | TC | PMS activation | 1st cycle: 95.5% 6th cycle: 60.4% | [72] |
NH2-MIL-88B(Fe)@CM | Naproxen | Electro-Fenton | 1st cycle: 86% 5th cycle: 86% | [73] |
UiO-66-NH2 | TC and Ketorolac tromethamine (KTC) | Photocatalysis | TC—1st cycle:71.8%, 5th cycle: 58% KTC—1st cycle: 68.3%, 5th cycle: 50% | [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fdez-Sanromán, A.; Pazos, M.; Sanroman, A. Peroxymonosulphate Activation by Basolite® F-300 for Escherichia coli Disinfection and Antipyrine Degradation. Int. J. Environ. Res. Public Health 2022, 19, 6852. https://doi.org/10.3390/ijerph19116852
Fdez-Sanromán A, Pazos M, Sanroman A. Peroxymonosulphate Activation by Basolite® F-300 for Escherichia coli Disinfection and Antipyrine Degradation. International Journal of Environmental Research and Public Health. 2022; 19(11):6852. https://doi.org/10.3390/ijerph19116852
Chicago/Turabian StyleFdez-Sanromán, Antía, Marta Pazos, and Angeles Sanroman. 2022. "Peroxymonosulphate Activation by Basolite® F-300 for Escherichia coli Disinfection and Antipyrine Degradation" International Journal of Environmental Research and Public Health 19, no. 11: 6852. https://doi.org/10.3390/ijerph19116852