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Abstract: Recognizing why an infant cries is challenging as babies cannot communicate verbally
with others to express their wishes or needs. This leads to difficulties for parents in identifying
the needs and the health of their infants. This study used deep learning (DL) algorithms such
as the convolutional neural network (CNN) and long short-term memory (LSTM) to recognize
infants’ necessities such as hunger/thirst, need for a diaper change, emotional needs (e.g., need for
touch/holding), and pain caused by medical treatment (e.g., injection). The classical artificial neural
network (ANN) was also used for comparison. The inputs of ANN, CNN, and LSTM were the features
extracted from 1607 10 s audio recordings of infants using mel-frequency cepstral coefficients (MFCC).
Results showed that CNN and LSTM both provided decent performance, around 95% in accuracy,
precision, and recall, in differentiating healthy and sick infants. For recognizing infants’ specific
needs, CNN reached up to 60% accuracy, outperforming LSTM and ANN in almost all measures.
These results could be applied as indicators for future applications to help parents understand their
infant’s condition and needs.
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1. Introduction

Through language, humans deliver information to express their will. However, they
have to learn from scratch. Lacking language, newborn babies are unable to express their
specific desires. In general, a baby’s parents are its first teachers, and this interaction is the
most crucial aspect of babies’ growth. Newborn babies express negative emotion or need
by crying [1], often to the consternation of parents who cannot immediately ascertain the
nature of this need.

Previous research has found that infants cry in fundamental frequencies that correlate
to different factors, such as emotional state, health, gender, disease (abnormalities), pre-
term vs. full-term, first cry, identity, etc. [2] In addition to these fundamental frequencies,
infant cries have been subjected to signal analysis based on features including latency,
duration, formant frequencies, pitch contour, and stop pattern [2].

Previous studies have sought to classify infant cries by type, with most focusing on
using artificial intelligence approaches to predict physiological sensations such as hunger,
pain, diaper change, and discomfort [3]. Some previous studies used pathological classes
such as normal cries, hypo-acoustic (deaf) cries, and asphyxiating cries. For instance, Reyes–
Galaviz and Arch–Tirado applied linear prediction and adaptive neuro-fuzzy inference
system (ANFIS) analysis of the cry sound wave, successfully distinguishing fundamental
frequencies among infants aged under 6 months [4].

Yong et al. used feature extraction to analyze infant cry signals, extracting 12 orders
of mel-frequency cepstral coefficient (MFCC) features for model development [3]. Their
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developed model combined the convolutional neural network (CNN) and a stacked re-
stricted Boltzmann machine (RBM). The model classified results as pathological based
on the health status of the baby (sick vs. healthy), recognizing pathological conditions
classified as hungry, in need of diaper changing, emotional needs, and in pain caused by
medical treatment.

In using artificial intelligence approaches for building a classification model, feature
selection plays a key role in determining model accuracy. On the other hand, deep learn-
ing approaches often provide satisfactory classification results, such as using artificial
neural networks (ANN) or multi-layer perceptrons (MLP), CNN, and long-short term
memory (LSTM); meanwhile, MFCC is commonly used for feature extraction in audio
analysis. Therefore, this study sought to develop deep learning algorithms for infant cry
classification.

The rest of this paper is organized as follows: Section 2 describes the methodology
for data collection, data cleaning, feature extraction, and data analysis. The results are
summarized and discussed in Section 3. The concluding remarks and future search are
provided in Section 4.

2. Methodology

The cry signal was analyzed to extract important signal features [5]. One such feature
was fundamental frequency in the range of 400 Hz to 500 Hz, compared with 200 Hz to
300 Hz for adults [6]. Other features for audio analysis include latency, duration, and
formant frequency and are depicted as spectrograms for ease of use [2].

Data collection, data pre-processing, feature extraction, and data analysis will be
detailed in the following subsections.

2.1. Data Collection

Audio data were collected by hospital nurses when the infants under their care began
crying. The nurses would then note the condition they discovered to be the proximal cause
of the infant crying:

• Hunger: The infant ceased crying when fed.
• Diaper change: The infant ceased crying following diaper change.
• Emotional needs: The infant ceased crying following physical touch/holding.
• Physiological Pain: Infant pain was caused by invasive medical treatment, including

injection.

Infants were divided into “healthy” and “sick” datasets depending on whether they
were in the nursery or neonatal intensive care unit (NICU), respectively. Data were recorded
at the Far Eastern Memorial Hospital with infants in the nursery deemed healthy, while
those in the ICU were deemed unhealthy. Anonymized audio signal recordings of infants
(10 healthy infants aged 2 to 27 days in the nursery, and 6 neonatal ICU infants aged up
to 4 months) were collected by an app and labeled by nursing staff at the Far Eastern
Memorial Hospital, with IRB approval and informed parental consent.

Each audio recording had a duration of 10 s. Crying incidents lasting less than 10 s
were not recorded. The app also determined that if an infant cried longer than 10 s, only the
first 10 s of data was collected. There was then a 1 min resting time for the app to process
and upload the data to the cloud. Finally, if an infant’s cry lasted more than 1 min and 10 s,
the data were recorded as two separate cries.

2.2. Data Pre-Processing

Audio data quality highly depends on signal pre-processing [7,8]. Signal pre-processing
eliminates irrelevant or unwanted information like noise and channel distortion [5].

The raw audio data collected from the hospital included noise which needed to be
removed before modeling. Prior to cleaning, the data were retrieved from cloud storage
in Wavpack format (.wav). The original 10 s audio clips were split into five 2 s clips and
converted to 16-bit.wav files with a sampling rate of 8000 Hz.
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One of the most important indicators of data cleaning performance is the removal of
all bad data. Data were considered unclean data if 60% of the data matched these criteria:
sound of adult human detected, data mislabeled, electronic/mechanical noise detected,
sound of other infants detected, silence, etc.

2.3. Feature Extraction

MFCC is widely used for feature extraction in audio analysis because of its highly
efficient computer schemes and its robustness in distinguishing different noises [9]. MFCC
effectively detects the human ear’s critical bandwidth frequencies used to retrieve important
speech characteristics, and its procedure is shown in Figure 1.
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Figure 1. Block diagram of MFCC.

In the first step, the audio was passed through a filter that emphasized higher frequen-
cies. As a result of the loss of information in the higher frequencies, pre-emphasis was
required to maintain the information in the higher frequencies.

The second step, framing, involved dividing audio signals into smaller segments.
Framing was needed to get stationary information from part of the signal. In general, the
width of the frame was around 20–30 ms. During this step, in order to prevent the adjacent
frames from changing excessively, there was an overlap area between the two frames. The
standard windows for MFCC were 25 ms frame with 10 ms overlap [10].

The next step was Hamming windowing, where each frame was multiplied in the
hamming window. This step helped to reduce discontinuity in a signal by minimizing the
spectral distortion at the beginning and the end of each frame. With Hamming window
added to the spectrum, the intensity of the noise was reduced, and the peak representing
the target signal was more apparent.

In fast Fourier transform (FFT), the frames were converted from the time domain to
the frequency domain. The multiple-magnitude frequency passed through a triangular
bandpass filter used to smooth the magnitude spectrum and to reduce the size of features
involved.

From the frequency spectrum to a Mel spectrum, the Mel filter bank was the primary
conversion step. The Mel-scale frequencies were distributed linearly in the low range, but
logarithmically in the high range. Human ears are capable of hearing tones at frequencies
lower than 1000 Hz on the linear scale [11]. The following equation was used to calculate
this Mel filter bank:

fMel = 2595 × log10

(
1 +

f req
700

)
(1)

Next, the log Mel spectrum was transformed using the discrete cosine transform
(DCT). These features are similar to the spectrums and are commonly called Mel-scale
cepstral coefficients. The Mel-scale cepstral coefficients were obtained from a frame of
audio derived from the output of the DCT transforms of the MFCC.
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2.4. Classification Model

The data are split into training, validation, and testing sets with a ratio of 70/15/15.
The training data are used to train the model with backpropagation in each epoch to
decrease the loss/error rate resulting from changing the weights used in the training
process. Testing validated the robustness of the training process. Data used in the testing
process were excluded from use in training.

2.4.1. Artificial Neural Network (ANN)

Artificial neural network is used to find patterns in complex classification prob-
lems [12]. ANN is a machine learning algorithm using a dense layer as the perceptron.
The ready-to-use MFCC was the input of the neural network, with 201 sequences for each
coefficient and 12 × 201 sequences = 2412 values from each data as the input for the ANN
layer. Figure 2 illustrates an ANN with three input neurons, two hidden layers (each with
four hidden neurons), and two classes for the output.
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2.4.2. Convolutional Neural Network (CNN)

Convolutional neural network is a neural network that contains many layers con-
necting all feature maps, allowing it to learn by its weights. Each layer can become the
features layer [13,14]. CNN is widely used in image classification and audio processing
due to its results and performance reliability. Figure 3 shows an illustrative example of a
one-dimensional CNN structure.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 4 of 11 
 

 

Next, the log Mel spectrum was transformed using the discrete cosine transform 
(DCT). These features are similar to the spectrums and are commonly called Mel-scale 
cepstral coefficients. The Mel-scale cepstral coefficients were obtained from a frame of au-
dio derived from the output of the DCT transforms of the MFCC. 

2.4. Classification Model 
The data are split into training, validation, and testing sets with a ratio of 70/15/15. 

The training data are used to train the model with backpropagation in each epoch to de-
crease the loss/error rate resulting from changing the weights used in the training process. 
Testing validated the robustness of the training process. Data used in the testing process 
were excluded from use in training. 

2.4.1. Artificial Neural Network (ANN) 
Artificial neural network is used to find patterns in complex classification problems 

[12]. ANN is a machine learning algorithm using a dense layer as the perceptron. The 
ready-to-use MFCC was the input of the neural network, with 201 sequences for each co-
efficient and 12 × 201 sequences = 2412 values from each data as the input for the ANN 
layer. Figure 2 illustrates an ANN with three input neurons, two hidden layers (each with 
four hidden neurons), and two classes for the output. 

 
Figure 2. Artificial neural network structure for two-class classification [12]. 

2.4.2. Convolutional Neural Network (CNN) 
Convolutional neural network is a neural network that contains many layers con-

necting all feature maps, allowing it to learn by its weights. Each layer can become the 
features layer [13,14]. CNN is widely used in image classification and audio processing 
due to its results and performance reliability. Figure 3 shows an illustrative example of a 
one-dimensional CNN structure. 

 
Figure 3. An illustrative example of the one-dimensional CNN structure [14]. Figure 3. An illustrative example of the one-dimensional CNN structure [14].

The convolutional neural network retrieved feature maps for each layer, and the stride,
padding, and kernel size were set in this layer. Kernel weights were learned during the
training process in each neuron. Each position was multiplied by time series plus a bias
term. Stride determined the step size of moving the kernel, while padding controlled the
output result of the activation map. Several activation maps such as Sigmoid, ReLU, and
hyperbolic tangent (tanh) were applied.
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The pooling layer retrieved the output from the convolutional base on stride and
padding that were set before. Two kinds of pooling were set: the maximum and the average
of the result. Finally, the fully connected layer converted the last layer’s output and became
the one-dimension result. The output took the biggest probability for the classification by
using SoftMax function.

2.4.3. Long Short-Term Memory (LSTM)

Long short-term memory is a method which avoids the vanishing gradient problem
by which a neural network never reaches its optimal weight. This problem is caused by
the error value disappearing during the backward process [15]. LSTM features three gates
(input, forget, and output) that store important information, along with a one-cell state as
illustrated in Figure 4.
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As shown in Figure 4, the key step of LSTM is the cell state of c(t − 1). The horizontal
line runs through the top of the diagram, like a conveyor belt straight down through the
entire chain. The first step in LSTM is in the forget gate (ft). h(t − 1) and x(t) are numbers
between 0 and 1 for each number in the cell state c(t − 1). The forget gate decision is made
in the sigmoid function.

The next step is the input gate (it), where the new information is either added in the
cell state or is not added. Next is C̃t, where the new candidate could be added or not. This
step determines the new input and either adds a new subject or replaces the old one.

Furthermore, the cell state needs to update c(t − 1) into the new cell state c(t). The old
state c(t − 1) is multiplied by the old state ft which was decided to be forgotten earlier, and
it is added to the product between it and C̃t. These new values are scaled to decide how
to update each state value. The last step is to get the output of the cell by using the tanh
function (value between –1 and 1).

2.5. Classification of Experiments

This research consisted of several experiments. Depending on the number of classes
considered, two-class, three-class, and four-class were investigated. The four-class consisted
of the labels of the hungry class, diaper change class, emotional need class, and medical
treatment class. The three-class removed the medical treatment class due to the relatively
small number of data points. The two-class classification was to distinguish the health
condition of the infant, i.e., healthy or sick. The full (unbalanced) dataset considered all
the data samples, while the balanced dataset employed the down-sampling technique
based on the smallest number of data points in any class considered. For example, since
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the medical treatment class owned only 88 data points, which was the smallest category,
when considering the four-class classification, other three classes randomly selected 88 data
points for further analysis.

3. Results and Discussions
3.1. Data Summary

The infant cry data were collected from 33 babies in the neonatal intensive care unit
and 26 babies from the nursery unit between October 2019 and January 2020 at the Far
Eastern Hospital Memorial Hospital. A Lollipop baby monitor provided by Masterwork
Aoitek Tech Corp was used in this study as the data collection tool. Figure 5 illustrates that
each baby recorded in each unit was separate from the other babies in the unit and that the
device was placed approximately 30 cm from the bed.
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This Lollipop device was activated by the sounds of crying infants. Each sound was
recorded for a period of ten seconds. If the cry lasted longer than ten seconds, the first ten
seconds would be saved. There was then a one-minute rest period for the app to process
and upload to the cloud. Additionally, if the baby cried for fewer than ten seconds, the app
did not record their cry. Lastly, if a baby cried for more than one minute and ten seconds,
two samples were collected consecutively. In collaboration with the nurses, an application
embedded within a mobile device was used to label each recording. For the purposes of
analysis, each recording was divided into five segments (each lasting two seconds).

After cleaning the data, the infants’ needs recognition was split into four classes.
Table 1 shows the summary of the four-class dataset. The number of data points obtained
from the healthy group was 1705, and the number of data points in the sick group were
840, nearly half of the healthy group. Also, the hungry class owned the most data points,
i.e., 1171, and medical treatment was the least with only 88 samples. In order to limit the
influence of unbalanced data, some balanced datasets were also established based on the
number of samples in the smallest class (e.g., the medical treatment in the four-class, the
diaper change in the three-class, and the sick group in the two-class, respectively). The data
were randomly split into three categories: 70% for training, 15% for validation, and 15% for
testing.

Table 1. A summary of infant cry dataset.

Group Hungry Change
Diaper

Emotional
Needs

Medical
Treatment Total

Healthy 868 301 486 50 1705
Sick 303 74 425 38 840
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3.2. Parameter Setting

Parameter setting was divided into two parts: one for the MFCC and another for
the classification methods. Table 2 provides the parameter values for the MFCC. In every
MFCC, there were 201 sequences for each coefficient. All 12 coefficients were included
in the consideration. Thus, there were 2412 values created (201 × 12 = 2412). This value
became the input of the model and the dimension based on the model used.

Table 2. MFCC Parameter.

Parameter Value

Audio length 2 s
Sampling rate 8000 Hz

Framing 25 ms
Overlapping 10 ms

Number of coefficients 12

Through the preliminary analysis, the parameter setting of each classification method—
ANN, CNN, and LSTM—were summarized in Table 3. The five-fold cross-validation was
employed for evaluating the performance of the proposed methods.

Table 3. Parameter setting of each classification method.

Method Parameters

ANN

Activation function: ReLU
Optimizer: Adam

• Input layer = (201.12)

• Hidden layer 1 = 256
• Dropout = 50%
• Hidden layer 2 = 128
• Dropout = 50%

• Output layer = (total class)

Epoch = 20

CNN
Optimizer Adam

• Input layer = (201.12)
• Convolutional 1-D = 364, kernel = 3, kernel regulation = l2 (0.01)
• Max-Pooling 1-D (Kernel = 3)
• Convolutional 1-D = 180, kernel = 3, kernel regulation = l2 (0.01)
• Max-Pooling 1-D (Kernel = 3)
• Global Average Pooling 1-D
• Hidden layer 1 = 32
• Dropout = 40%
• Output layer = (total class)

Epoch = 20

LSTM

Input Size = (201.12)
Activation function: Sigmoid
Optimizer: Adam
Number of LSTM Neuron:

• Hidden layer 1 = 128

Dropout = 5%
Recurrent dropout = 35%
Return sequences = True

• Hidden layer 2 = 32

Dropout = 5%
Recurrent dropout = 35%
Return sequences = False
Output layer = (total class)
Epoch = 20

3.3. Experimental Results

Tables 4–6 show the precision and recall of the four-class, three-class, and two-class
classification results, respectively. Tables 4 and 5 show clear differences between the
balanced and the full (imbalanced) datasets. The classes with the fewest data points in
the full dataset, i.e., medical treatment in Table 4 and change diaper in Table 5, failed
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the prediction. However, the balanced data strategy showed tremendous improvement
for precision and recall in changing diapers and medical treatment classes. For example,
medical treatment’s precision improved from 7% to 53%, and the recall of change diapers
improved from 24% to 53% in CNN in Table 4. Similar improvement can also be observed
in the other two methods in Tables 4 and 5. CNN performed the best of the three competing
methods, while ANN showed inferior results. For the balanced dataset, CNN’s precision
and recall ranged from 46% to 60% in the four-class and 55% to 61% in the three-class
analyses.

Table 4. Four-class precision and recall results.

Class Dataset Method

Precision Recall

Hungry Change
Diaper

Emotional
Needs

Medical
Treat-
ment

Hungry Change
Diaper

Emotional
Needs

Medical
Treat-
ment

Four-
class

Full
ANN 0.54 0.06 0.42 0.06 0.51 0.21 0.32 0.01
CNN 0.57 0.41 0.55 0.07 0.54 0.24 0.54 0.01
LSTM 0.52 0.22 0.42 0.24 0.55 0.13 0.50 0.03

Balanced
ANN 0.24 0.40 0.36 0.29 0.27 0.46 0.37 0.22
CNN 0.54 0.54 0.60 0.53 0.46 0.53 0.59 0.49
LSTM 0.34 0.35 0.43 0.31 0.36 0.29 0.47 0.35

Table 5. Three-class precision and recall results.

Class Dataset Method
Precision Recall

Hungry Change
Diaper

Emotional
Needs Hungry Change

Diaper
Emotional

Needs

Three-class

Full
ANN 0.51 0.11 0.32 0.37 0.21 0.35
CNN 0.62 0.50 0.58 0.69 0.12 0.65
LSTM 0.60 0.27 0.50 0.62 0.12 0.58

Balanced
ANN 0.42 0.44 0.47 0.44 0.46 0.43
CNN 0.61 0.55 0.56 0.58 0.58 0.55
LSTM 0.47 0.44 0.45 0.44 0.45 0.48

Table 6. Two-class precision and recall results.

Class Dataset Method
Precision Recall

Sick Healthy Sick Healthy

Two-class

Full
ANN 0.96 0.90 0.93 0.93
CNN 0.96 0.95 0.98 0.89
LSTM 0.95 0.88 0.94 0.91

Balanced
ANN 0.90 0.86 0.83 0.89
CNN 0.94 0.97 0.98 0.94
LSTM 0.98 0.93 0.93 0.98

As shown in Table 6, CNN and LSTM showed competitive performance in the two-
class. CNN obtained 97% of healthy class’s precision and 98% of sick class’s recall in
the balanced dataset, while LSTM had similar digits in those measures. Not surprisingly,
ANN’s most inferior performance showed in the two-class case again. In addition, the
balanced dataset also improved the performance of classification of all three methods in
Table 6, although the gap was not as significant as the ones in Tables 4 and 5.

Finally, the average accuracy over all classes is summarized in Table 7. Again, consis-
tent with the precision and recall performance, CNN outperformed LSTM and ANN, and
the balanced dataset helped improve the accuracy. For example, CNN’s average accuracy
reached 64% and 60% in the four-class and three-class, respectively, while 96% of accuracy
was obtained for the two-class.
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Table 7. Accuracy of different classes over three methods.

Class Dataset ANN CNN LSTM

Four-class
Full 0.28 0.55 0.46

Balanced 0.33 0.64 0.37

Three-class
Full 0.38 0.60 0.54

Balanced 0.45 0.60 0.45

Two-class
Full 0.92 0.94 0.93

Balanced 0.87 0.96 0.95

The proposed methods could all distinguish the cry of an infant in healthy condition
with high accuracy, precision, and recall. However, when it came to classifying psychologi-
cal or physiological needs, the performance of classification deteriorated. This condition
could be attributed to the dataset’s labeling errors, resulting in erroneous class predictions.
For example, an infant may be in distress because it simultaneously is hungry and wants to
be held. This kind of compound behavior is difficult to predict and is tough to be labeled
by nurses.

4. Conclusions

The proposed deep learning approaches, CNN and LSTM, provided reliable and
robust results for classifying sick and healthy infants based on recordings of infant cries.
Recognition accuracy was improved by using a balanced dataset, with testing results of
up to 64% on CNN for the four-class categorization. Better results were obtained in the
health needs (two-class) test, possibly because of the data collection method employed,
wherein the healthy and sick infants were diagnosed by doctors and were kept in two
different rooms. This resulted in more controlled and accurate situations for data collection,
as opposed to the emotional-state data collection, which presented the increased chance
of mislabeling. Another possible reason for mislabeling was that an infant may have
simultaneously experienced multiple stimuli resulting in crying behavior, making it difficult
to isolate the actual proximal cause.

This study involved data samples with some unique characteristics such as race, age,
residence area, and health status, as compared with other similar studies in the literature.
Moreover, good data always play a major part in recognition performance. Improving the
quality of data points is one way to get better recognition. Future work should seek to
further improve data quality by better controlling the data collection environment, and
additional feature extraction methods should be used for performance comparison against
the MFCC feature set used here. The current dataset could also be combined with data from
other hospitals, and dataset with age considerations is another way to boost the robustness
of the model. In addition, the current model only included audio signals, and future work
could integrate video signals to improve model robustness. Moreover, ensemble learning
may offer performance improvements on the algorithmic side. Research involving data
pertaining to multiple labels and experiments on different feature-extraction techniques
can also be interesting areas for future investigation.
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