
Citation: Zhang, H.; Ke, H.

Understanding the Heterogeneous

Impact of Innovation Efficiency on

Urban Ecological Footprint in China.

Int. J. Environ. Res. Public Health 2022,

19, 6054. https://doi.org/10.3390/

ijerph19106054

Academic Editor: Paul A. Sandifer

Received: 14 March 2022

Accepted: 11 May 2022

Published: 16 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Understanding the Heterogeneous Impact of Innovation
Efficiency on Urban Ecological Footprint in China
Hui Zhang 1 and Haiqian Ke 1,2,*

1 Nanyang Institute of Technology, Fanli Business School, Nanyang 473000, China; zhanghuinylg@163.com
2 Institute of Central China Development, Wuhan University, Wuhan 430072, China
* Correspondence: kehaiqian@whu.edu.cn

Abstract: Under the background of tightening resource constraints and a deteriorating ecological
environment, innovation is aimed at saving energy, reducing consumption, abating pollution and
achieving sustainable economic growth. This has gradually become an important way to improve
industrial structure, competitiveness and environmental performance worldwide. In this study,
we use the super-efficiency SBM model to calculate the innovation efficiency of 283 cities in China
from 2009 to 2019. Then, based on the dynamic threshold regression model, we explore the impact
of innovation efficiency on ecological footprint in innovative cities or non-innovative cities under
different economic development levels. The main conclusions that can be drawn are as follows.
(1) Within the research period, the influence of innovation efficiency on ecological footprint in China
shows a negative double threshold feature, that is, increasing regional innovation efficiency has an
inhibitory effect on ecological footprint. (2) For innovative cities, innovation efficiency has a strong
inhibitory effect on ecological footprint, and it becomes stronger and stronger with the growth of
night light data; but this inhibitory effect is gradually decreasing with improvement of economic
development level in non-innovative cities. (3) Under the threshold of different levels of economic
development, the number of scientific human resources, scientific financial resources, scientific
information resources and scientific papers has a positive effect on ecological footprint, while the
number of patent applications has a negative effect on ecological footprint.

Keywords: innovation efficiency; ecological footprint; dynamic threshold effect; night light data

1. Introduction

The concept of ecological footprint was first proposed by the Canadian ecological
economist Rees in 1992 [1]. Ecological footprint specifically refers to space with biological
productivity which could continuously provide resources or absorb waste, i.e., the geo-
graphical area needed to sustain one person or one region to live [2]. Ecological footprint
realizes the unified description of various natural resources by introducing the concept
of ecologically productive land, and further realizes the additivity and comparability of
various types of ecologically productive land in various regions by introducing equilibrium
factors [3]. More importantly, ecological footprint can objectively measure and compare the
two-dimensional sustainability degree of time and space, so that people can clearly know
how far is from a sustainability goal, which is helpful to monitor the implementation of a
sustainability plan. Based on the advantages mentioned above, ecological footprint has
a wide range of applications [4]. We can calculate the ecological footprint of individuals,
families, cities, countries, realize vertical and horizontal comparative analyses of them,
thereby promoting popularization of the concept.

In 2020, the range and frequency of human activities in different regions of the world
decreased in different degrees due to the COVID-19 pandemic [5]. Nevertheless, in order
to achieve long-term, stable, social and economic development, human beings are still
continuously using various resources and putting certain pressures on the ecosystem. In
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fact, China’s ecological and environmental problems arise mainly from the process of
advancing industrialization. China’s increasingly excessive consumption of resources, is
giving rise to a bottleneck of resource depletion and ecological environment deterioration.
However, innovation aims at saving energy, reducing consumption, reducing pollution
and achieving sustained economic growth. The more advanced the technology, the more
environmentally friendly it tends to be. Therefore, innovation has gradually become an
important path for countries around the world to improve industrial structure, competi-
tiveness and environmental performance [6]. As China enters this period of transformation
and development, China’s economy is gradually shifting from relying on traditional factors
towards innovation. That is, promoting innovation levels in the future is an important
driving force for China’s sustainable development.

Innovation is actually a complex nonlinear process with multi-factor inputs and
outputs. The input of innovative resources does not necessarily lead to an equivalent
innovative output. Innovation efficiency, as an important indicator to measure the level
of regional innovation, refers to the efficiency of distribution and use of various scientific
and technological resources in different fields of scientific and technological activities, and
it is also the result of cooperation and interaction among all components of the innova-
tion system [7–9]. Additionally, innovative cities are different from non-innovative cities
in the following two aspects. Firstly, innovative cities are the pilot objects of national
innovation-driven development strategy, because promoting the innovation level of cities
is not only the result of market selection, but also the result of national participation and
government strategic guidance. Secondly, by increasing the government’s input of inno-
vation resources, innovative cities can improve the gathering ability of urban innovation
elements and guarantee the supply of knowledge elements in innovation activities, which
is conducive to promoting the formation of urban innovation systems with enterprises
as the main bodies and improvement in the level of urban innovation [10,11]. Then, will
improvement in innovation efficiency help to promote sustainable development of regional
society, economy and ecology? How will regional innovation efficiency affect the ecological
footprint between innovative cities and non-innovative cities? To address these questions,
this paper uses the super-efficiency SBM model to measure the innovation efficiency of
Chinese cities from 2009 to 2019, uses DMSP/OLS nighttime light data to characterize
regional socioeconomic development level, and analyzes the impact of China’s innovation
efficiency on ecological footprint based on the dynamic threshold regression model. This
re-examines the relationship between innovation efficiency and ecological footprint, broad-
ens the research ideas in this field, and, thereby, exploring the deep integration path of
regional innovation development and green development in China.

2. Literature Review

Ecological footprint refers to the traces left by human impact on the natural ecological
environment. Therefore, the larger the ecological footprint, the more serious the damage
to the ecological environment [12]. Since 1970, the total global ecological footprint has
begun to exceed the earth’s carrying capacity, and it has been on the rise year by year.
China’s ecological footprint has shown a rapid upward trend since 2000. Data provided
by Global Footprint Network (GFN) in 2020 show that although China ranks 66th in the
world in terms of ecological footprint per capita, the rate of resource consumption in
China has seriously exceeded the rate of resource renewal and China’s rate ranks first in
the world with a total ecological footprint of 5.35 billion global hectares [13]. It shows
enormous pressure on China’s ecological environment. Therefore, it is necessary to conduct
continuous tracking studies on China’s ecological and environmental problems.

In fact, China’s ecological footprint basically shows a “stepped” spatial distribution
pattern with the highest in the east, the second highest in the center, and the lower in the
west. Jia et al. (2009) used panel data and the extended STIRPAT (Stochastic Impacts by
Regression on Population, Affluence, and Technology) model to decompose the variabil-
ity of ecological footprints across eight regions of China, showing that the influences of
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population size, economic growth, energy efficiency, and industrial structure on ecological
footprint were significant [14]. Chen & Chen (2016) analyzed the changes of urban eco-
logical footprint in China, and their influencing factors as well, and the results showed
that population growth, income level, energy efficiency, industrial structure, etc. were
important factors causing differences in provincial ecological footprints, while with higher
economic levels, the ecological footprints of the eastern regions were generally higher than
those of the central and western regions [15]. Therefore, innovation may have different
degrees of impact on the quality of the ecological environment, due to the differences
in levels of regional economic development. Notably, Kabir et al. (2021) found that the
inhibitory effect of technological innovation on pollutant emission reduction in China was
enhanced by the level of regional economic development for the following reasons [16].
First, higher economic level could provide effective financial support, thereby increasing
the technological innovation level, which is conducive to the vigorous development, pro-
motion and utilization of clean energy, effectively reducing carbon emissions, curbing
pollutant emissions and alleviating pressure on the ecological environment. Second, with
improvement of the level of economic development, social awareness of environmental
protection is relatively enhanced, and people’s consumption preferences gradually shift
from focusing on the price of the final product to attaching importance to aspects such as
environmental protection and energy conservation, which has a positive impact on the
ecological environment [17]. It is essentially the same as the content of the environmental
kuznets “inverted U-shaped” curve (EKC), proposed by Grossman & Krueger (1995), and
the porter hypothesis (Porter, 1990) [18,19]. That is, with improvement of the level of
economic development, innovation plays a more and more important role in improving
the quality of the ecological environment. So, does innovation efficiency follow the same
rule for ecological footprint? It needs to be further explored.

In 2008, the National Development and Reform Commission of China approved Shen-
zhen as the first national pilot innovative city, and the number of innovative cities has
been increasing since then. So far, 78 innovative pilot cities have been approved by the
Ministry of Science and Technology [20]. The pilot innovative city aims to carry out the
construction practice of innovative cities with local characteristics, according to the endow-
ment conditions of the city’s own resource base, development level, location advantages,
industrial characteristics and so on. The Chinese government has clearly proposed to
build innovative cities into cities with strong independent innovation ability, outstanding
scientific and technological support, high levels of sustainable economic and social devel-
opment, and remarkable regional radiation. Therefore, the inclination of innovation policy
enables innovative cities to obtain more abundant innovation factor resources [21]. With the
superposition of policy effects, innovative cities have effectively enhanced the input–output
efficiency of innovation. At the same time, in the process of implementation of innovation
policies, they will continue to correct and improve themselves, so that the implementation
of innovation policies will be more targeted and compatible, and more able to meet the
realistic needs of independent innovation in innovative cities, and will have stronger roles
in promoting the efficiency of their own innovations. However, non-innovative cities will
find it difficult to improve their efficiencies, in terms of innovation input and output, due
to lack of relevant policy support and lack of effective construction of innovation platforms.
Existing research still lacks attention regarding this issue. That is, there may be a difference
in the impact of innovation efficiency on ecological footprint between innovative cities and
non-innovative cities.

During the process of continuous expansion of urban areas, Malthus (1798) was the
first to point out that the main reason for lack of regional resources comes from limits
imposed by growth of population [22], which is also the starting point for people to pay
attention to the impact of population scale on the environment. Commoner (1971) believes
that the development of industrial technology is the primary cause of environmental quality
deterioration [23]. At the same time, the “population growth theory” proposed by Ehrlich
& Holdren (1971) believes that “compared with sophisticated management technology,
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the oversize population is the deep-rooted cause of ecological environment pressure” and
emphasizes that population growth is the most important cause of environmental deterio-
ration [24]. Also, innovation could influence urban sustainability in different ways [25,26].
Therefore, the marginal contributions of this paper are as follows: (1) As the city is the
extension and carrying space of national innovation and regional innovation, based on
283 cities from 2009 to 2019, this paper provides a systematic study on the impact of eco-
logical footprint from a new perspective of innovation efficiency, instead of innovation
itself. (2) Taking nighttime light data as the threshold variable is more comprehensive and
objective, as it can measure real economic growth, and also tests economic agglomeration,
urbanization, population mobility, and energy consumption. (3) This paper verifies whether
the government’s policy support for innovation will have an impact on the relationship
between innovation efficiency and ecological footprint, and what impact it will have. The
conclusions will help relevant departments to formulate specific and differentiated policies,
so as to promote China’s sustainable development.

The rest of the paper is organized as follows: the third part presents the model and
data sources, the fourth part provides the analysis of regression results, and, finally, we
present the conclusions and discuss the policy implications.

3. Data and Model
3.1. Variable Description
1© Explained variable (ecological footprint): in the calculation of ecological footprint, var-

ious resources and energy consumption items are converted into six types of biological
production area, including cultivated land, grassland, woodland, construction land,
fossil energy land and ocean (water area). Cultivated land is the most productive land
type, providing most of the biomass used by human beings. The values of equilibrium
factors, given by various institutions and researchers in different years, are relatively
stable, with little differences. Therefore, this paper selects the equilibrium factor
data provided by “Global Footprint Network” (GFN) in 2018: cultivated land 2.52,
grassland 0.43, woodland 1.28, water area 0.35, energy land 1.28, and construction
land 2.52 [27]. The formula is as follows:

EF = N × e f (1)

ef =
6

∑
j=1

n

∑
i=1

(rjai) =
6

∑
j=1

n

∑
i=1

(rj × ci/pi) j = (1, 2, 3 . . . 6) (2)

In Equation (1), EF is the total ecological footprint of the region, ef is the ecological
footprint per capita of the region, and N is the population in the region. In Equation (2), i
is the category of consumption resource, ai is the ecologically productive land occupied
per capita converted from the world average product of the ith consumption resource, ci
is the product per capita of the ith consumption resource, pi is the world average product
of the ecologically productive land producing the ith consumption resource, and rj is
the equilibrium factor of the jth ecologically productive land. There are six ecologically
productive lands.

2© Core explanatory variable (innovation efficiency): this paper mainly measures innova-
tion efficiency from the perspective of input and output of scientific and technological
resources. The inputs in scientific resources are mainly reflected in the allocation
of scientific human resources, financial resources, scientific and technological infor-
mation resources, and other elements. Among these, scientific human resources are
represented by the full-time equivalent of research and development personnel, an
indicator that reflects the ability of regional talent attraction. The scientific financial
resources are represented by the internal expenditure of Research and Development
funds, an indicator that reflects the level of regional support for scientific and techno-
logical activities. The development level of regional scientific information resources
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is reflected by the number of internet users. In terms of the outputs of scientific
resources, the number of scientific papers and patent applications represent scientific
achievements. Considering that the number of patent grants is highly uncertain,
due to the influence of human factors, such as patent granting agencies, the number
of patent applications accepted can better reflect the true level of scientific resource
output than the number of patent grants [28–31].

3© Threshold variable (night light data): the current research on the temporal and spatial
pattern of economic development mainly relies on statistical data. However, statistical
data have the shortcomings of inconsistent caliber and low spatial resolution, which
make it difficult to accurately portray the pattern characteristics of regional economic
development. Night light data detects bright light emitted from the Earth’s surface
and is an effective data source for studying human activities. DMSP/OLS data
are currently one of the most widely used night light data, and have been used in
studies for population estimation, electricity consumption estimation, urban sprawl
monitoring, etc. In recent years, economists have introduced night light data into the
economic statistical framework to measure the activity and distribution characteristics
of economic activities, because it has the advantages of easy access, wide coverage
and high correlation with human social and economic activities [32,33]. Therefore, this
paper uses the stable light data from 2009 to 2019 as the indicator of regional economic
development level, and then mainly explores the impact of innovation efficiency on
ecological footprint under different economic levels.

4© Control variable: this paper selects the following six control variables from the per-
spective of economy, society and environment (shown in Table 1): total foreign direct
investment (units of 10,000 RMB), proportion of tertiary industry (units of %), con-
sumption of urban residents (units of 10,000 RMB), consumption of rural residents
(units of 10,000 RMB), number of college teachers (units of thousand people) and
pollution control investment / GDP (units of %) [34–38].

Table 1. Selection and description of variables.

Variable Type Variable Group Symbol Description

explained
variables ecological footprint lnEF

biologically productive land area
necessary to sustain human resource
consumption and waste absorption

core
explanatory

variables
innovationefficiency lnie

allocation and utilization efficiency of
various scientific and technological

resources in different subjects, fields,
processes, space and time of scientific

and technological activities

(input of
scientific

resources)

scientific human
resources lnhr full-time equivalent of

R and D personnel
scientific financial

resources lnfr internal expenditure of R and D funds

scientific
information

resources
lnir number of international Internet users

(output of
scientific

resources)

number of sci-tech
papers lnpaper number of science-technology

papers published
number of patent

applications lnpatent number of patent applications accepted

threshold
variables nighttime light data lnnl 2009–2019 DMSP/OLS data
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Table 1. Cont.

Variable Type Variable Group Symbol Description

control
variables

foreign direct
investment lnfdi total amount of foreign direct

investment in a certain period of time
proportion of the
tertiary industry lnthird ratio of service industry to GDP

consumption of
urban residents lnurbanc

the total consumption expenditure of
urban residents on food, clothing,

household equipment, supplies and
services, health care, transportation and

communication, education,
entertainment and services, housing,

and miscellaneous goods and services

consumption of
rural residents lnruralc

total consumption expenditure of rural
residents on food, clothing, household

equipment, supplies and services, health
care, transportation and communication,
education, entertainment and services,

housing, and miscellaneous goods
and services

Number of college
teachers lnedu number of teachers in urban institutions

of higher learning
pollution control
investment/GDP lnpollu the ratio of pollution control investment

to GDP

3.2. Data Sources

Considering the availability and representatives of data, this paper takes 283 cities in
China as the research object (15 western cities out of 298 prefecture level cities are excluded,
due to lack of necessary statistical data). The basic data for measuring ecological footprints
were obtained from relevant yearbooks, such as China Urban Statistical Yearbook, China
Statistical Yearbook, China Environmental Statistical Yearbook, China Forestry Statistical
Yearbook, China Social Statistical Yearbook, Compilation of Foreign Resource, Energy and
Environmental Statistics, China Rural Statistical Yearbook, and Compilation of Statistical
Information of New China’s Six Decades from 2010–2020. The basic data for measuring
innovation efficiency are obtained from the 2010–2020 China Science and Technology
Statistical Yearbook and the official website of the National Bureau of Statistics of the
People’s Republic of China, etc. In this paper, the data of DMSP/OLS from 2009 to 2019
are used as the data of urban night lights. The basic data of relevant control variables are
obtained from relevant yearbooks 2010–2020, such as China Urban Statistical Yearbook,
China Statistical Yearbook, China Environmental Statistical Yearbook and China Rural
Statistical Yearbook [39].

3.3. Model

It is hard to satisfy the strict assumptions in the process of practical application of
Hansen’s (1999) static panel threshold model, and there may be multicollinearity, signifi-
cance bias and endogeneity among variables in the model [40]. In order to address some
of the shortcomings of the static threshold model, Kremer et al. (2009; 2013) subsequently
proposed a dynamic threshold model that incorporates the lagged terms of the explained
variables, and this dynamic model puts lagged terms of explained variables into the dy-
namic threshold model as explanatory variables, thereby solving the endogeneity and
lagging problems of the variables to the greatest extent [41,42]. Furthermore, based on
the SIRPAT model (equation), we propose the following Equation (3) [24,43], which first
assumes that there is only one threshold, but that there is also the possibility of two and
more thresholds as well. In order to analyze more accurately, we set the double threshold
model and the triple threshold model, as shown in Equations (4) and (5). Similarly, the
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formula for the double threshold test and the triple threshold test are as follows, and the
specific models are as follows.

Iit = aPb
it Ac

itT
d
ite (3)

lnEFit = αXit + β1lnieit × I(Tit ≤ δ1) + β2lnieit × I(δ1 < Tit ≤ δ2)
+β3lnieit × I(Tit > δ2) + β4lnEFit−1 + β5lnEFit−2 + C + εit

(4)

lnEFit = αXit + β1lnieit × I(Tit ≤ δ1) + β2lnieit × I(δ1 < Tit ≤ δ2)
+β3lnieit × I(δ2 < Tit ≤ δ3) + β4lnieit × I(Tit > δ3) + β5lnEFit−1 + β6lnEFit−2 + C + εit

(5)

In the above equation, I is the environmental impact, P is the population, A is the
affluence level, T is the technology level; lnEFit is the ecological footprint of the ith region
in year t, lnEFit−1 is one period lagged of the ecological footprint of the ith region in year t,
lnEFit−2 is two periods lagged of the ecological footprint of the ith region in year t, lnieit is
the core explanatory variable, T is the threshold variable(night light data), δ is the fixed
threshold value, α is the influence coefficient of lnieit on the explained variable, β1 and β2
are the influence coefficients of the core explanatory variable lnieit on the explained variable
when Tit ≤ δ, Tit > δ respectively, C is a constant term, εit~(0, σ) is a random disturbance
term, I is an indicative function. The value of I depends on whether the condition in
parentheses holds, and it takes the value of 1 when the corresponding condition holds,
otherwise it takes the value of 0.

4. Empirical Results
4.1. Analysis of Threshold Test Results for 283 Cities in China

The Hausman significance test of the model showed that the original hypothesis was
rejected, so the fixed effects model was chosen for analysis. Based on the fixed effects
model, ecological footprint is used as the explained variable; nighttime light data (reflecting
the level of economic development) is used as the threshold variable to measure the
impact of innovation efficiency on ecological footprint under different levels of economic
development. The core explanatory variables are tested in turn. The sampling method is
the bootstrap method with 300 times. The test results are shown in Table 2.

Table 2. The threshold effect test.

Innovation
Indicators

Innovation
Efficiency

Sci-Tech
Human

Resources

Sci-Tech
Financial
Resources

Sci-Tech
Information
Resources

Number of
Sci-Tech
Papers

Number of
Patent

Applications

Single-threshold test 31.003 *** 39.664 *** 9.026 * 73.094 *** 89.939 ** 8.041
(4.01) (5.55) (1.97) (3.65) (7.10) (0.17)

Double-threshold test 56.683 *** 54.337 *** 39.496 *** 46.986 *** 44.382 *** 50.674 ***
(4.79) (3.06) (5.85) (8.90) (7.11) (5.06)

Triple-threshold test 0.000 ** 6.714 *** 0.000 * 0.000 * 0.000 * 0.000 *
(2.23) (4.45) (1.96) (1.83) (1.69) (1.78)

Note: The values in parentheses are t-statistics. *, **, *** are significant at the level of 10%, 5% and 1%, respectively.

From Table 2, it can be seen that innovation efficiency, scientific human resources,
and information resources pass the single threshold test at the significance level of 1%,
the number of scientific papers passes the single threshold at the significance level of 5%,
and the number of patent applications does not pass the single threshold test. Innovation
efficiency, scientific financial resources, scientific human resources, scientific information
resources, the number of scientific papers and patent applications pass the double threshold
test at the significance level of 1%, respectively. Moreover, scientific financial resources,
scientific human resources, scientific information resources, the number of scientific papers,
and the number of patent applications are all collinear with other thresholds, which do
not meet the requirements. In addition, only scientific human resources passed the three-
threshold test at the 1% significance level. Therefore, this study adopts the double-threshold
test for the core variables.
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From Tables 3 and 4, it can be seen that under the dynamic threshold model with one
period lagged and two periods lagged of ecological footprint as the explained variables,
there is a certain endogenous association between one period lagged and two periods
lagged of the ecological footprint. The coefficients of lnEFit−1 and lnEFit−2 are significantly
positive, indicating that the endogeneity caused by the omitted variables is controlled, to
some extent, by using the dynamic threshold model. In model (1), when the level of eco-
nomic development is below the first threshold of 4.952 (the natural logarithm of the value
of urban nighttime lights), the elasticity coefficient of innovation efficiency to ecological
footprint is −0.1204; when the level of economic development is between the first threshold
of 4.952 and the second threshold of 6.966, the elasticity coefficient of innovation efficiency
to ecological footprint becomes −0.0953; when the level of economic development exceeds
the second threshold of 6.966, the elasticity coefficient of innovation efficiency to ecological
footprint is −0.0703, and all of these show the significance at the 1% level. Therefore,
the impact of increased innovation efficiency on ecological footprint is characterized by
a negative double threshold. This is mainly due to two reasons. First, when innovation
is more efficient, the level of technological innovation is further enhanced. While promot-
ing economic growth, it can improve production efficiency, improve energy utilization
efficiency, and promote the development of new energy sources, thereby reducing the
occupation of natural resources and alleviating pressure on the ecological environment
brought about by rapid economic development. Second, new environmental protection
technologies promote the birth of more environmentally friendly products, and reduce
the level of pollutant emissions from enterprises, hence reducing the degree of industrial
pollution. Therefore, the improvement of innovation efficiency has a significant inhibitory
effect on ecological footprint. However, it should be noted that with the improvement
of threshold variables (economic development level), the inhibitory effect of innovation
efficiency on ecological footprint is gradually weakened, because the absolute value of
its coefficient becomes smaller and smaller. The main reason for this phenomenon is that
China’s economy is at a critical stage of transition from factor-driven to innovation-driven,
and economic growth still relies mainly on the exploitation and use of natural resources,
which undoubtedly puts relatively high pressure on the ecological environment, which is
also confirmed by the sustained growth rate of the ecological footprint of Chinese cities.

Table 3. Double-threshold estimates.

Model Threshold Variable Threshold
Estimate 1

95% Confidence
Interval

Threshold
Estimate 2

95% Confidence
Interval

Model (1) Innovation efficiency 4.952 (4.747, 7.124) 6.966 (6.809, 7.124)
Model (2) Sci-tech human resources 4.662 (4.766, 5.641) 5.854 (5.641, 5.889)
Model (3) Sci-tech financial resources 4.530 (4.284, 6.145) 5.069 (4.952, 5.427)
Model (4) Sci-tech information resources 4.676 (4.284, 5.868) 4.952 (4.676, 4.952)
Model (5) Number of sci-tech Papers 5.641 (4.284, 5.641) 7.602 (7.602, 7.684)
Model (6) Number of patent applications 4.676 (4.676, 4.905) 7.757 (7.573, 7.940)

Table 4. Double-threshold model parameter estimation results.

Variables

Model (1) Model (2) Model (3) Model (4) Model (5) Model (6)

Innovation
Efficiency

Sci-Tech
Human

Resources

Sci-Tech
Financial
Resources

Sci-Tech
Information
Resources

Number of
Sci-Tech
Papers

Number of
Patent

Applications

lnEFt−1
1.0237 ** 0.9063 *** 0.5247 *** 1.6205 *** 3.2151 *** 0.2754 ***

(4.09) (3.35) (5.68) (2.99) (3.97) (5.18)

lnEFit−2
3.2256 *** 1.7673 *** 0.8699 *** 1.4321 *** 0.2892 *** 1.0275 ***

(3.27) (8.22) (5.75) (4.89) (3.60) (5.13)

X(Tit < δ1) −0.1204 *** 0.0405 *** 0.0324 *** 0.0689 *** 0.4441 *** −0.0443 ***
(−8.39) (−4.34) (6.07) (9.67) (−3.54) (−6.12)
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Table 4. Cont.

Variables

Model (1) Model (2) Model (3) Model (4) Model (5) Model (6)

Innovation
Efficiency

Sci-Tech
Human

Resources

Sci-Tech
Financial
Resources

Sci-Tech
Information
Resources

Number of
Sci-Tech
Papers

Number of
Patent

Applications

X(δ1 < Tit < δ2) −0.0953 *** 0.0304 *** 0.0595 *** 0.0347 *** 0.0902 *** −0.0507 ***
(−8.24) (3.28) (4.91) (9.96) (−3.65) (−5.67)

X(Tit > δ2) −0.0703 *** 0.0470 *** 0.1203 * 0.0450 *** 0.0294 *** −0.9126 ***
(−4.38) (3.87) (1.67) (5.00) (−5.27) (−3.78)

lnfdi 0.0032 *** 0.0928 *** 0.0467 *** 0.0202 ** −0.115 *** −0.123 ***
(3.94) (7.79) (5.82) (2.21) (−8.52) (−10.16)

lnthird
−0.132 *** −0.00382 *** −0.0966 −0.0612 ** −0.122 *** −0.0549 ***

(−9.55) (−4.14) (−1.60) (−2.08) (−9.15) (−5.66)

lnurbanc
−0.0033 *** 0.0577 *** 0.0179 ** 0.0951 *** −0.0929 *** −0.0880 ***

(−8.45) (8.77) (2.27) (4.29) (−3.65) (−5.01)

lnruralc
0.6003 0.0195 *** 0.1106 *** −0.5080 0.0150 ** 0.0604
(1.55) (4.65) (11.00) (−0.83) (2.24) (0.55)

lnedu
−0.3625 −0.1584 −0.0957 −1.4871 −0.5226 −0.4877

(1.07) (0.98) (1.42) (0.99) (1.38) (1.00)

lnpollu −0.0187 *** −0.00641 −0.0105 −0.0155 * −0.0154 *** −0.0116 **
(−5.82) (−0.65) (−1.42) (−1.71) (−6.84) (−2.18)

C
−0.6080 *** 0.0305 *** 0.3093 *** 0.2080 ** −0.5052 *** −0.0608 ***

(−4.66) (9.40) (2.79) (2.10) (−3.23) (−4.24)

Note: The values in parentheses are t values, *, **, *** are significant at the level of 10%, 5% and 1%.

From the perspective of innovation inputs, in model (2), the impact of scientific human
resources on ecological footprint under different economic development levels generally
firstly shows an inhibition effect and then a promotion effect. When the economic develop-
ment level is below the first threshold of 4.662, the elasticity coefficient of scientific human
resources to ecological footprint is 0.0405; after economic development level crosses the sec-
ond threshold of 5.854, the elasticity coefficient of scientific human resources to ecological
footprint is 0.0470. It is due to the fact that, as the level of economic development increases,
more and more people provide sufficient labor and creativity for the socio-economic devel-
opment of cities, but this also means more resource consumption and energy consumption,
which put more pressure on the ecological environment. Since the process of consumption
is the process of generating an ecological footprint, theoretically, people’s consumption
of food, clothing, supplies, transportation and other consumption will undoubtedly exert
pressure on limited resources and the environment, and thus increase ecological footprint.
In model (3), the degree and direction of the impact of scientific financial resources on eco-
logical footprint are both positive under different economic development level thresholds.
This indicates that, as investment of scientific financial resources increases, the intensity
of infrastructure facilities, related to the improvement or construction of the innovation
system, increases, which means that more and more cultivated land is occupied as con-
struction land, and this process of occupation will produce more pollution, thus increasing
ecological footprint. It also shows that increase in ecological footprint cannot be effectively
curbed by only relying on increase in investment of scientific financial resources, without
focusing on the efficiency of the innovation system. Similarly, in model (4), as the level
of economic development increases, the increase of scientific information resources has
a certain promotion effect on the level of ecological footprint. The possible reason is that
scientific information resources need to match other information resource sharing plat-
forms as carrier support. If there is a lack of collaboration and effective communication
between platforms, scientific information cannot effectively enhance the level of innovation;
therefore, it is difficult to alleviate pressure on the ecological environment, showing the
promotion effect on ecological footprint.

In terms of the output of innovation, in model (5), the number of scientific papers
has a significant promoting effect on ecological footprint. This indicates that knowledge
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innovation contributes to the level of ecological footprint of a region. However, with the
improvement of the level of economic development, the coefficient moves from 0.4441 to
0.0294, indicating that this promotion effect is gradually weakened. The reason is that there
is not only a certain lag in the transformation of knowledge innovation into technological
innovation, but also the transformation process depends on the diffusion path and intensity
of knowledge innovation. The higher the intensity of knowledge diffusion between regions,
the stronger the knowledge heterogeneity, and the stronger the improvement effect on
innovation efficiency, so that the growth of ecological footprint can be better restrained. In
model (6), the number of patent applications has a significant inhibitory effect on ecological
footprint. When the level of economic development is below the first threshold of 4.676,
the elasticity coefficient of patent applications to ecological footprint is −0.0443. When
the level of economic development is between the first threshold of 4.676 and the second
threshold of 7.757, the elasticity coefficient of patent applications to ecological footprint
becomes −0.0507. When economic development level exceeds the second threshold of 7.757,
the elasticity coefficient of patent applications to ecological footprint changes to −0.9126.
This is because the increasing number of patent applications helps to improve innovation
capacity, which leads to cost reduction and product quality optimization, while reducing
energy consumption, saving resources and reducing waste generated, thus alleviating
ecological pressure. Therefore, patent applications exhibit a significant inhibitory effect on
ecological footprint.

Regarding the control variables, increase in scale of foreign investment can significantly
promote more advanced environmental protection technologies, thus effectively curbing
ecological footprint. The service industry, represented by tertiary industry, has a significant
inhibitory effect on ecological footprint compared with consumption and the amount of
waste generated by the primary and secondary industries, which indicates that the Chinese
government needs to urgently and vigorously develop tertiary industry. The consumption
level of urban residents and rural residents generally show a significant role in promoting
ecological footprint, which is also in line with the speculation at the beginning of the article.
As the consumption level increases, ecological pollution will increase accordingly. However,
the consumption level of urban residents in models (1), (5), and (6) shows an inhibitory
effect. This may be because the improvement in innovation is more likely to occur in urban
areas, and urban residents often have stronger environmental awareness. Thus, despite
increase in consumption levels of urban residents, ecological problems can still be mitigated
to some extent. Although the influence coefficient of education level on ecological footprint
is negative, it is not significant. The higher the proportion of pollution control investment
in GDP, the greater the investment in ecological environment governance in a region, which
effectively controls the degree of pollution generated. Therefore, it shows a significant
inhibitory effect on the ecological footprint in all models.

4.2. Analysis of the Threshold Test Results for Innovative Cities

The term ‘innovative city’ refers to a city driven by innovative elements, such as science
and technology, knowledge, manpower, culture and system, having high-end radiation and
playing a leading role for other regions. In 2008, China’s National Development and Reform
Commission approved Shenzhen as the first national innovative city pilot. Since then, the
number of innovative cities has been increasing, and 78 of them have been approved by the
Ministry of Science and Technology as pilot cities. Therefore, this paper takes innovative
cities and non-innovative cities as research objects to carry out the regression analysis of
the dynamic threshold model; including 75 innovative cities and 208 non-innovative cities.
Due to the limited availability of data, Lhasa, Shihezi and Changji are not within the scope
of this study, so there are 75 innovative cities and 205 non-innovative cities.

It can be seen from the results in Tables 5 and 6 that one period lagged and two
periods lagged of the ecological footprint of innovative cities are explained variables. There
is a certain endogenous correlation, that is, the coefficients of lnEFit−1 and lnEFit−2 are
significantly positive. This shows that the dynamic threshold model is used to control
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the endogeneity caused by missing variables to a certain extent. In model (1), when the
level of economic development is below the first threshold of 3.025, the elasticity coefficient
of innovation efficiency to ecological footprint is −0.1749. When the level of economic
development is between the first threshold of 3.025 and the second threshold of 4.767,
the elasticity coefficient of innovation efficiency to ecological footprint becomes −0.2449.
When the level of economic development exceeds the second threshold 4.767, the elasticity
coefficient of innovation efficiency to ecological footprint is −0.3066, and all of these show
the significance at the 1% level, that is, the inhibitory effect of innovation efficiency in
innovative cities on ecological footprint gradually increases with economic growth. This
indicates that the improvement of innovation efficiency of innovative cities can better
promote the level of technological innovation in the region, while improving resource uti-
lization, increasing the development of new energy technologies and reducing the emission
of pollutants in the production process, thus producing an increasingly strong inhibitory
effect on ecological footprint. The analysis results of the other five control variables are
basically consistent with the regression results in Table 4, except that the coefficient and
significance of lnfdi are significantly improved. This may be because with the improvement
of innovation efficiency in innovative cities, the urban population centered on R and D
personnel, and supported by various service workers, accelerates to gather in innovative
cities. When more people tend to flow from non-innovative cities to innovative cities,
the accumulation of human capital brings an increasing level of technological innovation.
Since more advanced technology tends to be greener, it has a certain inhibitory effect on
ecological footprint.

Table 5. Double-threshold estimates of innovative cities.

Model Threshold Variable Threshold
Estimate 1

95% Confidence
Interval

Threshold
Estimate 2

95% Confidence
Interval

Model (1) Innovation efficiency 3.025 (2.771, 3.898) 4.767 (3.994, 5.432)
Model (2) Sci-tech human resources 4.028 (3.726, 4.627) 5.119 (4.728, 5.209)
Model (3) Sci-tech financial resources 5.066 (4.729, 6.083) 5.970 (5.520, 6.172)
Model (4) Sci-tech information resources 4.859 (4.265, 5.007) 5.703 (5.580, 6.219)
Model (5) Number of sci-tech papers 4.229 (3.904, 5.001) 5.261 (4.889, 5.731)
Model (6) Number of patent applications 5.088 (4.775, 5.645) 7.337 (6.367, 7.558)

Table 6. Threshold model parameter estimation results of innovative cities.

Variables

Model (1) Model (2) Model (3) Model (4) Model (5) Model (6)

Innovation
Efficiency

Sci-Tech
Human

Resources

Sci-Tech
Financial
Resources

Sci-Tech
Information
Resources

Number of
Sci-Tech
Papers

Number of
Patent

Applications

lnefit−1
2.2605 *** 1.7870 *** 0.9430 *** 1.7902 *** 2.5271 *** 0.8540 ***

(4.28) (4.09) (5.15) (3.78) (3.65) (6.44)

lnefit−2
1.8751 *** 1.0695 *** 0.8709 *** 1.0769 *** 0.8740 *** 1.5803 ***

(3.92) (4.85) (7.10) (4.38) (3.97) (4.56)

X(Tit < δ1) −0.1749 *** 0.0258 *** 0.0448 *** 0.00240 *** −0.0623 *** −0.0361 ***
(−8.45) (2.79) (5.67) (3.41) (−5.19) (−5.11)

X(δ1 < Tit < δ2) −0.2449 *** 0.0328 *** 0.0196 ** 0.00952 ** −0.0713 *** −0.0343 ***
(−9.60) (3.83) (2.51) (2.23) (−5.19) (−4.88)

X(Tit > δ2) −0.3066 ** 0.0315 *** 0.0803 *** 0.106 *** −0.1100 *** −0.00604
(−2.62) (3.94) (7.17) (11.66) (−9.49) (−0.55)

lnfdi −0.1051 *** −0.6021 *** −0.3004 *** −0.4508 *** −0.3025 *** −0.6016 ***
(−6.97) (−5.41) (−6.07) (−5.00) (−3.55) (−4.84)
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Table 6. Cont.

Variables

Model (1) Model (2) Model (3) Model (4) Model (5) Model (6)

Innovation
Efficiency

Sci-Tech
Human

Resources

Sci-Tech
Financial
Resources

Sci-Tech
Information
Resources

Number of
Sci-Tech
Papers

Number of
Patent

Applications

lnthird
−0.7300 *** −0.0009 ** −0.00000508 0.002397 *** −0.0146 * −0.0036551 ***

(−7.04) (−2.20) (−0.01) (3.41) (−1.89) (−3.78)

lnurbanc
0.0062 *** 0.0047 *** 0.080311 *** 0.124489 *** −0.10963 *** −0.0060372 ***

(5.91) (3.13) (−4.39) (10.35) (−9.53) (−4.56)

lnruralc
0.5511 0.0007 0.00019 *** 0.001948 *** 0.00149 ** 0.1041843 ***
(1.17) (0.65) (3.92) (3.67) (2.24) (7.75)

lnedu
−0.7958 −0.5541 −0.6835 −0.8814 −1.2070 −0.9587

(0.57) (1.01) (0.65) (1.07) (1.44) (0.88)

lnpollu 0.6121 *** 0.0025 *** −5.08 × 10−6 −0.175945 *** −0.14387 *** −0.00880068 ***
(4.63) (−5.69) (−0.993) (−11.85) (−9.53) (−5.01)

C
−0.9961 *** 0.9404 *** 0.7957 *** 0.5140 *** −0.16285 *** −0.2884 ***

(−6.86) (6.70) (5.11) (3.20) (−5.66) (−6.81)

Note: The values in parentheses are t values, *, **, *** are significant at the level of 10%, 5% and 1% respectively.

4.3. Analysis of the Threshold Test Results for Non-Innovative Cities

The results in Tables 7 and 8 show that there is a certain endogenous correlation
between one period lag and two periods lag of ecological footprint in non-innovative
cities in the dynamic threshold model with the lag phase I or lag phase II of the ecological
footprint as explained variables. That is, the coefficients of lnEFit−1 and lnEFit−2 are signifi-
cantly positive. It shows that the endogeneity caused by omitted variables is controlled
to some extent in this paper by using a dynamic threshold model. In model (1), when the
level of economic development is from the first threshold of 6.038 to the second threshold
6.945, the coefficients of innovation efficiency to ecological footprint changes from –0.3002,
–0.1596 to –0.0980, and all of them show significance at the 1% level, that is, the inhibitory
effect of innovation efficiency on ecological footprint of non-innovative cities gradually
decreases with growth of urban night light data. This shows that as the economic level of
non-innovative cities increases, the inhibitory effect of innovation efficiency on ecological
footprint becomes weaker and weaker, which is similar to the regression results obtained
by 283 cities across the country. It is worth noting that the inhibitory effect of increase in
the number of patent applications on ecological footprint diminishes with increase in the
nighttime light data. The possible reasons for this are that the innovation transformation
platforms in non-innovative cities are not perfect, the infrastructure of the innovation
system is relatively lacking, which make it difficult to promote the actual use of patents,
and therefore it is difficult to significantly improve the level of technological innovation,
which, in turn, leads to a weak inhibitory effect on ecological footprint. Therefore, in future
development of non-innovative cities, we should concentrate limited R and D resources on
advantageous inputs and outputs, make key breakthroughs in bottleneck problems, and
make efforts in management of the innovation system, so as to promote overall innovation
efficiency of non-innovative cities. It is worth noting that increase in number of scientific
papers has a significant inhibitory effect on ecological footprint in innovative cities, while
promoting the growth of ecological footprint in non-innovative cities. This distinct result
shows that the impact of scientific papers on ecological footprint largely depends on the
transformation efficiency of urban innovation platforms and the degree of optimization
of the innovation environment. That is, the higher the transformation efficiency of the
innovation platform and the better the innovation environment, the more beneficial it is for
scientific papers to exert their inhibitory effect on ecological footprint. The analysis results
of the other control variables are basically consistent with the model results in Table 4.
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Table 7. Double-threshold Estimates of non-innovative cities.

Model Threshold Variable Threshold
Estimate 1

95% Confidence
Interval

Threshold
Estimate 2

95% Confidence
Interval

Model (1) Innovation efficiency 6.038 (4.747, 7.124) 6.945 (6.809, 7.124)
Model (2) Sci-tech human resources 5.906 (4.766, 5.641) 6.278 (5.641, 5.889)
Model (3) Sci-tech financial resources 6.028 (5.874, 6.419) 6.569 (4.880, 6.719)
Model (4) Sci-tech information resources 6.676 (6.218, 7.065) 6.952 (6.676, 7.021)
Model (5) Number of sci-tech Papers 6.641 (4.284, 5.641) 7.202 (6.886, 7.690)
Model (6) Number of patent applications 6.676 (6.506, 6.923) 7.757 (7.501, 7.978)

Table 8. Double-threshold model parameter estimation results of non-innovative cities.

Variables

Model (1) Model (2) Model (3) Model (4) Model (5) Model (6)

Innovation
Efficiency

Sci-Tech
Human

Resources

Sci-Tech
Financial
Resources

Sci-Tech
Information
Resources

Number of
Sci-Tech
Papers

Number of
Patent

Applications

lnefit−1
0.0865 *** 0.7623 ** 0.6255 *** 1.0275 *** 2.0501 *** 0.6703 ***

(5.68) (2.35) (4.81) (3.05) (3.70) (4.29)

lnefit−2
2.4786 *** 1.2480 *** 0.9239 *** 1.0170 *** 0.5832 *** 1.5980 ***

(3.20) (6.29) (5.11) (3.85) (4.75) (3.94)

X(Tit < δ1) –0.3002 *** 0.0098 *** 0.0045 *** 0.0070 *** 0.0845 *** –0.1005 ***
(–6.62) (3.18) (4.27) (3.00) (–5.49) (–3.37)

X(δ1 < Tit < δ2) –0.1569 *** 0.0705 *** 0.7268 ** 0.5602 ** 0.6790 *** –0.0906 ***
(–4.88) (3.56) (1.99) (2.48) (–4.23) (–3.08)

X(Tit > δ2) –0.0980 *** 0.0974 *** 0.8593 *** 0.6096 *** 0.7180 *** –0.0704 **
(–6.05) (3.75) (6.49) (8.17) (–5.02) (–2.26)

lnfdi 0.0007 *** 0.0422 *** 0.0064 *** 0.1048 *** 0.1562 *** 0.6019 ***
(3.55) (4.90) (6.50) (5.83) (4.06) (3.92)

lnthird
–0.0098 *** –0.0147 ** –0.0158 0.0027 *** –0.0109 * –0.3051 ***

(–6.25) (–2.38) (–0.49) (3.77) (–1.69) (–3.80)

lnurbanc
1.0092 *** 0.9368 *** 0.8030 *** 0.4126 *** –0.1960 *** –0.6552 ***

(4.76) (3.92) (–4.58) (9.03) (–6.77) (–4.12)

lnruralc
0.7039 0.0657 0.0024 *** 0.0724 *** 0.4027 ** 0.8413 ***
(1.09) (0.88) (3.39) (4.18) (2.13) (6.56)

lnedu
–0.0021 –0.0436 –0.0289 –0.4671 –0.5062 –0.0945
(1.01) (0.75) (0.94) (1.23) (1.70) (1.09)

lnpollu –0.0167 *** –0.0943 *** –0.1290 –0.4755 *** –0.8137 *** –0.4068 ***
(5.08) (–5.37) (–0.65) (–7.49) (–6.26) (–4.87)

C
–4.5780 *** 3.6903 *** 0.8896 *** 1.5630 *** –0.8905 *** –0.6759 ***

(–3.79) (5.08) (4.49) (3.80) (–5.29) (–4.24)

Note: The values in parentheses are t values, *, **, *** are significant at the level of 10%, 5% and 1% respectively.

5. Conclusions

This paper uses the SBM model to calculate the innovation efficiency of 283 cities in
China from 2009 to 2019. Taking night light data as the threshold variable, this paper first
systematically investigates the impact of innovation efficiency on ecological footprint in
China. Then it further analyzes whether innovation support policy will change this impact.
The following conclusions are as follows:

(1) The impact of China’s innovation efficiency on ecological footprint presents a negative
double-threshold feature. The improvement of innovation efficiency can effectively
restrain the increase of ecological footprint, but, with improvement of economic devel-
opment level, this restraining effect is gradually weakened. Similarly, non-innovative
cities follow this pattern as well. This shows that, although innovation efficiency has
slowed down the increasing speed of ecological footprint, to a certain extent, it still
has not changed the fact that China’s ecological footprint continues to grow. Therefore,
China needs to formulate different strategies for cities to promote innovation effi-
ciency under different economic development levels, actively open up the innovation
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chain between cities, strengthen close cooperation between industries, universities
and research institutes among cities, and comprehensively promote improvement
of innovation efficiency and innovation level of Chinese cities. In addition, it is nec-
essary to change China’s economic growth mode and industrial structure, so as to
gradually reduce dependence on natural resources; strengthen development of new
energy and open up new energy supply channels, change traditional consumption
patterns and vigorously advocate “green consumption”, thereby effectively reducing
ecological footprint.

(2) Compared with non-innovative cities, the improvement of innovation efficiency of
75 innovative cities in China has a stronger inhibitory effect on ecological footprint,
and this inhibitory effect becomes stronger and stronger with increase of night light
data. Therefore, it is necessary to improve the level of regional openness of non-
innovative cities, improve the ability of information exchange between regions, reduce
administrative barriers in regional innovation systems, strengthen cooperation in sci-
entific innovation, promote linkage of scientific facilities, interoperability of innovation
platforms and circulation of talent resources, provide policy encouragement and sup-
port, build a more complete innovation system, and create a higher-quality innovation
highland. It is also necessary to integrate various innovative elements of innovative
cities, strengthen exchanges and cooperation between scientific resources, enterprises
and governments, within and between regions, achieve good synergies, continuously
optimize regional innovation environments, and stimulate innovation vitality, accel-
erate the transfer and transformation of scientific and technological achievements,
and then strengthen the inhibitory effect of innovation efficiency improvement on
ecological footprint.

(3) Under different thresholds of economic development levels, scientific human re-
sources, scientific financial resources, scientific information resources, and the number
of scientific papers all show a promoting effect on ecological footprint. Therefore, Chi-
nese cities should improve the overall level of scientific human resources, in terms of
quantity and quality; optimize the investment structure of scientific financial resources
to form a multi-channel and multi-level effective constraint systems; promote the
construction of a more efficient science and technology information sharing platforms;
and explore feasible paths for efficient diffusion and transformation of knowledge
innovation into technological innovation. It should be noted that while improving
China’s overall innovation efficiency, it is necessary to use as little resources as pos-
sible in the construction of the innovation system, and reduce the growth effect on
ecological footprint.

(4) The number of patent applications has a negative effect on ecological footprint. There-
fore, we need to speed up the efficiency of approval from patent application to
licensing, so that patents can be used more efficiently as technology in the pro-
duction process. From the perspective of environmental protection, patents can
be roughly divided into green and non-green categories. The emphasis and promo-
tion of “green innovation and green patent” and the introduction of environmental
performance indicators will further strengthen the suppression effect of patents on
ecological footprint.

The conclusion of this paper is consistent with some scholars, that is, the improvement
of innovation level or innovation efficiency has a significant inhibitory effect on ecological
footprint [38,44–46]. However, some scholars believe that the improvement of innovation
level has no significant effect on ecological footprint [47,48]. Furthermore, there are many
factors affecting the improvement of innovation efficiency, which can be divided into two
categories: internal efficiency, that is, the efficiency of the internal management process of
each subsystem, and external efficiency, that is, the efficiency of the transaction process,
such as cooperation and communication between subsystems. Innovation efficiency first
depends on internal efficiency of the innovation system, and also depends on the efficiency
of cooperation and communication between subsystems. The combination of the two
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ensures innovation becomes an organic whole. This paper lacks further differentiation
of different forms of innovation efficiency. Future studies can further explore whether
there is heterogeneity in the impact of innovation efficiency on ecological footprint at
different stages.
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