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Abstract: This data-based cohort consisted of 26,508 (7%) United States veterans out of the 399,290
who tested positive for SARS-CoV-2 from 1 March to 10 September 2020. We aimed to assess the
interaction of post-index vitamin D (Vit D) and corticosteroid (CRT) use on 30-day mortality among
hospitalized and non-hospitalized patients with coronavirus disease 2019 (COVID-19). Combination
Vit D and CRT drug use was assessed according to four multinomial pairs (−|+, −|−, +|+, +|−).
Respective categorical effects were computed on a log-binomial scale as adjusted relative risk (aRR).
Approximately 6% of veterans who tested positive for SARS-CoV-2 died within 30 days of their index
date. Among hospitalized patients, a significantly decreased aRR was observed for the use of Vit D in
the absence of CRTs relative to patients who received CRTs but not Vit D (aRR = 0.30; multiplicity cor-
rected, p = 0.0004). Among patients receiving systemically administered CRTs (e.g., dexamethasone),
the use of Vit D was associated with fewer deaths in hospitalized patients (aRR = 0.51) compared with
non-hospitalized patients (aRR = 2.5) (P-for-Interaction = 0.0071). Evaluating the effect of modification
of these compounds in the context of hospitalization may aid in the management of COVID-19 and
provide a better understanding of the pathophysiological mechanisms underlying this and future
infectious disease outbreaks.

Keywords: anti-inflammatory; corticosteroids; COVID-19; cytokine storm; SARS-CoV-2; vitamin D;
veterans

1. Introduction

Vitamin D (Vit D) is an oxysterol hormone with important immunomodulatory and
antiviral properties [1–8]. Even though this vitamin is often recommended as a nutritional
supplement in treatment guidelines and prescribed for the management of coronavirus
disease 2019 (COVID-19) [9–12], several studies have yielded divergent or inconclusive
results [13–54].

The complex interaction of Vit D and corticosteroids (CRTs) in vivo may partially
explain the conflicting outcomes observed in the COVID-19 literature, and previous studies
on Vit D have been insufficiently powered to detect this interaction [55–59]. Glucocorti-
coids can inactivate Vit D by upregulating Vit D receptor (VDR)-mediated 24-hydroxylase
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transcription through the cooperative relationship of CCAAT-enhancer-binding proteins
(C/EBPβ) and glucocorticoid receptors (GRs) [60]. This mechanism is likely the reason
why CRT use in a nationally representative cohort study was associated with a two-fold
reduction in endogenous Vit D levels [61]. Indeed, suboptimal concentrations of serum
25-hydroxyvitamin D3 (25(OH)D3) in the order of −0.5 ng/mL have been linked with the
use of glucocorticoids such as dexamethasone, methylprednisolone, and prednisone [62,63].

However, these Vit D-lowering effects of CRTs may be countered by the fact that
clinical doses of dexamethasone enhance the effects of 25(OH)D3, thus inducing VDR
expression in immune cells [64–66]. Administration of Vit D purportedly reverses the
induction of interleukin 10 (IL-10)-secreting regulatory T cells in glucocorticoid-resistant
patients, a mechanism particularly beneficial in the context of COVID-19 [67]. Vit D has
also been shown to have a synergistic anti-inflammatory effect with CRTs by facilitating glu-
cocorticoid induction of mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1)
and IL-10 in peripheral blood mononuclear cells (PBMCs) [68]. Granulocyte-macrophage
colony-stimulating factor (GM-CSF) found in culture supernatants from clusters of dif-
ferentiation 14-negative (CD14-) cells and mediator complex subunit 14 (MED14) have
been recognized as significant factors in this process, effectively reducing the dose of glu-
cocorticoids needed to mitigate inflammatory effects [69]. Concurrently with CRTs, Vit
D is thought to prompt a tolerogenic dendritic cell phenotype with immunomodulatory
action [70,71].

The results of a meta-analysis suggest that Vit D supplementation (varying doses
and frequencies across studies) improves COVID-19 clinical response, but only in patients
receiving the drug after diagnosis of COVID-19 [21]. Systemic CRT use increased by 19%
among hospitalized adults during the COVID-19 pandemic based on evidence that these
compounds reduced 28-day mortality in hospitalized patients requiring supplemental
oxygen or mechanical ventilation [72,73]. However, among those not receiving respiratory
support, the administration of CRTs was consistent with possible deleterious effects. That is,
if CRTs are delivered when control of viral replication is critical, blunting the inflammatory
response may be more harmful than helpful [73].

In this observational analysis, we hypothesized that Vit D and CRTs interact through
various putative mechanisms to affect overall 30-day mortality among patients testing
positive for SARS-CoV-2 (Figure 1). Furthermore, this effect is postulated to be dependent
on hospitalization status as a surrogate marker of disease severity.
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Figure 1. Interaction and outcomes of vitamin D and corticosteroid administration in COVID-
19 patients. A cursory overview of various mechanisms by which corticosteroids (i.e., dex-
amethasone) and vitamin D interact synergistically in patients with COVID-19 is shown
in the schematic above, along with the outcomes of this interaction as reported in the
present study. CRT = corticosteroid; PBMCs = human peripheral blood mononuclear cells;
VDR = vitamin D receptor; 25(OH)D3 = 25-hydroxyvitamin D3.

2. Materials and Methods
2.1. Study Design and Data Source

Data for this study were obtained from the United States (US) Department of Veterans
Affairs (VA) COVID-19 Shared Data Resource (CSDR) and related data in the national
Corporate Data Warehouse (CDW), with details described in our previous publication [74].
The VA Health Care System consists of ~171 medical centers and 1112 outpatient sites of
care. Approval for the study protocol was provided by the Durham VA Health Care System
Institutional Review Board.

2.2. Cohort Definition

The cohort consisted of veterans who tested positive for SARS-CoV-2 from 1 March to
10 September 2020. During the study period, COVID-19 testing was restricted to partici-
pants who were symptomatic for COVID-19 or were required to have a SARS-CoV-2 test
for hospitalization. Hospitalized and non-hospitalized patients, males and females, and all
race/ethnicity categories were included in this analysis to increase the generalizability of
the study findings. We report the first SARS-CoV-2-positive collection date as the index
date and only considered this first event.
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2.3. Case Definition

Cases were identified using the VA CSDR [75]. We defined SARS-CoV-2-positive
veterans using all available SARS-CoV-2 nucleic acid amplification (NAAT) and antigen
tests, excluding antibody tests. Some patients in the VA Health Care System were tested or
diagnosed outside of the VA, with special informatics tools used to aid the identification of
COVID-19 cases [76]. However, we did not include these patients in the analyses focusing
on veterans who were tested at any of the VA facilities.

2.4. Study Variables

The primary outcome variable was 30-day overall mortality after the first positive
SARS-CoV-2 test. Hospitalizations were defined as occurring in the post-index period and
typically entailed patients who experienced severe disease presentation, requiring close
monitoring and intensive care [77].

Electronic outpatient and inpatient prescription and dispense records were reviewed
to determine the systemic use of Vit D and CRTs. By consensus of our clinical team, the
post-index use of these compounds was defined as drugs administered at least 50% of the
time (≥7 days or half of the survival time) within 2 weeks post-SARS-CoV-2 testing. Length
of hospital stay corresponded to only the first hospitalization happening within 30 days
after the SARS-CoV-2 test date. Information and definitions regarding the covariates used
in the analyses were published previously [74].

Non-VA medications, including prescriptions from non-VA providers and over-the-
counter medications, were recorded in the electronic health records through medication
reconciliation performed at clinical encounters. Among non-hospitalized patients, Vit
D supplements were either from VA prescriptions, non-VA prescriptions, or over-the-
counter supplements. We counted all available Vit D supplements, including calcitriol.
Inhaled CRTs such as beclomethasone, budesonide, ciclesonide, flunisolide, fluticasone, or
mometasone were not considered in the current analysis.

2.5. Statistical Analysis

Study characteristics are expressed as frequency and percentage for categorical vari-
ables and median and interquartile range (IQR) for continuous variables. A weighted
average of stratum-specific estimates on the log-binomial scale was used to approximate
the adjusted relative risk (aRR) for 30-day mortality [78]. Final models were adjusted for
age categories, race, sex, region, month of diagnosis, body mass index (BMI) categories,
current smoking, alcohol use disorder, and Charlson Comorbidity Index score categories.
An unrestricted additive test for interaction was used to test for heterogeneity of relative
effect estimates (∆aRR%) on the logarithmic scale [79,80]. Vertical and horizontal interac-
tions were similarly assessed, appropriately adjusting confidence intervals to account for
the two estimates of ∆aRR% [81].

To assess the multinomial synergistic drug effects for Vit D and CRT, we created four
categories for each pair to respectively denote single and combination drug use (−|+,
−|−, +|+, +|−). The referent group (−|+) was used in our key analyses to illustrate the
maximum difference in effect sizes and linearity of these effects among the hospitalized
versus non-hospitalized patients. However, selected comparisons also were conducted
with (−|−) as the referent group. Multiplicity correction (MC) was performed using the
Hochberg–Bonferroni procedure, accounting for a common referent group [82].

The expectation-maximization algorithm was used to find maximum a posteriori esti-
mates of model parameters, dependent on unobserved latent variables [83]. Linearization
and normalization of data elements were performed when appropriate. Study results
were rounded using the Goldilocks (Efron–Whittemore) method [80]. p-values < 0.05 were
considered statistically significant. All the analyses were performed using SAS version 9.4
(SAS Institute, Cary, NC, USA).
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3. Results

A total of 26,508 veterans tested positive for SARS-CoV-2, with a 30-day mortality
rate of 6% (Table 1). Approximately 93% of deaths occurred among those >60 years of age.
Most participants were male (89%), non-Latinx (83%), overweight (82%), White (59%), and
≤ 60 years of age (52%). Few patients were hospitalized for more than 2 weeks (7%) and
less than 5% received mechanical ventilation. Commonly reported comorbidities were
hypertension (55%), hyperlipidemia (52%), and mental illness (49%). Slightly more Black
veterans than White veterans received post-index Vit D (5% versus 3%) and, similarly,
CRTs (23% versus 20%). Only 1% of the cohort received a combination of Vit D and CRTs.
Approximately 76% of the sample did not use either drug.

Table 1. Selected characteristics of SARS-CoV-2-positive veterans (N = 26,508).

Characteristic

Post-Index Medication Usage *
(Vitamin D|Corticosteroids)

n (%), Median (IQR)

30-Day Mortality
n (%), Median (IQR)

(−|+) (−|−) (+|+) (+|−)

N (% of total sample size) 5355 (20) 20,134 (76) 283 (1) 736 (3) 1612 (6)

Age (y) 64 (21) 58 (27) 66 (16) 63 (20) 76 (16)
≤30 154 (3) 1425 (7) 5 (2) 14 (2) 0 (0)

31–40 455 (9) 3058 (15) 12 (4) 59 (8) 3 (<1)
41–50 598 (11) 2725 (14) 26 (9) 84 (11) 25 (2)
51–60 976 (18) 3864 (19) 49 (17) 165 (22) 80 (5)
61–70 1362 (25) 4101 (20) 88 (31) 179 (24) 328 (20)
71–80 1301 (24) 3410 (17) 76 (27) 177 (24) 569 (35)
81–90 401 (7) 1151 (6) 19 (7) 37 (5) 401 (25)
>90 108 (2) 400 (2) 8 (3) 21 (3) 206 (13)

Male ˆ 4831 (90) 17,970 (89) 240 (85) 618 (84) 1575 (98)

Race
White 3047 (57) 12,070 (60) 147 (52) 392 (53) 1009 (63)
Black 2101 (39) 7257 (36) 129 (46) 328 (45) 547 (34)
Asian 59 (1) 226 (1) 1 (<1) 3 (<1) 15 (1)
AIAN 50 (1) 166 (1) 0 (0) 2 (<1) 16 (1)

NHOPI 51 (1) 207 (1) 2 (1) 7 (1) 13 (1)
Multiracial 47 (1) 208 (1) 4 (1) 4 (1) 12 (1)

Latinx ˆ 790 (15) 3536 (18) 25 (9) 102 (14) 154 (10)

BMI (kg/m2) 31 [8.3] 30 [7.7] 30 [8.5] 30 [8.6] 27 [9]
Underweight (<18.5) 100 (2) 243 (1) 7 (2) 10 (1) 73 (5)
Normal (18.5–24.9) 883 (16) 3403 (17) 45 (16) 127 (17) 489 (30)

Overweight (25–29.9) 1655 (31) 6678 (33) 83 (29) 249 (34) 490 (30)
Class-I Obese (30–34.9) 1462 (27) 5748 (29) 90 (32) 178 (24) 304 (19)
Class-II Obese (35–39.9) 777 (15) 2614 (13) 34 (12) 104 (14) 159 (10)
Class-III Obese (40–44.9) 323 (6) 984 (5) 18 (6) 35 (5) 55 (3)

Super Obese (≥45) 155 (3) 464 (2) 6 (2) 33 (4) 42 (3)

Alcohol Use Disorder ˆ 671 (13) 2683 (13) 37 (13) 118 (16) 163 (10)

Smoker §

Never 2413 (45) 10,167 (51) 137 (48) 381 (52) 644 (40)
Former 2406 (45) 7623 (38) 118 (42) 297 (40) 858 (53)
Current 536 (10) 2344 (12) 28 (10) 58 (8) 110 (7)

Hospitalization ˆ 3149 (59) 4340 (22) 164 (58) 192 (26) 1113 (69)
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Table 1. Cont.

Characteristic

Post-Index Medication Usage *
(Vitamin D|Corticosteroids)

n (%), Median (IQR)

30-Day Mortality
n (%), Median (IQR)

(−|+) (−|−) (+|+) (+|−)

Length of Stay (days) 8 [11] 6 [10] 6 [12] 5 [11] 9 [9]
≤7 ~ 3751 (70) 18,398 (91) 209 (74) 669 (91) 946 (59)

>7–14 790 (15) 854 (4) 29 (10) 28 (4) 388 (24)
>14 814 (15) 882 (4) 45 (16) 39 (5) 278 (17)

Mechanical Ventilation ˆ 673 (13) 465 (2) 30 (11) 14 (2) 598 (37)

Location (USA)
Pacific-West/Mountain 971 (18) 3996 (20) 42 (15) 97 (13) 231 (14)
Mid-West/Continental 1053 (20) 4175 (21) 42 (15) 93 (13) 251 (16)

Southeast 2598 (49) 8111 (40) 180 (64) 442 (60) 592 (37)
Northeast 733 (14) 3852 (19) 19 (7) 104 (14) 538 (33)

Time (Index, 3/1–9/10)
March 362 (7) 1668 (8) 17 (6) 54 (7) 253 (16)
April 512 (10) 2916 (14) 26 (9) 97 (13) 445 (28)
May 297 (6) 1730 (9) 12 (4) 61 (8) 190 (12)
June 953 (18) 3592 (18) 42 (15) 122 (17) 205 (13)
July 2155 (40) 7136 (35) 114 (40) 277 (38) 315 (20)

August 998 (19) 2950 (15) 68 (24) 121 (16) 192 (12)
September 78 (1) 142 (1) 4 (1) 4 (1) 12 (<1)

CCI
0 2198 (41) 11,712 (58) 93 (33) 329 (45) 407 (25)

1–2 1978 (37) 6032 (30) 115 (41) 291 (40) 572 (35)
3–4 766 (14) 1640 (8) 48 (17) 77 (10) 391 (24)
5+ 413 (8) 750 (4) 27 (10) 39 (5) 242 (15)

Comorbidity ˆ

Asthma 591 (11) 1039 (5) 29 (10) 56 (8) 74 (5)
Atherosclerosis 1830 (34) 4551 (23) 112 (40) 207 (28) 872 (54)

Cancer 885 (17) 2095 (10) 80 (28) 137 (19) 391 (24)
Chronic Kidney Disease 1173 (22) 2664 (13) 77 (27) 121 (16) 612 (38)
Chronic Liver Disease 145 (3) 408 (2) 13 (5) 22 (3) 68 (4)

CHF 900 (17) 1930 (10) 52 (18) 89 (12) 452 (28)
COPD 1307 (24) 2188 (11) 79 (28) 108 (15) 472 (29)

Diabetes (Type II) 2108 (39) 6116 (30) 122 (43) 307 (42) 813 (50)
Hyperlipidemia 3227 (60) 10,032 (50) 183 (65) 466 (63) 1047 (65)

Hypertension 3523 (66) 10,461 (52) 209 (74) 501 (68) 1242 (77)
Mental Illness 2716 (51) 9662 (48) 148 (52) 409 (56) 709 (44)
Sleep Disorder 1828 (34) 5111 (25) 99 (35) 214 (29) 416 (26)

Substance Abuse 1194 (22) 4222 (21) 62 (22) 173 (24) 307 (19)
ˆ Referent is the complement group. * Systemic administration by mouth or intramuscular injection. § Cigarettes.
~ Includes non-hospitalized participants with zero length of stay. AIAN = American Indian and Alaska Native;
BMI = body mass index; CCI = Charlson Comorbidity Index; CHF = congestive heart failure; COPD = chronic
obstructive pulmonary disease; IQR = interquartile range; kg = kilograms; m = meters; NHOPI = Native Hawaiian
or Pacific Islander; USA = United States of America; y = years.

Compared with the use of post-index CRT use alone (−|+), the combination therapy
of Vit D and CRTs (+|+) as well as the use of post-index Vit D alone (+|−) were loga-
rithmically associated with 98% (Pmc = 0.031) and 223% (Pmc = 0.0004) reduced 30-day
mortality adjusted risk among those hospitalized, respectively (Table 2). For this group of
hospitalized patients, an aRR of 1.5 (95% CI = 1.3–1.7; Pmc < 0.0001) was observed for CRT
use alone (−|+) compared with the use of neither compound (−|−) (not shown in tables).
Analogously, the aRR for Vit D use alone (+|−) versus neither compound (−|−) was 0.47
(95% CI = 0.25–0.90; Pmc = 0.022).
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Table 2. Adjusted risk for non-survivors and survivors among SARS-CoV-2-positive veterans by
indicated post-index medication use and hospitalization status.

Post-Index Non
Survivors ˆ Survivors ˆ Multiplicity Corrected ‡

Medication * n (%) n (%) aRR (95% CI) † p-Value

Hospitalized (N = 7845)

Vitamin D Corticosteroids
− + 534 (48) 2615 (39) 1.0 Referent —
− − 553 (50) 3787 (56) 0.66 (0.58–0.74) <0.0001
+ + 15 (1) 149 (2) 0.51 (0.27–0.94) 0.031
+ − 11 (1) 181 (3) 0.30 (0.16–0.58) 0.0004

Non-hospitalized (N = 18,663)

Vitamin D Corticosteroids
− + 69 (14) 2137 (12) 1.0 Referent —
− − 413 (83) 15,381 (85) 0.94 (0.71–1.2) 0.66
+ + 6 (1) 113 (1) 2.5 (0.90–7.1) 0.078
+ − 11 (2) 533 (3) 0.48 (0.22–1.1) 0.078

ˆ Non-referent group of the indicated comparison factor. * Systemic administration by mouth or intramuscular
injection. † Adjusted for Age (≤60, 61–70, 71–80, >80), Alcohol Use Disorder (Yes, No), BMI (<18.5, 18.5–24.9,
25–29.9,≥30), Charlson Comorbidity Index (0, 1–2, 3–4, 5+), Current Smoker (Yes, No), Location (Pacific-Mountain,
Mid-West/Continental, East Coast), Race (White, Black, Other Race), Sex (Male, Female), and Time (March, April–
September). ‡ Subset analyses corrected for multiplicity using the Hochberg step-up procedure for multinomial
comparisons. aRR = Adjusted relative risk; BMI = body mass index (kg/m2); CI = confidence interval.

Among non-hospitalized patients, Vit D use alone showed a tendency toward a de-
creased risk (aRR = 0.48, 95% CI = 0.22–1.1, Pmc = 0.078) (Table 2). A borderline significant
risk increase was observed for the combined use of Vit D and CRTs (+|+) relative to the
use of CRTs without Vit D (−|+) (aRR = 2.5, 95% CI = 0.90–7.1; Pmc = 0.078). Compa-
rable risk effects were observed for the subset of Black and White hospitalized patients
(Tables 3 and 4).

Table 3. Adjusted risk at 30 days for non-survivors and survivors among hospitalized SARS-CoV-2-
positive veterans by indicated post-index medication use and race.

Post-Index Non
Survivors ˆ Survivors ˆ Multiplicity Corrected ‡

Medication * n (%) n (%) aRR (95% CI) † p-Value

Black (N = 3281)

Vitamin D Corticosteroids
− + 185 (45) 1089 (38) 1.0 Referent —
− − 215 (52) 1633 (57) 0.69 (0.55–0.86) 0.0009
+ + 5 (1) 70 (2) 0.44 (0.09–0.2.0) 0.29
+ − 5 (1) 79 (3) 0.34 (0.12–0.98) 0.047

White (N = 4291)

Vitamin D Corticosteroids
− + 329 (50) 1434 (40) 1.0 Referent —
− − 318 (48) 2020 (56) 0.65 (0.55–0.76) <0.0001
+ + 9 (1) 76 (2) 0.50 (0.26–0.96) 0.036
+ − 6 (1) 99 (3) 0.29 (0.12–0.66) 0.0032

ˆ Non-referent group of the indicated comparison factor. * Systemic administration by mouth or intramuscular
injection. † Adjusted for Age (≤60, 61–70, 71–80, >80), Alcohol Use Disorder (Yes, No), BMI (<18.5, 18.5–24.9,
25–29.9,≥30), Charlson Comorbidity Index (0, 1–2, 3–4, 5+), Current Smoker (Yes, No), Location (Pacific-Mountain,
Mid-West/Continental, East Coast), Sex (Male, Female), and Time (March, April–September). ‡ Subset analyses
corrected for multiplicity using the Hochberg step-up procedure for multinomial comparisons. aRR = Adjusted
relative risk; BMI = body mass index (kg/m2); CI = confidence interval.
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Table 4. Adjusted risk at 30 days for non-survivors and survivors among non-hospitalized SARS-
CoV-2-positive veterans by indicated post-index medication use and race.

Post-Index Non
Survivors ˆ Survivors ˆ Multiplicity Corrected ‡

Medication * n (%) n (%) aRR (95%CI) † p-Value

Black (N = 6534)

Vitamin D Corticosteroids
− + 16 (12) 811 (13) 1.0 Referent —
− − 116 (85) 5293 (83) 1.2 (0.68–2.0) 0.56
+ + 0 (0) 54 (<1) ∞ ∞
+ − 5 (4) 239 (4) 0.93 (0.24–3.6) 0.92

White (N = 11,365)

Vitamin D Corticosteroids
− + 51 (15) 1233 (11) 1.0 Referent —
− − 284 (82) 9448 (86) 0.86 (0.42–1.7) 0.67
+ + 6 (2) 56 (1) 2.7 (0.77–9.2) 0.12
+ − 6 (2) 281 (3) 0.35 (0.10–1.2) 0.093

ˆ Non-referent group of the indicated comparison factor. * Systemic administration by mouth or intra-
muscular injection. † Adjusted for Age (≤60, 61–70, 71–80, >80), Alcohol Use Disorder (Yes, No), BMI
(<18.5, 18.5–24.9, 25–29.9, ≥30), Charlson Comorbidity Index (0, 1–2, 3–4, 5+), Current Smoker (Yes, No), Lo-
cation (Pacific-Mountain, Mid-West/Continental, East Coast), Sex (Male, Female), and Time (March, April–
September). ‡ Subset analyses corrected for multiplicity using the Hochberg step-up procedure for multinomial
comparisons. ∞ = non-convergent (zero cell). aRR = Adjusted relative risk; BMI = body mass index (kg/m2);
CI = confidence interval.

A significant mortality interaction was observed for the effect of Vit D use in hospi-
talized versus non-hospitalized patients who received post-index CRTs (P-for-interaction
(PInt) = 0.0071); post-index Vit D use showed a protective effect among hospitalized post-
index CRT users but a borderline detrimental effect among non-hospitalized post-index
CRT users (Table 5). This interaction remained statistically significant after multiplicity
correction. Among non-users of post-index CRTs, post-index Vit D use showed a protective
effect, regardless of hospitalization. The ∆aRR% (Vit D versus no Vit D) for non-users of
post-index CRTs was −8, corresponding to a borderline significant vertical interaction
compared with users of post-index corticosteroids (P∆V = 0.057 before MC). In contrast,
among those not receiving post-index Vit D, a 50% increased aRR (30-day mortality) was
observed for hospitalized users of post-index corticosteroids (versus non-users) (p < 0.0001),
and this represented a ∆aRR% of +43 compared with non-hospitalized patients (p = 0.018
before MC). However, there was no evidence of either a vertical (P∆V = 0.81) or horizontal
(P∆H = 0.53) interaction for the CRT comparisons.
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4. Discussion

Considerable discordance exists regarding the effectiveness of Vit D in the treatment of
COVID-19, with some reports suggesting a beneficial effect [15–17,28,29,31,41,45,53,84–106]
and others no change [26,27,30,32–37,44,107–109]. The reasons for these disparate findings
are likely complex and multifactorial, with varying doses, duration, and timing of Vit D
administration along with patient populations and sample sizes all playing roles [110].
Differences in the criteria for defining the severity of COVID-19 may also explain, in
part, the ambiguity of study results [111]. Most of the studies on this topic have been
observational in design and did not account for heterogeneous comorbid conditions or
the effect of CRT use. Moreover, the few randomized clinical trials published to date have
been small and insufficiently powered to assure the balance of CRT use between study
arms [35,36,84,86,96].

Our findings suggest that post-index use of Vit D and CRT (+|+) has a beneficial effect
on survival among hospitalized patients with PCR-confirmed COVID-19. Considering
hospitalization to be a surrogate marker for disease severity and, in many cases, the need for
respiratory support, the current analysis is consistent with the RECOVERY Collaborative
Group findings [73]. In the latter study, dexamethasone was associated with a harmful
effect when administered to patients not receiving respiratory support, and vice versa.
Accordingly, if Vit D enhances the effect of CRT, as suggested by several reports, it follows
that Vit D + CRT would similarly have an increased benefit during hospitalization, when
the control of inflammation versus viral replication is paramount [58–60,64–67,70,71]. The
highest mortality risk in our study was noted for hospitalized patients receiving CRTs in
the absence of Vit D. In contrast, the combination of Vit D and CRT significantly reduced
this risk by 98% on the logarithmic scale.

As previously mentioned, CRT use in a nationally representative cohort study was
associated with a two-fold reduction in endogenous Vit D levels [61]. Assuming that Vit D
has a positive effect on survival, those in the CRT-only treatment group (−|+), as expected
and consistent with our findings, were at a survival disadvantage. Nonetheless, we cannot
rule out a potentially detrimental effect of CRTs by suppressing the immune response to
clear the virus.

In response to viral infection, CRTs inhibit inflammation by impeding endovascular
L-selectin synthesis and through the release of granulocytes from bone marrow [112–119].
Systemic glucocorticoids have been demonstrated to improve survival when administered
to COVID-19 patients who are moderately or critically ill, but their effectiveness is de-
pendent upon timing, dose, and patient-level characteristics [73,120]. Perhaps equally
important in identifying the best candidate for CRT therapy, as put forward by our findings,
is the interaction of Vit D with CRT, especially in the context of hospitalization. Future
confirmation of this hypothesis in the form of sufficiently powered randomized controlled
trials is needed, although this may not be practical given the increasing rates of immunity
among the population conveyed by vaccination. However, Vit D and CRT may yet be
beneficial for the treatment of COVID-19 patients infected with emerging variants as the
SARS-CoV-2 virus evolves over time [121].

Given the recent results of the randomized placebo-controlled trial of a one-time bolus
of high-dose Vit D, which showed no improvement in hospital length of stay in COVID-19
patients [36], it is noteworthy that Vit D use by patients in our study was generally low-
dose daily administration from days to weeks post-COVID-19 diagnosis. There is ample
evidence that chronic, daily Vit D dosing is superior to bolus high-dose administration for
many reasons, several of which have been summarized in recent publications [122–124]. For
example, a single high dose of Vit D, versus daily administration, has been reported to acti-
vate the 24-hydroxylase enzyme (CYP24A1), leading to increased production of the inactive
form of Vit D (i.e., 24,25(OH)2D3) [125]. High-dose Vit D may also suppress parathyroid
hormone (PTH) through its effect on parathyroid cells [126]. PTH is an immunomodu-
lator postulated to stimulate the phytohemagglutinin (PHA)-induced proliferation of T
cells, important for cell-mediated immunity in the fight against infection [127–129]. In
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addition to T cells, receptors for PTH are found on neutrophils and B cells of the immune
system [130]. Nonetheless, the treatment response dynamics of Vit D are complex and
nonlinear, especially with respect to PTH [131].

Patients in the aforementioned clinical trial were excluded if they required invasive
mechanical ventilation; most did not need noninvasive ventilation, suggesting less severe
illness. Notably, CRT use has the greatest benefit among severely ill COVID-19 patients,
with those being moderately ill manifesting little or no improvement [132]. Addition-
ally, CRT use was not balanced between the study arms of this trial, thus hindering the
interpretation of the reported results.

Our study was sufficiently powered to detect drug–drug interactions. Indeed, an
important strength of this study is that the Veterans Health Administration (VHA) repre-
sents the largest integrated health care system in the US, with reasonably complete and
up-to-date electronic database information for demographics and medication prescription
details [133,134]. Additionally, given the longitudinal frame of the database, mortality
risk on a log-binomial scale was directly estimated, thus minimizing inflated effect sizes
associated with odds ratios.

A few limitations should be considered when evaluating our findings. First and
foremost, this was not a randomized clinical trial. The potential for undiagnosed (untested)
seropositivity owing to mild or asymptomatic cases may have biased the study results if
a differential effect existed by hospitalization status. However, this bias is likely nominal
given that our models were adjusted for key outcome-related variables, including the
Charlson Comorbidity Index. Nonetheless, the potential remains for residual confounding,
misclassification bias, collider effects, and hidden interactions among the analyzed variables
as well as variables not included in our multivariable models (e.g., social determinants of
health, quality of life indicators, and inability to self-isolate or manage care at home) [135].

Incomplete information on inactive users and veterans tested and treated outside the
VHA health care system are other important sources of study bias unaccounted for in our
analysis [136]. We also cannot rule out ascertainment bias, especially during the initial phase
of the pandemic, with hospitalized patients being more likely to have high-risk conditions
such as hypertension, diabetes, or renal impairment [136]. However, our analyses were
adjusted for time and comorbidities. Differences in testing rates for COVID-19 have been
reported in the literature, with non-White individuals generally being disproportionately
represented among those infected, hospitalized, and deceased, and they similarly tend
to be younger and have increased comorbid conditions [137]. In some reports, specific
occupations such as health care workers were also tested more often than the general
population [138]. Although the VA is generally recognized as an equal access system,
study bias among ill versus healthy participants must be acknowledged if this resulted
in higher or lower utilization and hospitalization rates among certain patients. Moreover,
our study relied solely on SARS-CoV-2 testing to determine COVID-19 status rather than
clinical adjudication.

Information on non-VA medications is based on self-reporting and may potentially
have been underreported. We were unable to confirm adherence and compliance to
medications among non-hospitalized patients, and this possibly introduced a variance
with respect to those who were hospitalized. Owing to differences in documentation
and drug nomenclature across VA clinics, determining the exact dosing and duration of
Vit D and CRTs was beyond the scope of the current study. For analogous reasons, the
effect of polypharmacy and the interaction with nutrients such as zinc, selenium, and
vitamin C on mortality was not evaluated in our analyses. We also did not consider the
combination of Vit D with medications such as orlistat, statins, and thiazide diuretics, which
are known to affect Vit D levels [139]. Although important in the natural history of COVID-
19, changing mitigation strategies and restrictions likewise were not studied [140,141].
Furthermore, the potential for differential health-seeking behaviors should be noted as a
possible limitation [142].
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Protopathic bias is another factor to consider when evaluating our findings. Levels
of Vit D have been reported to precipitously drop during the initial, acute inflammatory
phase of critical illness [109]. Conceivably, severe COVID-19 may manifest as lowered
Vit D levels, in turn necessitating the need for this vitamin among hospitalized patients.
However, this potential reverse causality effect would not explain the interaction with CRTs
or the multinomial results observed in our study. Indeed, the opposite appears to be the
case in that the mortality risk among hospitalized patients receiving both Vit D and CRTs
was statistically lower than that for patients using CRTs in the absence of Vit D. While
hospitalization status was considered a surrogate marker of disease severity in our analysis,
we recognize that different patients might have presented to the hospital with varying
states of acute illness [109]. We also acknowledge that the response to Vit D in patients with
already high levels at the time of hospital admission may be more beneficial than efforts
aimed at increasing levels within a brief window with treatment [105]. In future analyses,
we will aim to delineate individual dose levels by model covariates and outcome variables.

Our sample, while reflective of the VHA population, consisted mainly of older males,
with only 11% being female [133,134,140,141]. Patients treated within the VHA tend to be at
higher risk with more medically complex conditions than the US population [143]. Veterans,
especially those with obesity, diabetes, cardiac diseases, and a history of military exposures,
may be more susceptible to COVID-19-induced inflammatory conditions and poor recovery
from the disease owing to decreased reserve and pre-existing endothelial dysfunction
(these conditions, which have been linked to Vit D deficiency, suggest a potential benefit of
Vit D to augment host response to COVID-19) [144–146]. In Hawaii, for example, where
sunlight is abundant, veterans newly admitted to a nursing home were observed to have
a very high prevalence of Vit D deficiency [147], which was presumably higher than that
for non-veterans. Hence, we cannot guarantee that our results are generalizable to other
health care systems, even after carefully adjusting for key outcome-related confounders.
Lastly, our study did not consider polymorphisms of Vit D metabolism and Vit D binding
protein when analyzing the interaction of Vit D and CRT use [148,149].

Independent of COVID-19, lower levels of 25-hydroxyvitamin D (25D) on day 1
of intensive care unit (ICU) admission have been associated with decreased production
of cathelicidin antimicrobial protein-18 (hCAP-18) and greater mortality risk at three
months [132]. Patients in the ICU are, in general, at risk of having lower levels of 25-
hydroxyvitamin D (25D) and suboptimal cellular oxygenation for various reasons (e.g., fluid
resuscitation, renal failure, cardiac/respiratory failure, and gastrointestinal bleeding) [150].
When administered in this setting, Vit D replacement therapy may, in theory, reduce
mortality by increasing hemoglobulin levels, decreasing hepcidin concentrations, and
facilitating oxygenation at the cellular level [105]. Thus, aspects of Vit D use noted in the
current paper may also apply overall to hospitalized patients with severe illness, warranting
a study of Vit D in this broader population while considering a possible interaction with
CRT use in the study design.

The use of Vit D in excess amounts (>50,000 IU per day) is toxic and may lead to
hypercalcemia and hyperphosphatemia [139,150]. Accordingly, patients are advised to
avoid high doses of Vit D for the prevention or treatment of COVID-19 unless prescribed
by a licensed health care provider.

5. Conclusions

In accordance with our hypothesis and the results from this large observational study,
there appears to be an interaction between post-index use of Vit D and CRT with respect
to 30-day mortality among hospitalized versus non-hospitalized patients testing positive
for SARS-CoV-2. Future independent analyses are needed to validate this effect and the
importance to both clinical practice and our understanding of COVID-19 pathophysiology.
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