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Abstract: Real-time driving behavior identification has a wide range of applications in monitoring
driver states and predicting driving risks. In contrast to the traditional approaches that were mostly
based on a single data source with poor identification capabilities, this paper innovatively integrates
driver expression into driving behavior identification. First, 12-day online car-hailing driving data
were collected in a non-intrusive manner. Then, with vehicle kinematic data and driver expression
data as inputs, a stacked Long Short-Term Memory (S-LSTM) network was constructed to identify
five kinds of driving behaviors, namely, lane keeping, acceleration, deceleration, turning, and lane
changing. The Artificial Neural Network (ANN) and XGBoost algorithms were also employed as a
comparison. Additionally, ten sliding time windows of different lengths were introduced to generate
driving behavior identification samples. The results show that, using all sources of data yields better
results than using the kinematic data only, with the average F1 value improved by 0.041, while the
S-LSTM algorithm is better than the ANN and XGBoost algorithms. Furthermore, the optimal time
window length is 3.5 s, with an average F1 of 0.877. This study provides an effective method for
real-time driving behavior identification, and thereby supports the driving pattern analysis and
Advanced Driving Assistance System.

Keywords: real-time driving behavior identification; stacked long short-term memory network; data
fusion; time window; online car-hailing; driver expression data

1. Introduction

With the increasing demands of road traffic safety and the decreasing cost of data
acquisition equipment, driving behavior identification has become a research hotspot in
recent years. Real-time driving behavior identification is one of the most important basic
modules of driving assistance systems [1,2], which has a wide range of applications in
driver state monitoring [3–5], driving style analysis [6–9], automobile insurance [1], and
fuel consumption optimization [10].

Conceptually, there are two types of driving behaviors: macroscopic driving behav-
ior and microscopic driving behavior. The macroscopic driving behavior refers to the
overall driving states or patterns of the vehicle during a relatively long period of driv-
ing, such as normal, fatigue, aggressive, and other stages [11,12], while the microscopic
driving behavior is more specific to short-range operations, usually including stop, ac-
celeration, deceleration, and others, and is the focus of this paper. Referring to previous
studies [13–17], the five most typical driving behaviors were selected in this paper: lane
keeping, acceleration, deceleration, turning, and lane change.

Currently, the methods of driving behavior identification can be divided into two main
categories. One uses the thresholds of vehicle kinematic parameters to identify the start and
end of driving behaviors. Ma et al. [18] identified three kinds of driving behaviors, namely,
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turning, acceleration, and deceleration, by thresholds of vehicle angular velocity and lon-
gitudinal acceleration, with three styles, aggressive, normal, and cautious, to explore the
differences in driving styles during different driving stages of online car-hailing. Although
this method is simple and easy to comprehend, most of the thresholds in existing research
are determined empirically, leading to weak identification effects, with the identified driv-
ing behaviors requiring manual verifications in most cases. Recently, the machine learning
and deep learning-based methods have become more popular in transportation studies.
Since the driving behaviors usually last for a period of time, identification is essentially a
time series-based classification problem, where each sample is a two-dimensional matrix,
including a time dimension and a feature dimension. Classic machine learning algorithms
usually solve such problems by flattening features or dividing the time series into different
time windows to extract the statistical features, such as mean, standard deviation, or other
metrics, as input [19,20]. However, these extracted features could not reflect the chronologi-
cal features of driving behaviors; thus, some researchers used the dynamic time warping
(DTW) algorithm to reflect the sequence-to-sequence distance more reasonably [14]. Zheng
et al. [1] used the KNN-DTW algorithm to identify two kinds of driving behaviors: left
lane change and right lane change, with an identification accuracy of 81.97% and 71.77%,
respectively. Considering the fact that it was a simple binary classification problem, such ac-
curacies were relatively low, which can be attributed to the weakness of the algorithm itself.
A more efficient method is to use deep learning algorithms to improve the nonlinearity and
generalization ability [21]. Xie et al. [22] used the UAH-DriveSet public dataset, selected
seven features, namely, velocity, tri-axis accelerations, and tri-axis angular velocities, and
employed a convolutional neural network (CNN) to identify six kinds of driving behavior:
lane keeping, acceleration, braking, turning, left lane change, and right lane change, with
an average F1 of 0.87. Similarly, Xie et al. [16] compared three window-based feature
extraction methods, statistical values, principal component analysis, and stacked sparse
auto-encoders, and used the random forest method to classify driving behaviors on three
public datasets: UAH, UW, and IMS.

The data used in the above research were all vehicle kinematic data only, and the
limited information from a single source leads to poorer identification results. Driving
behavior is not only closely related to vehicle motion, it is also expressed through driver
states. Therefore, some researchers have incorporated driver states, such as eye-movement
features [23] and physiological features [24], to analyze driving behaviors. Guo et al. [25]
identified the driving intention to lane change using a bidirectional LSTM network based
on an attention mechanism with vehicle kinematic data, driver maneuver data, driver
eye-movement data, and head rotation data as input, and achieved an accuracy of 93.33%
at 3 s prior to the lane change. However, the eye-movement data and physiological data
are mostly collected in an intrusive manner, which can cause some interference with
driving. To the authors’ knowledge, there is currently no research on real-time driving
behavior identification considering drivers’ facial expressions. Fortunately, it has been
shown that drivers’ driving behaviors and emotions are closely related [26–28]. A study
by Precht et al. [29] showed that drivers’ anger emotions can increase the frequency of
their aggressive driving behaviors, such as rapid deceleration and rapid turning, while
such aggressive driving behaviors are intentional rather than potentially influenced by
emotions. Kadoya et al. [30] found that negative emotions (angry and sad) of taxi drivers
had significant impacts on increased driving speed, while a neutral emotional state is
related to decreased speed. It is common sense to use driver expressions to identify driving
behaviors. For example, drivers need to look at both side-mirrors when turning or changing
lanes, which may lead to changes in expressions (such as eyebrow shapes), and in fact the
eye-movement features in some studies were also deduced from driver expressions [31].

In order to integrate driver expressions into driving behavior identification without
interfering with drivers and to monitor vehicle movement and driver states in real time
for better analyzing driving style and risks, this study conducts an online car-hailing
naturalistic driving test to collect vehicle kinematic data and driver expression data in a
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non-intrusive way and uses the sliding time window on the whole data set to generate
driving behavior identification samples. The stacked long short-term memory (S-LSTM)
network is employed to identify five kinds of driving behaviors, namely, lane keeping,
acceleration, deceleration, turning, and lane change, while the artificial neural network
(ANN) and XGBoost algorithms are used as a comparison to validate the effectiveness of
the S-LSTM algorithm.

2. Data Collection and Pre-Processing

An online car-hailing naturalistic driving test was conducted in Nanjing, China, where
drivers drove in real scenarios without any test-related interference. By posting recruitment
information in the Nanjing online car-hailing platform, a total of 22 drivers were recruited.
However, there were 10 drivers whose faces were occluded or far away from the camera,
and the expression data could not be well recognized, thus a total of 12 drivers were finally
employed. Considering the long test time and high sampling frequency, a dataset with the
test results from 12 drivers should already be sufficient [32–34]. Due to the specificity of
this occupation, the 12 drivers were all male, with an average age of 36 years old, and they
all had three or more years’ driving experience. These drivers were informed of the specific
requirements of the test and received sufficient training before the formal test. The test was
conducted during the daytime (08:00–20:00) under good weather conditions. In order to
ensure the generality of the road environment, the test vehicles were free to take orders
in the Nanjing area, with no restrictions on the test routes, including urban expressways,
major arterial roads, minor arterial roads, and local streets. The data collection during the
test was made in a non-intrusive way so as to ensure the validity of the data.

In this test, the vehicle kinematic data were collected by VBOX-IISX GPS data log-
gers with a sampling frequency of 10 Hz. The outside ambient video and driver video
information were collected by the S700 Vehicle Recorder, while the driver expression data
were obtained through the processing of the driver videos with the FaceReader 8.0, a tool
that automatically analyses facial expressions and provides an objective assessment of a
driver’s motion. The test equipment is shown in Figure 1.
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Figure 1. Test equipment. (a) In-vehicle equipment, (b) FaceReader 8.0.

The data were collected over 12 days from the end of 2018 to early 2019 and consisted
of 3,120,578 pieces of vehicle kinematic data and 905.5 GB of video clips. The vehicle
kinematic data contained 12 features, which are described in Table 1. The video clip data
include the information from outside ambient videos and driver videos.
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Table 1. Description of Vehicle Kinematic Data.

Field Name Field Meaning Unit Min Max

Time Timestamp s - -
Long Longitude ◦ 118.679037 118.834188
Lat Latitude ◦ 31.877423 31.987253

Velocity Speed km/h 0.00 113.25
Heading Heading angle ◦ 0.00 359.99
Height Height m 0.00 60.78
Vert-vel Vertical velocity m/s −4.57 4.79

Turn-radius Turn radius m 0.00 1000.00
AbsHead Absolute heading angle ◦ −2278.20 170.28
Longacc Longitudinal acceleration g −29.66 1.68
Latacc Lateral acceleration g −96.56 9.95

Rel-height Elevation relative to the start point m −0.98 53.02

Driver expression data were obtained by processing driver videos using FaceReader
8.0, including the action intensity of the 20 most common facial action units with a frequency
of 10 Hz and a value range of 0–1, where larger values indicate greater action intensity. The
description of each action unit is shown in Table 2.

Table 2. Description of Action Units.

Action Unit Description Action Unit Description

AU 01 Inner Brow Raiser AU 15 Lip Corner Depressor
AU 02 Outer Brow Raiser AU 17 Chin Raiser
AU 04 Brow Lower AU 18 Lip Pucker
AU 05 Upper Lid Raiser AU 20 Lip Stretcher
AU 06 Cheek Raider AU 23 Lip Tightener
AU 07 Lid Tighter AU 24 Lip Pressor
AU 09 Nose Wrinkler AU 25 Lips Part
AU 10 Upper Lip Raiser AU 26 Jaw Drop
AU 12 Lip Corner Puller AU 27 Mouth Stretch
AU 14 Dimpler AU 43 Eyes Closed

Due to the equipment problems, both vehicle kinematic data and driver expression
data had a small portion of missing values. As the data sampling frequency is relatively
high (10 Hz), a linear interpolation could be sufficient to successfully interpolate those
missing data.

Yaw rate plays an important role in driving behavior analysis [14–16], which was
then calculated from the heading information. First, the heading data was converted to
the cumulative heading angle for expansion to the arbitrary angle. Then, the cumulative
heading angle was differentiated to obtain the yaw rate with the unit of (◦/s).

In addition, to reduce the noise and improve the stability, the vehicle kinematic data
were smoothed using a Savitzky–Golay filter, and the specific steps and parameters were
taken from a study by Brombacher et al. [6].

3. Methodology Description

The notation and description for used variables are shown in Table 3.

Table 3. Notation and description for variables used.

Symbol Description Unit

Longacc The longitudinal acceleration m/s2

Longaccmax The maximum longitudinal acceleration m/s2

Longaccmin The minimum longitudinal acceleration m/s2

yaw rate The change rate of the heading angle ◦/s
td The duration s
l The length of the time window s
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3.1. Feature Selection

The correlation analysis was performed on a partial of features of the vehicle kinematic
data, with the results shown in Figure 2. The correlation coefficient between Height and
Rel-height is 0.94, which is highly positively correlated, and the feature Height is retained
here. The correlation coefficient between Velocity and Turn-radius is 0.88, indicating a high
and positive linear correlation, and the feature Velocity is retained also. In addition, several
other features that contribute little to the identification efforts were eliminated. Finally,
seven features were selected: (1) Velocity, (2) Heading, (3) Yaw rate, (4) Height, (5) Vertical
speed (Vert-vel), (6) Longitude acceleration (Longacc), and (7) Latitude acceleration (Latacc).
Twenty action units of driver expression data are all typical human facial features, so all of
them were retained. Therefore, the entire driving behavior identification dataset contains
27 features.
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3.2. Driving Behavior Labeling and Sliding Time Window

This study identifies five kinds of driving behaviors: lane keeping, acceleration,
deceleration, turning, and lane change. To improve the accuracy and the efficiency, these
five driving behaviors were labeled based on a combined consideration of the outside
ambient video information and the thresholds of the vehicle kinematic data. The specific
labeling steps are as follows.

(1) For turning and lane-change behavior, the approximate start and end time were
first labeled through the outside ambient videos, and then the extracted segments were
labeled through the thresholds of the yaw rate. Specifically, the sign of the yaw rate is
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always the same when turning, while the yaw-rate line for lane-change behavior will cross
the x-axis, as shown in Figure 3a,b, respectively.
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(2) For acceleration and deceleration behavior, the identification thresholds were
set according to previous studies [4,14]. The time period where Longacc ≥ 0, td ≥ 1 s
and Longaccmax ≥ 1 m/s2, as well as the period where Longacc ≤ 0, td ≥ 1 s and
Longaccmin ≤ −1.5 m/s2 were extracted first, are shown in Figure 3c,d, respectively. Then,
the segments where the vehicle is in a straight state were further extracted by watching the
outside ambient videos.

(3) For lane keeping behavior, combining previous studies [35–37] and the specific
situation of this study, the period where |yaw rate| ≤ 5 ◦/s was extracted first, then the
extracted segments were further verified by outside ambient videos.

After the above steps, some unlabeled frames (0.1 s), defined by other behaviors [13],
will be labeled in subsequent processes. Furthermore, it should be noted that acceleration
and deceleration may be included in the process of turning and lane change, so the labeling
priority was defined as: the priority for turning and lane change > acceleration and deceler-
ation > lane keeping. This means, the overlapped frames were labeled with the driving
behaviors with higher priorities.

Through the above four steps, a total of 1789 lane-keeping behaviors, 1676 acceleration
behaviors, 1885 deceleration behaviors, 1020 turning behaviors, and 1436 lane-change
behaviors were labeled. The label indices of driving behaviors are defined as: 1 for lane
keeping, 2 for acceleration, 3 for deceleration, 4 for turning, and 5 for lane change.

In order to meet the real-time requirements, it was necessary to introduce the sliding
time window to identify driving behaviors using the vehicle kinematic and expression
data in the past period of time. The sliding interval of the time window was exactly the
frequency of the identification of driving behavior. In this study, the sliding interval was set
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to 1 s for real-time performance. The length of the time window was referred to previous
studies [16,38]: l ∈ {0.5 s, 1 s, 1.5 s, 2 s, 2.5 s , 3 s , 3.5 s, 4 s, 4.5 s , 5 s}, and the optimal
length would be explored through subsequent experiments. Each time window was labeled
using Algorithm 1 [23]. After video confirmation, it was found that the majority of other
behaviors were performed when the vehicles were parked, and a small number of data
were missing. Since other behaviors are not within the scope of this study, they will not be
considered in the subsequent analysis.

Algorithm 1: Label generation for the dataset.

Input: The label of each frame of the dataset
Output: Label of each time window, where 0: other behaviors, 1: lane keeping, 2: acceleration,
3: deceleration, 4: turning, 5: lane change
For each time window:
if all frames in the time window are unlabeled then
Set 0 as the label of the time window
else
Compute the mode of the labels in the time window
Set the mode as the label of the time window
End for

3.3. Driving Behavior Identification Models

After determining the time windows and the corresponding labels, the driving behav-
ior identification is essentially a multidimensional time series-based classification problem.
The S-LSTM network is constructed, which is a common time series algorithm in deep
learning, while the ANN and XGBoost algorithms are used for the verification of the
effectiveness of S-LSTM.

3.3.1. Input Data

Each input sample of the S-LSTM model is a two-dimensional matrix containing a
feature dimension and a time dimension. The feature dimension consists of a total of
27 vehicle kinematic and driver expression features, while the time dimension is a time
series with a time interval of 0.1 s. Therefore, the shape of each input sample is 27 ∗ 10l. For
the ANN and the XGBoost, four statistic variables, namely, minimum, maximum, mean,
and standard deviation, were calculated for the 27 features under each time window, thus
each input sample is a one-dimensional vector with the length 27 ∗ 4 = 108.

3.3.2. Model Structure and Parameters

The LSTM network was first proposed by Hochreiter et al. [39] in 1997 and is a
variant of the recurrent neural network (RNN), delivering good solutions to problems
of slow training of RNN, which is beneficial in dealing with time series problems. The
neural unit of LSTM has a gate structure, including the forgetting gate, input gate, and
output gate, as shown in Figure 4. The computation process of each neural unit is shown
in Equations (1)–(6).

ft = σ(W f · [ht−1, xt] + b f ) (1)

it = σ(Wi · [ht−1, xt] + bi) (2)

C̃t = tanh(WC · [ht−1, xt] + bC) (3)

Ct = ft · Ct−1 + it · C̃t (4)

ot = σ(Wo · [ht−1, xt] + bo) (5)

ht = ot · tanh(Ct) (6)

where, ft, it, ot are the outputs of the forgetting gate, input gate, and output gate at the
current moment, respectively; Ct−1, Ct are the unit states of the previous moment and the
current moment, respectively; C̃t is the candidate value of Ct; ht−1 is the output of the
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hidden layer at the previous moment; xt is the input at the current moment; W f , Wi, WC,
Wo are the weight matrices; b f , bi, bC, bo are the bias vectors; and σ is a sigmoid function.
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Due to the large amount of data, the S-LSTM was constructed using recurrent layer
stacking technology to improve the learning ability of the model, as shown in Figure 5. The
network consists of an input layer, two LSTM layers, and an output layer. The activation
functions of the LSTM layers and the output layer are ReLU and Softmax, respectively.
In order to prevent overfitting, both Dropout and Recurrent Dropout regularization were
used in LSTM layers. Early-stopping was adopted during the training, the validation loss
was selected as the monitor, and the patience was set to 3.
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Figure 5. The input data and structure of the network.

The data set was divided into a training set and a test set at a ratio of 8:2, and the
parameters of the S-LSTM, ANN, and XGBoost were adjusted, respectively, using a five-fold
cross-validation, while the optimal parameters were finally determined as shown in Table 4.
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Table 4. Optimal parameters of models.

Models Main Parameters Parameters Range Optimal Parameters

S-LSTM

Number of units Nunit Nunit ∈ {16, 32, 64, 128}
Nunit = 32, m = 128
Dr = 0.2, Rr = 0.2

lr = 10−3

Batch size m m ∈ {32, 64, 128, 256}
Dropout rate Dr Dr ∈ {0.1, 0.2, 0.5}

Recurrent dropout rate Rr Rr ∈ {0.1, 0.2, 0.5}

Learning rate lr lr ∈
{

10−3, 10−2
}

ANN

Number of hidden layer
units Nunit

Nunit ∈ {16, 32, 64, 128}
Nunit = 64, lr = 10−3

Learning rate lr lr ∈
{

10−3, 10−2
}

XGBoost

Maximum depth of each
tree md md ∈ {1, 6, ∞}

md = 6, lr = 0.3

Learning rate lr lr ∈ {0.1, 0.2, 0.3, 0.5}

3.4. Model Evaluation

Four measurement metrics, namely, accuracy, precision, recall, and F1, were se-
lected to evaluate the candidate models, while the calculation formulas are shown in
Equations (7)–(10). Besides the macro-average precision, recall, and F1, the arithmetic
average values of precision, recall, and F1 of each driving behavior are selected to evaluate
the overall effects of the models.

Accuracy =
TP + TN

TP + FP + FN + TN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 =
2 · Precision · Recall
Precision + Recall

(10)

where, TP, FP, FN, and TN are the number of true positive, false positive, false negative,
and true negative results, respectively.

In addition, a receiver operating characteristic (ROC) curve is also used to visualize
model performance, the horizontal coordinate of which is the false positive rate (FPR) (see
Equation (11)), while the vertical coordinate is the true positive rate (TPR), namely, recall
(see Equation (9)). The measurement variable area under the curve (AUC) is the total area
under the ROC curve, while its larger value represents better classification results.

FPR =
FP

FP + TN
(11)

4. Results and Discussion
4.1. Comparison of Different Input Features

The identification results of the S-LSTM model using all data (ALL) and using the
vehicle kinematic data only (VK) are shown in Table 5. The F1 of S-LSTM (ALL) for iden-
tifying lane keeping, acceleration, deceleration, and turning behaviors are all around 0.9,
while the average F1 of the five types of driving behaviors is 0.877, which is 0.041 higher
than that of S-LSTM (VK). These results indicate that driver expressions are correlated with
driving behaviors, and the S-LSTM model is good in handling high-dimensional features
and mining rich information from multi-source data.
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Table 5. Identification results of different input features.

Driving Behaviors
S-LSTM (ALL) S-LSTM (VK)

Precision Recall F1 Precision Recall F1

Lane keeping 0.965 0.825 0.889 0.915 0.774 0.838

Acceleration 0.839 0.982 0.905 0.965 0.891 0.927

Deceleration 0.938 0.923 0.931 0.883 0.942 0.912

Turning 0.896 0.874 0.885 0.779 0.847 0.812

Lane change 0.753 0.798 0.775 0.640 0.750 0.691

Macro-average 0.878 0.880 0.877 0.837 0.841 0.836

4.2. Comparison with Different Algorithms

The identification results of the ANN and XGBoost for each driving behavior are
shown in Table 6. Comparing Table 5 with Table 6, it can be found that the results of S-LSTM
are significantly better than those of the ANN and the XGBoost algorithms. The results
of the ANN are not so perfect, with an average F1 of 0.652, while the F1 for identifying
lane-change behavior is only 0.542, which is close to a random guess. The difference in
model performance may be attributed to the existence of a certain duration of driving
behaviors, and the S-LSTM can better capture the chronological features, which could be
lost when using the ANN and the XGBoost by extracting features through statistics.

Table 6. Identification results of different algorithms.

Driving Behaviors
ANN XGBoost

Precision Recall F1 Precision Recall F1

Lane keeping 0.690 0.685 0.687 0.810 0.905 0.855

Acceleration 0.733 0.706 0.719 0.867 0.877 0.872

Deceleration 0.716 0.660 0.687 0.891 0.713 0.792

Turning 0.607 0.643 0.625 0.718 0.842 0.775

Lane change 0.517 0.570 0.542 0.689 0.716 0.702

Macro-average 0.653 0.653 0.652 0.795 0.811 0.799

Figure 6 shows the ROC curves and AUCs of each algorithm to identify the different
driving behaviors. It can be seen from Figure 6 that the ROC curves of the S-LSTM scenario
for each driving behavior, macro-average, and micro-average are all closer to the upper left,
and the AUCs are also significantly higher than those of ANN and XGBoost, indicating the
superiority of the S-LSTM again. In addition, the ANN and the XGBoost have high AUCs
for each driving behavior, although the overall identification results are not so perfect,
indicating that these two algorithms can be competent for the binary classification problem.
However, when the number of categories increases, they will confuse different kinds of
driving behaviors.

4.3. Comparison of Different Time Windows

For the ten time windows, namely, l ∈ {0.5 s, 1 s, 1.5 s, 2 s, 2.5 s , 3 s , 3.5 s, 4 s, 4.5 s , 5 s},
the F1 of the S-LSTM for identifying the five kinds of driving behaviors is shown in
Figure 7. As can be seen from Figure 7, the acceleration and deceleration behaviors are
well identified when the time window is short, while the turning and lane-change behavior
results are better when the time window is relatively longer. The reason is that turning
and lane-change behaviors usually have longer durations, so a short time window fails to
capture the information completely. In contrast, acceleration and deceleration behaviors
usually last for a short time period, so a longer time window tends to capture unnecessary
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information. Moreover, the identification results of lane-keeping behaviors fluctuate greatly
with the length of the time windows because of the large difference in the duration of
lane-keeping behaviors. Overall, the macro-average F1 of the five driving behaviors is
stable around 0.8–0.9, and the results do not differ much between different time windows.
In practical applications, the recommended time window length is 3.5 s, with an average
F1 of 0.877, which is basically consistent with the previous study [16].
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4.4. Comparison of Different Driving Behaviors

Figure 8 shows the confusion matrix of the S-LSTM model with respect to identifying
each driving behavior, where 1, 2, 3, 4, and 5 represent lane-keeping, acceleration, decel-
eration, turning, and lane-change behaviors, respectively. From Figure 8, it can be seen
that the S-LSTM model provides relatively lower identification results for lane-change
behaviors and misclassifies some lane-keeping behaviors as lane-change behaviors, which
may be due to the fact that lane change usually contains short lane-keeping fragments that
are easily confused. The results of lane-keeping, acceleration, deceleration, and turning
behaviors are better, which can be attributed to the fact that these behaviors are relatively
simple and the S-LSTM model can better capture their features.



Int. J. Environ. Res. Public Health 2022, 19, 348 12 of 14

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 7. Identification results of different time windows. 

4.4. Comparison of Different Driving Behaviors 
Figure 8 shows the confusion matrix of the S-LSTM model with respect to identifying 

each driving behavior, where 1, 2, 3, 4, and 5 represent lane-keeping, acceleration, decel-
eration, turning, and lane-change behaviors, respectively. From Figure 8, it can be seen 
that the S-LSTM model provides relatively lower identification results for lane-change be-
haviors and misclassifies some lane-keeping behaviors as lane-change behaviors, which 
may be due to the fact that lane change usually contains short lane-keeping fragments that 
are easily confused. The results of lane-keeping, acceleration, deceleration, and turning 
behaviors are better, which can be attributed to the fact that these behaviors are relatively 
simple and the S-LSTM model can better capture their features. 

 
Figure 8. Confusion matrix of driving behavior identification. 

5. Conclusions 
In this paper, a non-intrusive method was used to collect high-precision vehicle kin-

ematic data and high-definition video data through an online car-hailing naturalistic driv-
ing test in Nanjing, which ensured the capture of rich information on driving behaviors 
with no interference to driving, improving the identification of driving behaviors, and 
providing theoretical support for analyzing driving behavior using multi-source data. 

Figure 8. Confusion matrix of driving behavior identification.

5. Conclusions

In this paper, a non-intrusive method was used to collect high-precision vehicle
kinematic data and high-definition video data through an online car-hailing naturalistic
driving test in Nanjing, which ensured the capture of rich information on driving behaviors
with no interference to driving, improving the identification of driving behaviors, and
providing theoretical support for analyzing driving behavior using multi-source data.

In order to determine a reasonable time dimension, 10 different time windows were
compared for generating driving behavior samples. The S-LSTM model was constructed to
identify five kinds of driving behaviors: lane keeping, acceleration, deceleration, turning,
and lane change, while two machine learning algorithms, the ANN and the XGBoost, were
used as comparisons to verify the effectiveness of the S-LSTM model. The results show that
the identification effect of the S-LSTM is better than the ANN and the XGBoost algorithms,
the driver expression data enhancing the identification results, which implies that the
S-LSTM model could mine richer information from multi-source data and is suitable for
solving such time series classification problems with many features and large data volumes.
It has also been demonstrated that too long or too short time windows are not conducive
to driving behavior identification, 3.5 s being optimal. In addition, the relatively poorer
identification of lane-change behaviors is attributed to the fact that lane-change behaviors
are more complex.

In summary, the main contribution of this paper is to propose a real-time driving
behavior identification framework based on the fusion of multi-source data, which innova-
tively integrates driver expressions into driving behavior identification. While driving, the
driving behavior identification results are fed back to the driving monitoring platform in
real time for driving style analysis and driving risk prediction, and can also be fed back to
insurance companies for analysis, allowing them to provide more preferential policies for
cautious and steady drivers. In addition, scores for drivers with respect to their driving
behaviors can even be provided on a real-time basis to foster good driving habits.

In the next study, a more diverse sample of drivers will be employed (different driving
skills, genders, and ages) to improve the generality of the research. Extra data sources
could be considered, such as road alignment data, to further improve the identification
results, and driving behavior categories can be refined. For example, turning behaviors
can be further divided into left-turn and right-turn behaviors. In addition, the real-time
identification can be upgraded to real-time prediction, so as to monitor driver states and
predict driving risks timelier and more effectively.
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