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Abstract: The Difficulties in Emotion Regulation Scale (DERS), as one of the most frequently em-
ployed measures of emotion regulation (ER), has increasingly been used in numerous researches
and applications. However, the structures derived from previous factor-analytic studies have a
high degree of inconsistency. In the current study, both the traditional factor analysis method and
novel (bifactor) modeling approaches were employed to examine the most optimal measurement
structure of the DERS in a sample of 1036 Chinese participants. After a series of comparisons, the
findings indicated that the bifactor model, with a general ER factor and four distinct subdimensions,
was the most optimal structure for the DERS. Based on the study’s findings, the discussion was
focused mainly on the future directions and the implications of this bifactor model. The impact
and limitations of the study were also discussed, and several suggestions for future research were
provided at the end of the paper.

Keywords: emotion regulation; Difficulties in Emotion Regulation Scale; factor analysis; bifac-
tor model

1. Introduction

Emotion regulation (ER) has been getting substantial and increased attention in the last
several decades in psychology and related fields [1]. As a rough metric of research activities
in this area, PsycINFO search, with “emotion regulation” as the keyword, yielded more
than 219,719 search results in December 2020. The second edition of Handbook of Emotion
Regulation [2] introduces an extensive body of research that has investigated the underpin-
nings of ER in many aspects, as well as its associations with physical and psychological
health and dysfunction. Theoretical models associate successful ER with good health
outcomes, improved relationships, and excellent academic and work performance [3].
Conversely, within the field of clinical psychology, poor ER is a transdiagnostic risk factor
that has been connected to numerous psychological disorders, including anxiety, substance
use, and eating disorders [4]. Considering the disorders listed above, understanding the
nature and risk factors of ER has extremely important clinical implications.

To assess the degree of an individual’s ER, an increasing number of questionnaires
were developed, such as the Negative Mood Regulation (NMR) [5], the Cognitive Emotion
Regulation Questionnaire (CERQ) [6], the Emotion Regulation Questionnaire (ERQ) [7],
the Difficulties in Emotion Regulation Scale (DERS) [8] and the Regulatory Emotional
Self-Efficacy Scale (RESE) [9]. The DERS has become one of the most broadly employed
screening instruments, as it can measure ER from a multidimensional profile [8,10]. In
recent decades, the DERS has been employed in a variety of different circles, such as
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clinical psychology [11], psychological health [12], etc. Furthermore, several studies offered
preliminary evidence for the high reliability and validity of the DERS [8,13]. It has therefore
been translated into various languages, including English [8], Mexican [14], Spanish [15],
and Chinese [16].

However, all of these studies were implemented under the assumption that the DERS
has good conceptual and psychometrical assessment validity. Although many studies have
investigated the factor structure of the DERS, it has been previously mentioned that ER is
complex and may have different meanings for different people [17]. People with different
cultures, experiences and social statuses, may have distinct strategies toward ER. Thus, the
original factor structure of the DERS might not be valid for Chinese population. In addition,
even in the same cultural environment, there may be subtle differences between different
groups. To make the screening scales more effective and to guarantee comparability of
measured properties across different groups of respondents, good psychometric invariance
and clear factor structure are necessary.

1.1. Factor Structure of the DERS

The original DERS was developed by Gratz and Roemer [8] after they integrated key
features of ER into a holistic concept. The factor analysis of the DERS items revealed six
factors (non-acceptance, goals, impulse, awareness, strategies, and clarity), and this model
can explain 55.68% of the total variance of variables (labeled the structure as “A”). In order
to investigate the structure of DERS, some studies were carried out [10,13,14]. However,
the structures were highly inconsistent and they were mainly focused on 4-, 5-, and 6-factor
structures.

Marin Tejeda et al. [14] translated the DERS into Spanish version in a sample of
455 Mexican adolescents. The results of confirmatory factorial analysis (CFA) showed
that the data fitted 4-factor model with 24 items (labeled as “B”). These four factors
(non-acceptance, goals, awareness, and clarity) accounted for 45.3% of the total variance
and showed good psychometric properties with high internal consistency and adequate
concurrent validity. Compared with model A, the “strategies” factor was removed and the
“impulse” factor was integrated into different factors in model B.

Bardeen et al. [10] conducted a series of CFAs in a sample of 1045 female undergradu-
ate students from a mid-sized Midwestern University, resulting in a 5-factor structure. The
results showed that the factor named “awareness” tended to share small inter-correlations
with the other DERS factors and the revised 5-factor model (labeled as “C”) provided an
adequate fit to the data after removing the “awareness” dimension. Model C had a good
internal consistency and did not substantially sacrifice the standard correlation validity
of the original scale. Another 5-factor structure was revealed in the sample of Chilean
population [13], which accounted for 61.28% of the total variance (labeled as “D”). Model
D with 5 factors (emotional exclusion, emotional out of control, emotional interference,
emotional loosening, and emotional confusion) was ultimately derived from model A, but
it was very different from model A.

For a 6-factor structure, Gómez-Simón et al. [15] conducted the first study using DERS
to evaluate ER in a sample of Spanish adolescents. The study ended up with six highly
explicable factors (non-acceptance, goals, impulse, awareness, strategies, and clarity) and
the internal consistency for the subscales was moderate to satisfactory (labeled as “E”).
Another similar 6-factor structure was found by Li, Han, Gao, Sun, and Ahemaitijiang [16]
when they developed a Chinese version of DERS (labeled as “F”). The factor structure of
model F was the same as that of model A, but four items in model A were deleted due to
their weak factor loadings. The internal consistency, concurrent validity, and convergent
validity of the scale were good. The test–retest reliability was also good but slightly lower
than the original scale.

Potential reasons for the inconsistency among these studies may partly lie on theoreti-
cal differences, since the factor structure itself has not been uniformly defined in different
studies. Discovering common factor structure is on the basis of consistent definition, which
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determines the domain of the construct and the item pool [18]. Whereas there seem to
be additional methodological issues that can cause some degree of inconsistency across
studies. One issue, which can be considered, is the sample size influencing factorial solu-
tions. In the existing studies, sample size between 199 [19] to 1568 [20] has been employed.
Besides, the factorial complexity of ER measures can be attributed to the method used to
extract the number of factors when implementing exploratory factor analyses (EFA). For
example, studies using the Kaiser-Guttman criterion [8] yielded more factors than studies
employing maximum likelihood method [21]. Consensus on an optimal structure for ER
measures is extremely important for ER studies [22], and achieving a consensus definition
is a critical step before its common factor structure can be determined. Though there have
been several attempts at theory building, there is also a lack of commonly used construct
definition or theoretical view [23]. Moreover, because validation of the factor structure of
a measure is a process driven by theory and empirical data, methodologically rigorous
methods will inform our effort toward a consensus view of ER.

1.2. Bifactor Model

The bifactor model was originally developed by Holzinger and Swineford [24], and
was regarded as an alternative model to non-hierarchical multidimensional models. An ex-
ample of bifactor model with three special factors was showed in Figure 1.

Figure 1. A bifactor model with three specific factors.

The details of the model are listed as follows. If a scale is conducted with p items, the
score of each item is presented as X1, X2, . . . ,Xp and this scale has measured a general factor
G and n specific factors S1,S2 . . . ,Sn then the observed variable Xi can be presented as:

Xi = αiG +
n

∑
j = 1

bijSj + δi, i = 1, 2, . . . , p (1)

where αi is the loading of Xi on general factor G, bij is the loading of Xi on special factor Sj,
and δi is the measurement error of Xi Furthermore, to make the model easier to converge
and explain, it is usually assumed that the relationship between the general factor, specific
factors and measurement error, are orthogonal.



Int. J. Environ. Res. Public Health 2021, 18, 4208 4 of 16

Unlike the correlated-factors model utilized in previous studies, bifactor model hy-
pothesizes that (a) there is a general factor that accounts for the commonality shared by the
facets, and (b) there are multiple specific factors, each of which accounts for the unique
influence of the specific component over and above the general factor [25]. Moreover, any
remaining systematic covariation among the items would be captured by their loadings on
the narrower specific factors. Therefore, the bifactor approach also makes it possible to esti-
mate the relative sizes of the general and specific symptom components, and compare their
independent contributions to the prediction of ex-ternal criteria. Through this approach,
whether the degree of multidimensionality in a given measure is sufficient to support using
subscales or not can be evaluated [26]. Given its advantages, bifactor modeling has been
recommended and applied increasingly in health-related research examining the structure
of complex constructs that are characterized by a strong general factor yet at the same
time show evidence of multidimensionality [27,28]. In this study, the bifactor model was
also applied as an alternative structure of the DERS, not only to solve the inconsistencies
in previous studies, but also to provide researchers with a new perspective and more
information to understand the underlying factor structure of the DERS.

2. Method
2.1. Participants

The participants were adolescents and adults from 32 cities in China. Participants had
to sign a written informed consent and complete the questionnaire including demographic
data and self-report questionnaires via an online crowdsourcing platform in Chinese main-
land. The final sample was 1036 participants and the range of their age was 12–66 years
(Mage = 31.21 years, SDage = 13.98). The sample included 636 females (61.4%) and 400 males
(38.6%). There were no significant sex differences on the age with t (758) = −1.186 and with
p = 0.236. In terms of region, they came from the rural and urban areas in China by 45.3%
and 54.7% respectively. This study was approved by the local Ethics Committee of School of
Psychology, South China Normal University (code number: SCNU-PSY-2019-3-70).

2.2. Measures
2.2.1. DERS (Chinese Version)

The Difficulties in Emotion Regulation Scale (DERS) was developed by Gratz and
Roemer [8] and was translated into Chinese by Li et al. [16]. The Chinese version of DERS
is a 36-item self-reporting questionnaire with a 5-point Likert scale ranging from 1 (almost
never) to 5 (almost always). Higher total score indicates greater difficulties in ER. In this
study, the Chinese version of DERS has a Cronbach’s alpha of 0.89 and a split-half reliability
of 0.87.

2.2.2. Reevaluation of Life Orientation Test (Chinese Version)

The Life Orientation Test (LOT) [29] and its revision, the Reevaluation of Life Orienta-
tion Test (LOT-R) [30], were widely used to assess dispositional optimism. In this study, the
Chinese version of LOT-R translated by Li [31] is chosen as the calibration scale. It contains
10 items, including 4 filling items, 3 positive items, and 3 negative items. The items were
answered on a 5-point Likert-type scale ranging from 0 (strongly disagree) to 4 (strongly
agree). The total score is the general index of optimism tendency, while the positive and
negative item scores were used to measure optimism and pessimism, respectively. In
this study, the Chinese version of LOT-R has a Cronbach’s alpha of 0.89 and a split-half
reliability of 0.82.

2.3. The Procedure of Analyses

In this study, third set of analysis were conducted to investigate the structure of the
DERS. SPSS version 23 [32] and R package “psych” [33] were applied in exploratory factor
analysis (EFA), and Mplus7.0 [34] was used for confirmatory factor analysis (CFA).
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In the first set of analysis, CFA was conducted with data from the full sample (n = 1036),
to confirm the representative competing structures of DERS, as well as to assess whether
these existing structures represent the structure of ER best. These structures are introduced
in section Factor Structure of the DERS.

In the second set of analysis, all the participants were randomly divided into two
groups. One group (n = 518) was subjected to the EFA to explore whether there was
a new structure fitted the Chinese participants while the other (n = 518) was subjected
to the CFA to confirm this new structure’s performance. Before implementing EFA, the
Kayser–Meyer–Olkin (KMO) and Bartlett’s Test of Sphericity was used to evaluate whether
factor analysis is feasible for the current data. Generally, the values of KMO are >0.9 for a
good fit, between 0.5 and 0.6 for an acceptable fit, and <0.5 for an unacceptable fit while a
significant result of the Bartlett’s Test of Sphericity indicates that the data is suitable for the
EFA [35].

In EFAs, determining the number of factors is the major issue and many factor reten-
tion methods have been developed. Kaiser’s criterion and the Scree Test [36] are the two
mainstream methods since they are easy to implement using software such as SPSS and
SAS. The parallel analysis (PA) [37] can offer precise results by comparing the eigenvalues
from the actual data with the eigenvalues from the random data, and factors are retained
when the eigenvalue from the actual data is higher [38]. PA is one of the most precise
methods. However, it is risky to make a decision relying solely on this method, because of
its slight tendency to retain too many factors [39]. To make decision with caution, both the
conventional methods (i.e., Kaiser’s criterion and the Scree Test) and more robust empirical
criteria (i.e., PA) were used in the current study.

In the third set of analysis, bifactor CFA was performed on structures mentioned in
section Factor Structure of the DERS, and the results of the bifactor CFA will be compared
with the traditional model-fit. After a series of comparisons, the best structure represen-
tative was determined. To evaluate the importance of the general factor accounting for
item variance, we examined the proportion of variance in scale scores, denoted by omega
hierarchical (ωh). The value of ωh ranges from 0 to 1, and a higher value means stronger in-
fluence for scale scores from the general factor shared by all items [40]. Besides, proportion
of explained common variance (ECV) as a useful index was calculated to determine the
importance of general factor. The cut-off value of ECV in a bifactor model is 60% and a
higher value means a better performance [40].

2.4. The Goodness-of-Fit Indices

Note that all of the above-mentioned CFA procedures were conducted using five eval-
uation criteria, including chi-square to degrees of freedom (χ2/df ), root mean square error
of approximation (RMSEA), standardized root-mean-square residual (SRMR), comparative
fit index (CFI), and Tucker-Lewis Index (TLI). The standards for these evaluation criteria of
CFA [41] were shown in Table 1.

Table 1. The standard for five evaluation criteria of CFA.

Standard χ2/df RMSEA SRMR CFI TLI

an acceptable fit <5 <0.08 ≤0.10 ≥0.90 ≥0.90
a close fit <3 ≤0.05 ≤0.08 ≥0.95 ≥0.95

Note: df = degrees of freedom; RMSEA = root mean square error of approximation; SRMR = standardized
root-mean-square residual; CFI = comparative fit index; TLI = Tucker-Lewis Index.

Additionally, the chi-square difference test was also employed to compare between
structures. The lower the value of chi-square is, the better the fitness of the structure is.
It is necessary to note that the chi-square test is sensitive to the size of the sample, and it
may be significant when the actual difference between the observed model and the implied
model covariance is small.
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3. Results
3.1. Descriptive Characteristics

Descriptive statistics of the DERS items in the sample of 1036 Chinese adolescents and
adults were presented in the Table 2. The average score of the DERS was 116.31 (SD = 18.61),
of which the mean value of males was 118.98 (SD = 18.77) and that of females was 114.63
(SD = 18.31). The total skewness was 0.22, indicating that the sample was slightly skewed
to the right; the total kurtosis was −0.59, meaning that the sample’s peak was slightly flat.
Overall, the measured data of each variable conformed to a normal distribution.

Table 2. Descriptive statistics of the DERS items (N = 1036).

Item M(SD)
Total

M(SD)
Male

M(SD)
Female Skewness Kurtosis

Y1 3.35 (1.04) 3.50 (1.03) 3.25 (1.04) −0.29 −0.69
Y2 3.36 (1.14) 3.53 (1.12) 3.24 (1.13) −0.34 −0.84
Y3 2.86 (1.00) 2.87 (0.96) 2.85 (1.02) −0.03 −0.62
Y4 3.83 (0.85) 3.89 (0.86) 3.79 (0.85) −0.59 0.33
Y5 3.50 (1.20) 3.52 (1.17) 3.49 (1.22) −0.28 −0.96
Y6 3.38 (1.05) 3.51 (1.04) 3.30 (1.04) −0.41 −0.50
Y7 3.46 (0.99) 3.57 (0.98) 3.39 (0.99) −0.64 0.05
Y8 3.56 (0.93) 3.63 (0.91) 3.51 (0.94) −0.36 −0.43
Y9 2.88 (0.95) 3.00 (1.00) 2.81 (0.91) −0.13 −0.63

Y10 3.50 (0.91) 3.56 (0.92) 3.46 (0.91) −0.36 −0.20
Y11 2.62 (0.91) 2.66 (0.93) 2.60 (0.90) 0.11 −0.28
Y12 3.36 (1.10) 3.45 (1.14) 3.30 (1.07) −0.33 −0.38
Y13 3.47 (1.03) 3.56 (1.04) 3.41 (1.02) −0.53 −0.25
Y14 3.02 (0.99) 3.06 (0.96) 3.00 (1.00) −0.01 −0.39
Y15 3.22 (0.92) 3.29 (0.94) 3.17 (0.90) −0.26 0.31
Y16 3.10 (1.16) 3.19 (1.15) 3.04 (1.16) −0.10 −0.68
Y17 3.04 (1.04) 3.02 (0.98) 3.05 (1.08) 0.10 −0.51
Y18 3.29 (1.01) 3.30 (0.96) 3.28 (1.05) −0.05 −0.45
Y19 3.22 (1.01) 3.23 (0.98) 3.22 (1.04) −0.02 −0.43
Y20 2.96 (0.85) 3.01 (0.88) 2.93 (0.84) −0.04 −0.32
Y21 3.25 (0.89) 3.28 (0.99) 3.22 (0.82) −0.07 −0.40
Y22 3.05 (1.05) 3.10 (1.03) 3.01 (1.07) −0.13 −0.47
Y23 2.85 (0.88) 2.88 (0.94) 2.83 (0.83) 0.09 −0.02
Y24 3.15 (0.99) 3.11 (0.93) 3.17 (1.02) 0.02 −0.48
Y25 3.13 (0.93) 3.17 (0.96) 3.10 (0.91) 0.01 −0.44
Y26 3.21 (0.99) 3.24 (0.98) 3.19 (1.00) 0.08 −0.35
Y27 3.29 (1.08) 3.40 (1.05) 3.23 (1.10) 0.01 −0.73
Y28 3.35 (1.22) 3.60 (1.20) 3.19 (1.20) −0.45 −0.69
Y29 3.30 (1.26) 3.50 (1.25) 3.17 (1.25) −0.39 −0.85
Y30 3.31 (1.16) 3.42 (1.22) 3.24 (1.12) −0.27 −0.74
Y31 3.46 (1.15) 3.54 (1.08) 3.42 (1.19) −0.59 −0.35
Y32 3.42 (0.89) 3.45 (0.90) 3.39 (0.88) −0.27 −0.03
Y33 3.07 (0.93) 3.07 (0.91) 3.06 (0.95) −0.08 −0.20
Y34 3.21 (0.89) 3.22 (0.92) 3.21 (0.87) 0.00 −0.38
Y35 3.10 (1.22) 3.27 (1.28) 2.99 (1.16) 0.18 −0.86
Y36 3.21 (1.20) 3.38 (1.25) 3.10 (1.16) 0.05 −0.93

Total 116.31 (18.62) 118.98 (18.80) 114.63 (18.32) 0.22 −0.59

3.2. Testing Existing Structures

Several representative original structures of the DERS were selected, and CFA was
conducted on them. Details of the selected structures of the DERS can be seen in section
Factor Structure of the DERS. As shown in Table 3, each existing structure reached the close
fitting on the SRMR. Besides, model A and model C were not the acceptable fitting on the
RMSEA. In addition, all models were much larger than 5 on the χ2/df. Except for model A,
the remaining models were not acceptable on the CFI and TLI. Taken together the χ2/df,
RMSEA, SRMR, CFI, and TLI, none of the structures met the acceptable fitting levels. In
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order to obtain an acceptable model for the collected data, the next step was to explore and
verify the new factor structures.

3.3. EFA and CFA for Alternative Structure

From the CFA, it was assumed that a new multidimensional structure might exist.
Thus, the data was divided into two halves randomly and subjected to the EFA and CFA,
respectively. The KMO’s Test of Sampling Adequacy was 0.83 and the Bartlett’s Test of
Sphericity (χ2 = 7499.39, df = 630) was significant (p < 0.001), indicating that the DERS was
appropriate for a factor analysis.

Principal axis factoring with oblique rotation as the method of factor extraction was
used in this study and the cut-off value of the factor loadings was 0.40 (i.e., 16% of the
common variance). Three retention methods, as mentioned before, were implemented to
determine the number of factors. According to the result of PA, nine factors were retained
and the results of the factor rotation were shown in the left panel in Table 4. This 9-factor
solution could account for 49% of the total variance. Based on the result of the Kaiser
criterion and the Scree Test [36], ten factors were retained and the results of the factor
rotation were shown in the right panel in Table 4. This 10-factor solution could account
for 51.31% of the total variance. In these two factor solutions, all items succeeded to load
moderately to strongly (0.31–0.93) on the factors, with the communalities (h2) of these items
ranged from 0.22 to 1.01. Each factor was defined by three or more items.

To verify the newly factor structures, the remaining half data was submitted to CFA.
However, none of new structures provided acceptable fit to the data in this sample, com-
prehensively based on all goodness-of-fit indexes. In consequence, both new structures
from EFA were not considered to the bifactor CFA.

3.4. Bifactor CFA

For the bifactor CFA, we extracted the general factor of ER to form the bifactor model
based on the models in Table 3. Results of bifactor CFA fitting for these models are shown
in Table 5. Obviously, the goodness-of-fit of the bifactor models was much higher than
that of the original models. Except that the TLI of the six-specific-factor bifactor model [15]
was slightly lower than 0.90, all indices of each model were within the acceptable or close
range. Compared with CFA results, the four-specific-factor bifactor model of DERS had
the best goodness-of-fit, whose RMSEA was about 0.05, SRMR was less than 0.08, CFI was
more than 0.95, and TLI was about 0.95. Besides, the DIFFTEST [the bifactor model based
on model A vs. the bifactor model based on model C: ∆χ2 = 394.63 **, ∆df = 22] indicated
that the four-specific-factor bifactor model provided a significantly better fit to the DERS
(selected models are marked with “#” in Table 5).
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Table 3. CFA model-fit results of the existing structures of the DERS (N = 1036).

Model No. of Factors No. of Items χ2 df χ2/df
RMSEA
[90% CI] SRMR CFI TLI

A (Marin Tejeda et al., 2012) [13] 4 24 2827.43 246 11.49 0.10
[0.09, 0.11] 0.04 0.91 0.90

B (Bardeen et al., 2012) [17] 5 30 4476.45 395 11.33 0.10
[0.09, 0.11] 0.05 0.89 0.88

C (Guzmán-González et al., 2014) [12] 5 25 3585.68 265 13.53 0.11
[0.10, 0.12] 0.03 0.89 0.88

D (Gómez-Simón et al., 2014) [14] 6 36 6383.28 579 11.02 0.09
[0.08, 0.10] 0.05 0.88 0.87

E (Gratz & Roemer, 2004) [8] 6 36 6213.31 579 10.73 0.10
[0.09, 0.11] 0.05 0.88 0.87

F (Li et al., 2018) [15] 6 32 5095.30 449 11.35 0.10
[0.09, 0.11] 0.04 0.88 0.87

Note: df = degrees of freedom; 90% CI = 90% confidence interval for RMSEA.
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Table 4. Item-factor loadings from EFA for the nine-factor solution and ten-factor solution.

Items
9-Factor Solution

h2
10-Factor Solution

h2
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10

Y1 0.51 0.09 0.02 0.08 0.07 −0.06 −0.03 0.04 0.11 0.30 0.38 0.08 0.01 0.06 0.03 0.00 0.02 0.06 0.05 0.63 0.56
Y2 0.66 0.03 0.10 0.16 0.27 0.06 −0.05 0.01 0.15 0.57 0.53 0.01 0.10 0.14 0.26 0.14 −0.01 0.11 0.01 0.60 0.77
Y3 −0.03 0.21 0.27 0.03 0.01 0.00 0.79 0.03 0.06 0.75 −0.02 0.22 0.27 0.02 0.02 −0.01 0.76 0.06 0.05 −0.04 0.71
Y4 0.34 0.18 0.19 0.13 0.09 0.21 0.16 −0.04 0.02 0.28 0.36 0.19 0.20 0.14 0.12 0.18 0.14 0.03 −0.05 −0.03 0.30
Y5 0.10 0.11 0.09 −0.01 0.09 0.03 0.64 0.04 0.02 0.45 0.09 0.11 0.08 −0.02 0.09 0.04 0.67 0.02 0.04 0.04 0.49
Y6 0.73 −0.05 0.05 0.04 0.11 0.09 0.04 0.09 0.02 0.57 0.70 −0.04 0.06 0.04 0.12 0.09 0.03 0.03 0.09 0.17 0.56
Y7 0.61 0.03 0.04 0.15 0.15 0.24 0.09 0.04 0.05 0.49 0.62 0.03 0.05 0.16 0.18 0.21 0.08 0.07 0.03 0.05 0.50
Y8 0.76 −0.02 −0.03 −0.03 0.05 0.02 0.04 0.01 0.03 0.59 0.78 −0.01 −0.02 −0.01 0.08 −0.03 0.02 0.06 0.00 0.06 0.62
Y9 0.08 0.13 0.41 0.09 0.15 0.03 0.19 0.17 0.07 0.29 0.10 0.14 0.41 0.10 0.16 0.01 0.18 0.07 0.18 −0.07 0.31
Y10 0.55 0.04 0.00 0.00 −0.02 0.13 0.00 0.02 −0.03 0.32 0.59 0.06 0.00 0.01 0.01 0.08 −0.03 −0.01 0.00 −0.01 0.36
Y11 −0.06 0.11 0.52 0.09 −0.04 −0.06 0.11 0.11 0.15 0.35 −0.06 0.11 0.51 0.09 −0.04 −0.06 0.11 0.14 0.13 0.01 0.34
Y12 0.25 0.09 0.23 0.14 0.39 0.21 0.00 −0.06 0.05 0.35 0.25 0.09 0.24 0.14 0.31 0.19 −0.01 0.06 −0.07 0.02 0.29
Y13 0.44 −0.02 0.06 −0.03 0.08 −0.06 0.00 −0.08 −0.03 0.22 0.43 −0.03 0.07 −0.02 0.10 −0.08 −0.01 −0.02 −0.07 0.06 0.22
Y14 0.05 0.93 0.19 0.06 0.04 0.12 0.09 0.17 0.03 0.96 0.04 0.93 0.29 0.05 0.04 0.12 0.09 0.03 0.17 0.04 1.01
Y15 0.11 0.13 0.15 0.13 0.11 0.13 0.02 0.00 0.49 0.34 0.08 0.13 0.15 0.13 0.11 0.15 0.02 0.46 0.01 0.10 0.32
Y16 0.07 0.06 0.11 0.00 0.04 0.04 0.05 0.15 0.77 0.64 0.06 0.07 0.11 0.00 0.05 0.03 0.04 0.83 0.14 0.00 0.73
Y17 0.04 0.50 0.18 −0.08 0.06 −0.09 0.10 0.04 0.26 0.38 0.03 0.51 0.18 −0.07 0.07 −0.11 0.09 0.26 0.03 0.02 0.39
Y18 −0.04 0.62 0.19 0.05 0.03 0.14 0.20 0.19 −0.01 0.52 −0.05 0.62 0.19 0.04 0.02 0.14 0.21 −0.01 0.19 0.02 0.53
Y19 0.04 0.75 0.21 0.09 0.08 0.09 0.04 0.08 0.05 0.64 0.04 0.74 0.21 0.09 0.08 0.09 0.04 0.05 0.08 0.03 0.63
Y20 0.11 0.22 0.02 −0.03 0.03 0.02 0.01 0.45 0.10 0.28 0.11 0.23 0.01 −0.03 0.04 0.02 0.01 0.11 0.44 0.01 0.27
Y21 0.10 0.19 0.67 0.02 −0.01 0.15 0.01 −0.09 0.04 0.53 0.10 0.19 0.68 0.02 0.00 0.13 0.01 0.05 −0.09 0.01 0.54
Y22 0.18 0.13 0.01 0.07 −0.07 0.11 0.15 0.32 0.23 0.25 0.31 0.15 0.00 0.07 −0.05 0.29 0.14 0.24 0.29 −0.02 0.37
Y23 −0.10 0.14 0.54 0.08 0.06 −0.02 0.15 0.15 0.12 0.39 −0.13 0.14 0.53 0.07 0.05 0.01 0.16 0.11 0.17 0.06 0.40
Y24 0.23 0.20 −0.02 0.04 0.11 0.00 0.06 0.21 0.35 0.28 0.35 0.22 −0.03 0.04 0.12 0.23 0.05 0.02 0.19 −0.01 0.28
Y25 0.16 0.18 0.70 −0.01 0.04 0.09 0.01 −0.05 −0.04 0.56 0.15 0.18 0.70 −0.01 0.05 0.08 0.01 −0.04 −0.04 0.03 0.56
Y26 0.18 −0.08 −0.28 0.05 0.07 0.49 −0.09 −0.40 0.07 0.54 0.18 −0.08 −0.27 0.04 0.07 0.48 −0.09 0.07 −0.43 0.03 0.55
Y27 0.13 0.18 0.21 0.04 0.22 0.63 0.02 0.05 0.08 0.55 0.14 0.19 0.21 0.03 0.22 0.64 0.02 0.07 0.04 0.00 0.57
Y28 0.06 0.07 0.11 0.43 0.15 0.17 0.07 0.08 0.10 0.28 0.03 0.07 0.11 0.42 0.14 0.22 0.09 0.08 0.08 0.09 0.29
Y29 0.11 0.03 0.09 0.84 0.15 0.09 0.02 −0.02 0.00 0.76 0.10 0.03 0.09 0.84 0.16 0.10 0.02 0.00 −0.02 0.01 0.76
Y30 0.12 0.02 0.05 0.93 0.14 −0.02 −0.03 0.00 0.08 0.91 0.09 0.02 0.05 0.93 0.16 0.00 −0.04 0.08 0.01 0.06 0.91
Y31 0.17 0.06 0.18 0.15 0.19 0.32 −0.01 −0.02 0.08 0.23 0.16 0.06 0.18 0.24 0.29 0.33 −0.01 0.07 −0.02 0.06 0.32
Y32 0.06 0.14 0.17 0.01 0.08 0.20 0.45 0.26 0.09 0.38 0.06 0.45 0.24 0.01 0.09 0.20 0.17 0.09 0.26 −0.01 0.42
Y33 0.01 0.19 0.23 0.05 0.12 −0.05 0.05 0.56 0.07 0.43 −0.02 0.19 0.21 0.04 0.11 0.00 0.06 0.06 0.59 0.10 0.46
Y34 0.48 0.00 −0.05 0.04 −0.02 0.10 0.01 0.10 0.03 0.26 0.48 0.01 −0.04 0.04 −0.01 0.08 0.00 0.04 0.08 0.07 0.25
Y35 0.20 0.06 0.00 0.18 0.87 0.15 0.10 0.09 0.06 0.88 0.17 0.07 0.00 0.17 0.86 0.16 0.10 0.06 0.09 0.08 0.86
Y36 0.24 0.10 0.06 0.19 0.77 0.13 0.08 0.05 0.09 0.73 0.22 0.10 0.06 0.19 0.79 0.12 0.07 0.09 0.05 0.05 0.75

Note: h2 = communality; The bold values indicate salient factor loadings.
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Table 5. Bifactor CFA model-fit results of the suggested structures of the DERS (N = 1036).

Model No. of Factors No. of Items χ2 df χ2/df
RMSEA
[90% CI] SRMR CFI TLI

Bi-A (based on Marin Tejeda et al. 2012) [13] # 4 24 606.35 * 228 2.66 0.04
[0.03, 0.05] 0.02 0.97 0.96

Bi-B (based on Bardeen et al. 2012) [17] 5 30 1624.76 * 375 4.33 0.05
[0.04, 0.06] 0.03 0.93 0.92

Bi-C (based on Guzmán-González et al. 2014) [12] 5 25 1000.98 * 250 4.00 0.05
[0.04, 0.06] 0.03 0.94 0.93

Bi-D (based on Gómez-Simón et al. 2014) [14] 6 36 2299.44 * 558 4.12 0.05
[0.04, 0.06] 0.03 0.92 0.91

Bi-E (based on Gratz and Roemer 2004) [8] 6 36 2408.538 * 558 4.32 0.05
[0.04, 0.06] 0.03 0.91 0.90

Bi-F (based on Li et al. 2018) [15] 6 32 1996.571 * 432 4.62 0.05
[0.04, 0.06] 0.03 0.91 0.90

Note: Bi- referred to the bifactor model based on the relevant existing model; # the best fit model; * p < 0.05.
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The item-factor loadings from the standardized bifactor CFA solution of the best
fit model are shown in Figure 2. Regarding the general factor, all item-factor loadings
were greater than 0.70, demonstrating that all items of DERS had a strong impact on the
general factor. All CFA loading estimates were statistically significant (p < 0.05). In the
bifactor model, the ωh of the general factor was 81% and the ECV of the general factor
was 89%. This demonstrated that the general ER factor of bifactor model for the DERS
accounted for 81% of the variance of the summed score and 89% of the common variance
of all items, which suggested that that only a small part of the variance in the subscale
scores could be explained by the specific factors, beyond what was already accounted for
by the general factor. This further demonstrated that the DERS might be best represented
as a unidimensional construct and the items of DERS had stronger associations with the
general ER factor than with the specific factors.

Figure 2. Bifactor structure of the DERS: Item-factor loadings from the ideal CFA solution (N = 1036). Note: Specific
factor1 = Non-acceptance; Specific factor2 = Goals; Specific factor3 = Awareness; Specific factor4 = Clarity.
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3.5. Criterion-Related Validity

To test the relationship among variables and the criterion validity, bivariate correlation
analysis was conducted for the general and specific factors (see Table 6). Both the total scale
and the four subscale scores showed good internal reliability in all samples (full sample,
male, and female), with Cronbach’s α ranging from 0.62 [0.53,0.71] to 0.89 [0.87,0.90]. The
scores on the four subscales and total scale of the DERS were strongly inter-correlated
(r ranged from 0.39 to 0.92) in all three samples. With LOT-R conducted as an external
validation criterion, the result of correlation analysis showed that the total scale and four
subscales significantly and positively associated (r ranged from 0.67 to 0.92) with the
criterion. Besides, the coefficients of each indicator in subscale1 ranged from 0.54 to 0.90,
subscale2 ranged from 0.55 to 0.83, subscale3 ranged from 0.68 to 0.90, and subscale4
ranged from 0.65 to 0.81.

Table 6. Correlations between factors of the DERS and LOT-R according to the bifactor structure.

Mean SD α [90%CI] Subscale1 Subscale2 Subscale3 Subscale4 LOT-R

Full sample (N = 1036)
Total scale 54.19 13.01 0.89 [0.87,0.90] 0.92 ** 0.73 ** 0.80 ** 0.72 ** 0.92 **
Subscale1 19.33 6.24 0.82 [0.80,0.84] – 0.56 ** 0.63 ** 0.56 ** 0.90 **
Subscale2 13.74 3.04 0.63 [0.58,0.68] – – 0.43 ** 0.45 ** 0.72 **
Subscale3 12.04 3.90 0.82 [0.80,0.84] – – – 0.44 ** 0.79 **
Subscale4 9.07 2.75 0.72 [0.68,0.76] – – – – 0.76 **

Male (N = 400)
Total scale 56.3 12.97 0.88 [0.86,0.90] 0.92 ** 0.69 ** 0.80 ** 0.70 ** 0.91 **
Subscale1 20.32 6.44 0.83 [0.80,0.86] – 0.52 ** 0.63 ** 0.54 ** 0.90 **
Subscale2 14.03 2.97 0.62 [0.53,0.71] – – 0.40 ** 0.39 ** 0.67 **
Subscale3 12.67 3.92 0.83 [0.80,0.86] – – – 0.45 ** 0.79 **
Subscale4 9.28 2.69 0.69 [0.62,0.76] – – – – 0.74 **

Female (N = 636)
Total scale 52.86 12.88 0.88 [0.87,0.89] 0.91 ** 0.75 ** 0.78 ** 0.72 ** 0.92 **
Subscale1 18.71 6.03 0.81 [0.79,0.83] – 0.58 ** 0.62 ** 0.57 ** 0.90 **
Subscale2 13.57 3.08 0.63 [0.56,0.70] – – 0.44 ** 0.47 ** 0.73 **
Subscale3 11.64 3.84 0.80 [0.78,0.82] – – – 0.42 ** 0.78 **
Subscale4 8.94 2.78 0.63 [0.58,0.68] – – – – 0.76 **

Note: Subscale1 = Non-acceptance; Subscale2 = Goals; Subscale3 = Awareness; Subscale4 = Clarity; ** p < 0.01.

To test the influence of sex on the scores of each subscale, the one-way MANOVA
was conducted. The results showed that there was a significant multivariate main effect
for sex (F(4,1034) = 5.51, p < 0.001, η2 = 0.02). In order to control Type I error rate across
the four following univariate ANOVAs, we used the Bonferroni method at a α = 0.01
level of significance. On the four subscales, scores of male participants were significantly
higher than female participants’, with F(1,1034) = 10.43, p < 0.001, η2 = 0.01 on subscale1,
F(1,1034) = 14.42, p < 0.001, η2 = 0.01 on subscale2, F(1,1034) = 17.23, p < 0.001, η2 = 0.02 on
subscale3, F(1,1034) = 3.75, p < 0.05, η2 = 0.004 on subscale4.

4. Discussion

Although considerable studies have already been conducted to investigate the struc-
ture of the DERS, little is known about its underlying factor structure. This study was
implemented in the sample of 1036 Chinese adolescents and adults, aiming at revealing
the most optimal structure and the latent factor relations underlying the DERS measure
via bifactor modeling. After a series of comparisons, we concluded that the bifactor model
offered a better fit to the current data than the correlated traits model. The fit indices
proved that among several alternative models, the four-specific-factor bifactor structure of
the DERS was the most optimal. Furthermore, the structural analysis based on the optimal



Int. J. Environ. Res. Public Health 2021, 18, 4208 13 of 16

bifactor model brought a new perspective to conceptualize the structure of ER from both
general and specific factors.

In addition to fit indices, some statistical indices associated with the bifactor model
were also examined in this study. For example, the ωh and ECV statistic could evaluate the
importance of the general factor. In the bifactor model of this study, the ωh of the general
factor was 81% (above the cut-off of 70%) and the ECV of the general factor was 89% (above
the cut-off of 60%). These findings suggested this study should continue to focus on a
single core construct and support the existence of a dominant global ER dimension, which
explained over two thirds of common variance in the DERS item responses and correlated
significantly and moderately with the criterion measure of dispositional optimism. It is
worth noting that although a considerable amount of variance was accounted for by the
general factor (i.e., ER), the traditional single factor structure is not recommended to fit
the current sample data. One of the primary reasons is that a number of studies indicated
that the DERS is a multidimensional measure. Additionally, the single-factor structure of
the DERS presented a poor fit (RMSEA = 0.07, SRMR = 0.04, CFI = 0.86, and TLI = 0.85).
Therefore, compared with the single-factor model, the bifactor model can better describe
and generalize the structure of DERS. Together with previous reports of a strong general
factor in several adult samples [42], this finding lends further confidence to the common
practice of using the total DERS score as a general index of ER [43].

A notable strength and novel contribution of this study, using bifactor analysis, is that
the effectiveness of items could be assessed in two aspects (i.e., the loadings on the general
factor and the specific factor), which is difficult in traditional correlated factors model
analysis. A correlated factors model did not include a general factor and attributes all
explanatory variance to first-order factors [44]. A correlated factors model is conceptually
ambiguous because it is not able to separate the specific or unique contributions of a factor
from the effect of the overall construct shared by all interrelated factors [45], whereas a
bifactor model contains a general factor (G) and multiple specific factors (S). Because G
and S are independent, a Bifactor model can disentangle how each factor contributes to the
systematic variance in each item. The possibility of segmenting the variance in independent
sources is one of the primary advantages of the Bifactor model. An additional benefit
of bifactor modeling is that the relation between domain-specific factors and criterion
variables can be examined while holding the general factor constant [46]. This approach
might provide evidence of the incremental utility of domain-specific factors, beyond the
general factor, in predicting psychological constructs theoretically relevant to emotion
dysregulation. More specifically, through the use of bifactor modeling, we can determine
whether the domain-specific factors of the DERS account for unique variance in relevant
criterion variables after accounting for the DERS general factor. This study also implied
that the use of multidimensional latent variable model specifications that account for the
general and domain specific factors (e.g., bifactor models) should be considered when
examining the structures of related ER measures.

The present study benefited from a relatively large sample and the implementation of
sophisticated modern measurement methods to specifically reveal the underlying factor
structure of DERS. With the current results in mind, we recommend that researchers use
an investigative approach, such as a bifactor analysis, to inspect the extent to which the
variance in item responses is due to a general or specific factor when assessing the structure
of psychological measures (with data that indicates construct-relevant multidimensionality).
In sum, IRT-based structural studies are suitable for informing the development of ER
construct and the measures that emerge for assessing ER. As such, continued structural
work of this type is needed to inform our understanding of common and domain specific
components of the ER.

The use of a bifactor-analytic procedure provided us with the opportunity to assess
the unique contributions of each item to a general and a domain-specific factor. Although
we think that bifactor modeling is an interesting psychometric tool to investigate the
data structure in psychological measures, there are also some issues that need further
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attention. First, only individuals from the general community were included. It would
be important to replicate the analyses performed in the current study in clinical samples,
in order to ascertain whether the DERS could potentially explain systematic individual
differences in emotion regulation skills among clinical populations. Second, because of the
self-report method we utilized, it was not possible to establish a standardized environment
for data collection. Thus, uncontrollable environmental factors in the data collection process
may have influenced the results. Third, we relied solely on self-reported data in all the
analyses; thus, the findings could be accounted for by method variance [47]. Future studies
should receive data from multiple sources, involving direct observation and semistructured
interviews, when examining the properties of the DERS or its revision.

5. Conclusions

Despite these limitations, the bifactor method has been successfully used to resolve
similar inconsistencies in the factor structure of the DERS in this study, producing better-
fitting model in a sample of adolescents and adults. This article brought a new perspective
and more information to understand the underlying factor structure of the DERS.

Author Contributions: Conceptualization, L.X. and M.Z.; methodology, L.X.; software, L.X.; vali-
dation, J.L., L.Y., R.J., Q.X. and Q.L.; formal analysis, L.X.; investigation, L.X. and R.J.; resources,
M.Z.; data curation, R.J., Q.X. and Q.L.; writing—original draft preparation, L.X., J.L. and L.Y.;
writing—review and editing, L.X., J.L., L.Y., R.J., Q.X. and Q.L.; visualization, M.Z.; supervision,
M.Z.; project administration, M.Z.; funding acquisition, L.X. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by the Innovation Project of Graduate School of South China
Normal University.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the local Ethics Committee of School of Psychology, South
China Normal University (protocol code SCNU-PSY-2019-3-70 and date of approval).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: The data presented in this study are available on request from the first
author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Campos, J.J.; Walle, E.A.; Dahl, A.; Main, A. Reconceptualizing emotion regulation. Emot. Rev. 2011, 3, 26–35. [CrossRef]
2. Gross, J.J. Handbook of Emotion Regulation, 2nd ed.; Guilford Publications: New York, NY, USA, 2014.
3. John, O.P.; Gross, J.J. Healthy and unhealthy emotion regulation: Personality processes, individual differences, and life span

development. J. Personal. 2004, 72, 1301–1334. [CrossRef] [PubMed]
4. Aldao, A.; Nolen-Hoeksema, S.; Schweizer, S. Emotion-regulation strategies across psychopathology: A meta-analytic review.

Clin. Psychol. Rev. 2010, 30, 217–237. [CrossRef] [PubMed]
5. Catanzaro, S.J.; Mearns, J. Measuring generalized expectancies for negative mood regulation: Initial scale development and

implications. J. Personal. Assess. 1990, 54, 546–563.
6. Garnefski, N.; Kraaij, V.; Spinhoven, P. Negative life events, cognitive emotion regulation and emotional problems. Personal.

Individ. Differ. 2001, 30, 1311–1327. [CrossRef]
7. Gross, J.J.; John, O.P. Individual differences in two emotion regulation processes: Implications for affect, relationships, and

well-being. J. Personal. Soc. Psychol. 2003, 85, 348–362. [CrossRef]
8. Gratz, K.L.; Roemer, L. Multidimensional assessment of emotion regulation and dysregulation: Development, factor structure,

and initial validation of the difficulties in emotion regulation scale. J. Psychopathol. Behav. Assess. 2004, 26, 41–54. [CrossRef]
9. Caprara, G.V.; Di Giunta, L.; Eisenberg, N.; Gerbino, M.; Pastorelli, C.; Tramontano, C. Assessing regulatory emotional self-efficacy

in three countries. Psychol. Assess. 2008, 20, 227–237. [CrossRef]
10. Bardeen, J.R.; Fergus, T.A.; Orcutt, H.K. An examination of the latent structure of the difficulties in emotion regulation scale. J.

Psychopathol. Behav. Assess. 2012, 34, 382–392. [CrossRef]
11. Giromini, L.; Velotti, P.; De Campora, G.; Bonalume, L.; Zavattini, G.C. Cultural adaptation of the difficulties in emotion regulation

scale: Reliability and validity of an italian version. J. Clin. Psychol. 2012, 68, 989–1007. [CrossRef]

http://doi.org/10.1177/1754073910380975
http://doi.org/10.1111/j.1467-6494.2004.00298.x
http://www.ncbi.nlm.nih.gov/pubmed/15509284
http://doi.org/10.1016/j.cpr.2009.11.004
http://www.ncbi.nlm.nih.gov/pubmed/20015584
http://doi.org/10.1016/S0191-8869(00)00113-6
http://doi.org/10.1037/0022-3514.85.2.348
http://doi.org/10.1023/B:JOBA.0000007455.08539.94
http://doi.org/10.1037/1040-3590.20.3.227
http://doi.org/10.1007/s10862-012-9280-y
http://doi.org/10.1002/jclp.21876


Int. J. Environ. Res. Public Health 2021, 18, 4208 15 of 16

12. Rugancı, R.N.; Gençöz, T. Psychometric properties of a Turkish version of the difficulties in emotion regulation scale. J. Clin.
Psychol. 2010, 66, 442–455. [CrossRef]

13. Guzmán-González, M.; Trabucco, C.; Urzúa, M.A.; Garrido, L.; Leiva, J. Validity and reliability of the adapted Spanish version of
the difficulties in emotion regulation scale in Chilean population. Terap. Psicol. 2014, 32, 19–29. [CrossRef]

14. Tejeda, M.M.; García, R.R.; Palos, P.A.; Gonzalez-Forteza, C. P-307—Psychometric properties of the “difficulties in emotion
regulation scale” in spanish (DERS-E) in Mexican adolescents. Eur. Psychiatry 2012, 27, 1. [CrossRef]

15. Gómez-Simón, I.; Penelo, E.; De La Osa, N. Factor structure and measurement invariance of the Difficulties Emotion Regulation
Scale (DERS) in Spanish adolescents. Psicothema 2014, 26, 401–408.

16. Li, J.; Han, Z.R.; Gao, M.M.; Sun, X.; Ahemaitijiang, N. Psychometric properties of the Chinese version of the Difficulties in
Emotion Regulation Scale (DERS): Factor structure, reliability, and validity. Psychol. Assess. 2018, 30, e1–e9. [CrossRef]

17. Gross, J.J. Emotion regulation in adulthood: Timing is everything. Curr. Dir. Psychol. Sci. 2001, 10, 214–219. [CrossRef]
18. McNamara, D.S.; Healy, A.F. A procedural explanation of the generation effect: The use of an operand retrieval strategy for

multiplication and addition problems. J. Mem. Lang. 1995, 34, 399–416. [CrossRef]
19. Bassi, M.; Fave, A.D.; Steca, P.; Caprara, G.V. Adolescents’ regulatory emotional self-efficacy beliefs and daily affect intensity.

Motiv. Emot. 2018, 42, 287–298. [CrossRef]
20. Wen, S.F.; Tang, D.L.; Yu, G.L. The characteristics of regulatory emotional self-efficacy in Chinese graduate students. Psychol. Sci.

(China) 2009, 32, 666–668. [CrossRef]
21. Lee, D.J.; Witte, T.K.; Bardeen, J.R.; Davis, M.T.; Weathers, F.W. A factor analytic evaluation of the difficulties in emotion regulation

scale. J. Clin. Psychol. 2016, 72, 933–946. [CrossRef]
22. Jia, R.; Jia, H.H. Factorial validity of problematic Internet use scales. Comput. Hum. Behav. 2009, 25, 1335–1342. [CrossRef]
23. Bunford, N.; Evans, S.W.; Langberg, J.M. Emotion dysregulation is associated with social impairment among young adolescents

with ADHD. J. Atten. Disord. 2018, 22, 66–82. [CrossRef]
24. Holzinger, K.J.; Swineford, F. The Bi-factor method. Psychometrika 1937, 2, 41–54. [CrossRef]
25. Chen, F.F.; West, S.G.; Sousa, K.H. A comparison of bifactor and second-order models of quality of life. Multivar. Behav. Res. 2006,

41, 189–225. [CrossRef]
26. Reise, S.P.; Morizot, J.; Hays, R.D. The role of the bifactor model in resolving dimensionality issues in health outcomes measures.

Qual. Life Res. 2007, 16, 19–31. [CrossRef]
27. Gibbons, R.D.; Rush, A.J.; Immekus, J.C. On the psychometric validity of the domains of the PDSQ: An illustration of the bi-factor

item response theory model. J. Psychiatr. Res. 2009, 43, 401–410. [CrossRef]
28. Reise, S.P.; Moore, T.M.; Haviland, M.G. Bifactor models and rotations: Exploring the extent to which multidimensional data

yield univocal scale scores. J. Personal. Assess. 2010, 92, 544–559. [CrossRef]
29. Scheier, M.F.; Carver, C.S. Optimism, coping, and health: Assessment and implications of generalized outcome expectancies.

Health Psychol. 1985, 4, 219–247. [CrossRef]
30. Scheier, M.F.; Carver, C.S.; Bridges, M.W. Distinguishing optimism from neuroticism (and trait anxiety, self-mastery, and

self-esteem): A reevaluation of the Life Orientation Test. J. Personal. Soc. Psychol. 1994, 67, 1063–1078. [CrossRef]
31. Li, C.-H. Validation of the Chinese version of the Life Orientation Test with a robust weighted least squares approach. Psychol.

Assess. 2012, 24, 770–776. [CrossRef]
32. George, D.; Mallery, P. IBM SPSS Statistics 23 Step by Step: A Simple Guide and Reference; Routledge: New York, NY, USA, 2016.
33. Revelle, W.; Revelle, M.W. Package ‘Psych’. The Comprehensive R Archive Network. 2015. Available online: http://www.test.

personality-project.org/r/psych/psych-manual.pdf (accessed on 20 January 2021).
34. Muthén, L.K.; Muthén, B.O. Mplus Version 7 User’s Guide; Muthén and Muthén: Los Angeles, CA, USA, 2012.
35. Li, Q.; Cai, Y.; Tan, Q.; Tu, D. Structure of Arabic scale of death anxiety with Chinese college students: A bifactor approach. Front.

Psychol. 2018, 9, 2511. [CrossRef] [PubMed]
36. Cattell, R.B. The Scree Test for the number of factors. Multivar. Behav. Res. 1966, 1, 245–276. [CrossRef] [PubMed]
37. Horn, J.L. A rationale and test for the number of factors in factor analysis. Psychometrika 1965, 30, 179–185. [CrossRef] [PubMed]
38. O’Connor, B.P. SPSS and SAS programs for determining the number of components using parallel analysis and Velicer’s MAP

test. Behav. Res. Methods Instrum. Comput. 2000, 32, 396–402. [CrossRef] [PubMed]
39. Hayton, J.C.; Allen, D.G.; Scarpello, V. Factor retention decisions in exploratory factor analysis: A tutorial on parallel analysis.

Organ. Res. Methods. 2004, 7, 191–205. [CrossRef]
40. Reise, S.P.; Scheines, R.; Widaman, K.F.; Haviland, M.G. Multidimensionality and structural coefficient bias in structural equation

modeling: A bifactor perspective. Educ. Psychol. Meas. 2013, 73, 5–26. [CrossRef]
41. Browne, M.W.; Cudeck, R. Alternative ways of assessing model fit. In Testing Structural Equation Models; SAGE: Newbury Park,

CA, USA, 1993; pp. 136–162. ISBN 978-08-0394-507-4.
42. Nordgren, L.; Monell, E.; Birgegård, A.; Bjureberg, J.; Hesser, H. Factor structure of the difficulties in emotion regulation scale in

treatment seeking adults with eating disorders. J. Psychopathol. Behav. Assess. 2019, 42, 111–126. [CrossRef]
43. Benfer, N.; Bardeen, J.R.; Fergus, T.A.; Rogers, T.A. Factor structure and incremental validity of the original and modified versions

of the difficulties in emotion regulation scale. J. Personal. Assess. 2018, 101, 598–608. [CrossRef]

http://doi.org/10.1002/jclp.20665
http://doi.org/10.4067/S0718-48082014000100002
http://doi.org/10.1016/S0924-9338(12)74474-7
http://doi.org/10.1037/pas0000582
http://doi.org/10.1111/1467-8721.00152
http://doi.org/10.1006/jmla.1995.1018
http://doi.org/10.1007/s11031-018-9669-3
http://doi.org/10.1360/972009-782
http://doi.org/10.1002/jclp.22297
http://doi.org/10.1016/j.chb.2009.06.004
http://doi.org/10.1177/1087054714527793
http://doi.org/10.1007/BF02287965
http://doi.org/10.1207/s15327906mbr4102_5
http://doi.org/10.1007/s11136-007-9183-7
http://doi.org/10.1016/j.jpsychires.2008.04.013
http://doi.org/10.1080/00223891.2010.496477
http://doi.org/10.1037/0278-6133.4.3.219
http://doi.org/10.1037/0022-3514.67.6.1063
http://doi.org/10.1037/a0026612
http://www.test.personality-project.org/r/psych/psych-manual.pdf
http://www.test.personality-project.org/r/psych/psych-manual.pdf
http://doi.org/10.3389/fpsyg.2018.02511
http://www.ncbi.nlm.nih.gov/pubmed/30631292
http://doi.org/10.1207/s15327906mbr0102_10
http://www.ncbi.nlm.nih.gov/pubmed/26828106
http://doi.org/10.1007/BF02289447
http://www.ncbi.nlm.nih.gov/pubmed/14306381
http://doi.org/10.3758/BF03200807
http://www.ncbi.nlm.nih.gov/pubmed/11029811
http://doi.org/10.1177/1094428104263675
http://doi.org/10.1177/0013164412449831
http://doi.org/10.1007/s10862-019-09765-8
http://doi.org/10.1080/00223891.2018.1492927


Int. J. Environ. Res. Public Health 2021, 18, 4208 16 of 16

44. Morgan, G.B.; Hodge, K.J.; Wells, K.E.; Watkins, M.W. Are fit indices biased in favor of Bi-factor models in cognitive ability
research? A comparison of fit in correlated factors, higher-order, and Bi-factor models via Monte Carlo simulations. J. Intell. 2015,
3, 2–20. [CrossRef]

45. Chen, F.F.; Hayes, A.M.; Carver, C.S.; Laurenceau, J.-P.; Zhang, Z. Modeling general and specific variance in multifaceted
constructs: A comparison of the Bifactor model to other approaches. J. Personal. 2011, 80, 219–251. [CrossRef]

46. Brown, T.A. Confirmatory Factor Analysis for Applied Research; Guilford Publications: New York, NY, USA, 2015.
47. Lonigan, C.J.; Carey, M.P.; Finch, A.J. Anxiety and depression in children and adolescents: Negative affectivity and the utility of

self-reports. J. Consult. Clin. Psychol. 1994, 62, 1000–1008. [CrossRef] [PubMed]

http://doi.org/10.3390/jintelligence3010002
http://doi.org/10.1111/j.1467-6494.2011.00739.x
http://doi.org/10.1037/0022-006X.62.5.1000
http://www.ncbi.nlm.nih.gov/pubmed/7806708

	Introduction 
	Factor Structure of the DERS 
	Bifactor Model 

	Method 
	Participants 
	Measures 
	DERS (Chinese Version) 
	Reevaluation of Life Orientation Test (Chinese Version) 

	The Procedure of Analyses 
	The Goodness-of-Fit Indices 

	Results 
	Descriptive Characteristics 
	Testing Existing Structures 
	EFA and CFA for Alternative Structure 
	Bifactor CFA 
	Criterion-Related Validity 

	Discussion 
	Conclusions 
	References

