
International  Journal  of

Environmental Research

and Public Health

Article

Multi-Drug Featurization and Deep Learning Improve
Patient-Specific Predictions of Adverse Events

Ioannis N. Anastopoulos 1,2, Chloe K. Herczeg 2, Kasey N. Davis 2 and Atray C. Dixit 2,*

����������
�������

Citation: Anastopoulos, I.N.;

Herczeg, C.K.; Davis, K.N.; Dixit, A.C.

Multi-Drug Featurization and Deep

Learning Improve Patient-Specific

Predictions of Adverse Events. Int. J.

Environ. Res. Public Health 2021, 18,

2600. https://doi.org/10.3390/

ijerph18052600

Academic Editor: Paul B. Tchounwou

Received: 12 January 2021

Accepted: 3 March 2021

Published: 5 March 2021

Corrected: 1 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA; ianastop@ucsc.edu
2 Coral Genomics, Inc., 953 Indiana St., San Francisco, CA 94107, USA; chloe@coralgenomics.com (C.K.H.);

kasey@coralgenomics.com (K.N.D.)
* Correspondence: atray@coralgenomics.com

Abstract: While the clinical approval process is able to filter out medications whose utility does
not offset their adverse drug reaction profile in humans, it is not well suited to characterizing
lower frequency issues and idiosyncratic multi-drug interactions that can happen in real world
diverse patient populations. With a growing abundance of real-world evidence databases containing
hundreds of thousands of patient records, it is now feasible to build machine learning models that
incorporate individual patient information to provide personalized adverse event predictions. In
this study, we build models that integrate patient specific demographic, clinical, and genetic features
(when available) with drug structure to predict adverse drug reactions. We develop an extensible
graph convolutional approach to be able to integrate molecular effects from the variable number of
medications a typical patient may be taking. Our model outperforms standard machine learning
methods at the tasks of predicting hospitalization and death in the UK Biobank dataset yielding an
R2 of 0.37 and an AUC of 0.90, respectively. We believe our model has potential for evaluating new
therapeutic compounds for individualized toxicities in real world diverse populations. It can also be
used to prioritize medications when there are multiple options being considered for treatment.

Keywords: adverse events; real world evidence; neural networks; graph convolution; FDA FAERS;
UK Biobank

1. Introduction

Clinical trials are used to determine the efficacy and toxicity of medications in humans.
Although effective in elucidating various acute responses to the pharmaceutical compound in
question, clinical trials are inherently limited by representation bias, size, and duration [1,2].
Current methods of toxicity and drug testing are unable to predict adverse drug reaction
(ADR) across diverse populations under conditions of chronic exposure [3,4]. Such ADRs are
a significant global health issue that affects millions of people each year with and accounting
for an estimated 17% of hospital readmissions [5–8].

One response to this inherent short-coming in predicting and preventing ADRs has
been the Tox21 Program. Through collaborative efforts, the U.S. National Institute of Health
(NIH), Federal Drug Administration (FDA), and Environmental Protection Agency (EPA)
have come together to help promote the evolution of toxicological testing and achieve
specific goals that would increase both acute and predictive testing capacities [9]. To
increase the ability to understand toxicity effects via data-driven predictions, the program
outlines key objectives that address current limitations in identifying rare idiosyncratic
responses, characterizing non-genotoxic potential carcinogens, gaining further insight into
Adverse Outcome Pathways for risk assessment, and other gaps in testing technology [9].

To fuel the large-scale studies geared towards advancing toxicological and predic-
tive technology, scientists utilize centralized real-world evidence (RWE) databases that
contain individual level records of adverse events and associated patient features. Such
sources, include the FDA Adverse Event Reporting System (FAERS) dataset which has been
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standardizing post-market adverse event reports for over six years and the UK Biobank
(UKBB), which links a large set of clinical variables (including medications) longitudinally
to genetic information [5,10]. These databases compile relevant information with the intent
to improve public health through innovation and discovery [11].

Machine learning may be able to fill the gaps outlined in the Tox21 program by
creating models that are predictive, scalable, cost-effective, and adaptable. More specifically,
computational methods that have been adapted to biomedical applications, such as toxicity
testing, drug responses, and drug discovery, include approaches that leverage Morgan
Fingerprints (Morgan FP), Graph Convolutional Networks (GCNs), and Neural Networks
(NNs) for Deep Learning applications [12,13].

Such methods utilize structural characteristics of molecules as inputs to computational
programs, which in turn, informs in vivo response predictions. Morgan FP, for example,
represent key molecular substructures using an explicitly defined featurization. However,
a limitation of this specific methodology is its inability to adaptively learn alternative
representations that may be more adapted to a particular task [13].

Differing from traditional fingerprint representations, GCNs represent atoms, molec-
ular connectivity, and bond characteristics in a graph-based format. The relationships
between neighboring atom-level features that are most informative for a particular task
can be learned as the network updates the weights connecting each of the graph convolu-
tional layers [13]. Since featurization and task prediction happen simultaneously in GCN
based models, they have significantly higher model complexity and typically require a
large dataset in order to outperform traditional machine learning approaches based on
traditional fingerprint representations. Alternatively, a pre-training strategy can be used
where the model is first trained on a related task (on which a large dataset is available) and
then subsequently fine-tuned [14].

Integrative approaches are required to not only enable accurate predictions, but also to
address the need for real world applicability. In clinical practice, it is common for those with
chronic disease to be on a regimen of multiple medications, which has a positive correlation
with the occurrence of ADRs [15,16]. Not only are multiple medications required for
patients with comorbidities, but a single illness may also commonly treated with more than
one medication [17,18]. The Center for Disease Control reported that from 2013–2016, in
the U.S. alone, 24% of the population reported using three or more medications, whereas
12.6% reported using five or more within the month preceding the survey [15].

While efforts have been made to create machine learning approaches and correspond-
ing databases that capture new ADRs or drug-drug interactions [19], they are limited in
their ability to generalize across larger sets. The computational costs and data required
to model these higher order interactions scales exponentially with the number of drug
interactions (i.e., n, n2, n3, for single drug, drug-drug, and drug triplet interactions respec-
tively) and as such no existing method can flexibly learn interactions across all medications
for patients on multiple medications. Additionally, incorporating other risk factors into
the model such as demographic and clinical data can be important in obtaining the most
accurate predictions and disentangling confounding risks [2,20,21].

In this paper, we discuss an integrative, precision medicine approach to multi-drug
adverse event prediction. The strategy utilized seeks to fill translational gaps in current
predictive methodologies.

2. Materials and Methods
2.1. Drug Name to Chemical Structure

Pubchempy (an open source Github repository) was used to convert drug names or
active ingredient to isomeric SMILES representation. Simple text filtering for case and
punctuation was performed on the drug name input.
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2.2. Chemical Structure Featurization of Single Molecules

In our GCN, SMILES structures are featurized using functionality from RDkit (an open
source Github repository). Specifically, atom-level features consisting of a one-hot encoding
if the atom is either C, N, O, F, P S, Cl, Br, I, the atomic number, a one-hot coding of chirality,
the atoms degree (number of neighboring atoms), formal charge, number of hydrogens,
number of radical electrons, a one-hot encoding of hybridization, whether it is or is not
aromatic, and whether it is or is not in a ring. Bond-level features including, conjugated
status, a one hot encoding of bond type (single, double, triple, aromatic), and a one hot
encoding of whether the bond is stereoisomeric. We chose to concatenate the bond-level
features to the atom-level features by summing over all bonds directly connected to each
atom. This resulted in a feature vector of length 42 for each atom. Finally, we constructed
the connectivity matrix between atoms and loaded these features into a Pytorch Geometric
Data object.

For cases in which a linear model was to be used as a comparator to the neural network
architecture, SMILES structures were featurized into binary feature vectors of length 2048
using Morgan FP with radius 2 using the python package RDkit.

2.3. Extension to Multi-Drug Framework

For our GCN, the atom-level connectivity matrices for each molecule were connected
in a block diagonal manner with atom-level and bond-level features being adjoined directly.

For use in the linear model comparisons when patients were taking multiple medica-
tions, the maximum value of each element of the Morgan fingerprint across all medications
was used as the corresponding featurization for the linear model (again resulting a vector
of length 2048).

2.4. Linear/Logistic Regression

For continuous variables, such as predicting hospitalization in the UKBB dataset,
a linear regression with an L2 norm penalty (Ridge regression) was used as a comparator
model (sklearn’s Ridge module with default parameters).

For discrete variables, such as predicting death or outcome labels in the FAERS dataset
a comparable model using sklearn’s logistic regression (with default parameters) was used.

2.5. Neural Network/Graph Convolutional Neural Network

For non-drug features, a simple neural network was constructed with the following
form:

1. Linear layer transforming the feature vector into a hidden dimension (100 in our
model)

2. Rectified linear unit (ReLU) transform
3. Batch normalization
4. Fully connected linear layer transforming hidden dimension to hidden dimension
5. ReLU transform
6. Linear layer transforming hidden dimension to target dimension

For medication associated features, the following architecture was used based roughly
on [14,22]:

1. GINConv (graph isomorphism) layer feature vector into a hidden dimension (100 in
our model)

a. This model performs uses a small neural network to map input atom-features
to the output dimension taking into account neighboring atoms

2. Rectified linear unit (ReLU) transform
3. Batch normalization
4. Four additional layers as in 1–3 above

Medication features are aggregated using pooling operators including Set2Set [23],
global_max_pool, and global_mean_pool, available in the PyTorch Geometric library.
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For the combined model, the outputs of the architectures described above are concate-
nated for the relevant feature subset.

2.6. Model Evaluation

In all cases, 5-fold cross validation is performed to evaluate model performance.

2.7. Feature Attribution/Importance

To evaluate the importance of individual features within the combined neural network
architecture the Integrated Gradients method [24] within the Captum library for PyTorch
was used. The sum of all gradients for each feature across patients is used as an estimate of
feature importance.

2.8. UK Biobank

UK Biobank (UKBB) contains deep genetic and phenotype information on approxi-
mately 500,000 individuals from across the United Kingdom who were aged 40 to 69 at
recruitment [10]. Our data were resourced under Application Number 5424. It is available
to researchers pending confirmation of their institutional affiliations by their approval
committee and payment of any applicable fees.

Medication and health supplements data (Data Field: 20,003) were coded using
6745 categories (Data coding 4) which were mapped to their corresponding active ingredi-
ent follow steps similar to those in [11]. This active ingredient was used to obtain SMILES
stings and featurization as described above.

Clinical features for each patient were extracted from ICD10 codes (Data Field: 41,202).
PCA was performed across all patients to reduce the dimensionality and the scores were
extracted as a representation of the “clinical status” of each patient.

A summary of the key subsets of the UKBB dataset that we reference in this work is
described in Table 1.

Table 1. Summary of key parameters of UKBB dataset.

Feature Value

Number of patients selected after filtering 291,560

Average number of medications per patient 3.2

Demographics Age, Sex, Weight, Height, BMI, and the number
of drugs the patient is taking

DNA Scores from first five genetic PCA components
from UKBB—Data-Field 22,009 [10]

Clinical Scores from first 10 PCA components of ICD10
codes—Data-Field 41,202 (see description above)

Drug structure

For linear model, the maximum of the Morgan
Fingerprint is used to featurized multi-drug

features, for the GCN, the featurization is flexibly
learned during model training

Hospitalization Log10 (hospitalizations documented + 1)
—Data-Field 41,235

Death Based on Data-Field 40,000

2.9. FDA FAERS

We captured a total of 8,224,912 unique cases in the FAERS database spanning the
years between 2014–2020 (through Q3 2020). The data may be readily accessed through
the FDA’s online portal. The data were further filtered by the reported role the drug
played in the adverse event report, which is characterized by the physician. We only
selected drugs that were characterized as primary suspect drugs, secondary suspect drugs,
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or suspected interacting drugs (PS, SS, or I in the DRUG file), meaning they may have
played an important role in the adverse event. Finally, we performed filtering to remove
potentially duplicated entries for cases in which the same combination of sex, weight, age,
and medications appeared more than once.

A summary of the key subsets of the FAERS dataset that we reference in this work is
described in Table 2.

Table 2. Summary of key parameters of FAERS dataset.

Feature Value

Number of cases selected (after filtering) 143,412

Average number of medications per case 1.5

Demographics Age, Sex, Weight, Reporting country

Clinical
Individual presence or absence for the top

200 indications for which drugs were
prescribed in the entire FAERS database

Drug structure For the GCN, the featurization is flexibly
learned during model training

3. Results

We sought to construct a machine learning framework that could incorporate vast (but
often disparate and filled with missing data elements) RWE databases to predict adverse
events (Figure 1). We imposed the requirement that the model be able to flexibly model
patients who are on multiple medications without being explicitly constrained to pairwise
drug-drug interactions or those previously described.
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Figure 1. Overview of our approach: (A) Integration of multiple real world evidence databases including demographic,
medication, and genetic information; (B) A machine learning model to predict adverse events is constructed.

In order to model the variable number of medications that any patient may be taking, we
leverage the graph-based featurization of molecules that GCNs can learn (Figure 2). A single
chemical can be represented by the connectivity between atoms, atom-level features, and
bond-level features. By concatenating atom level connectivity matrices in a block diagonal
format, and simply concatenating atom and bond-level features, multiple molecules can be
featurized together. This concatenation represents a collection of disjoint subgraphs. Since
there are no connections between different molecules in the connectivity matrix, the GCN
operations will not incorporate information across molecules. However, subsequent fully
connected operations can learn from the collection of extracted features. With a sufficiently
large training dataset, this architecture is able to learn new chemical features and interactions
between them that predict multi-drug properties including adverse events.
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Figure 2. An overview of the multi-drug GCN architecture: (A) A standard GCN applied to a chemical structure creates bond
and atom-level features, and an atom-level connectivity matrix to describe the molecule. Graph convolutions are performed
to learn new feature representations that learn local structures that can be used to predict chemical properties (B) Our multi-
drug GCN architecture concatenates the bond and atom- level features and creates a block diagonal connectivity matrix
that represents the set of molecules an individual is taking. In a generalization of the single molecule GCN, the multi-drug
GCN aggregates information from local structures across all molecules to predict multi-drug properties. We highlight the
featurization of an example patient currently taking simvastatin (red pill), ibuprofen (green pill), and metformin (blue pill).

In order to flexibly model other available individually predictive features (such as
age, sex, weight, and genetics), we create separate compact neural networks that learn
representations of these features. Finally, the learned representations across each small
neural network and the GCN can be combined in a final set of neural network layers to
predict the patient-level variable of interest.

3.1. Predicting Adverse Events in the UK Biobank Dataset

In order to test the performance of our framework, we applied it to the UK Biobank
dataset on two separate tasks: predicting the number of hospitalizations a patient expe-
rienced and predicting whether an individual has died. We were particularly interested
in characterizing the relative importance of each of the features and any nonlinear inter-
actions between features. As such we create separate models that contained each of the
individual features as well as a combined model containing all features. To benchmark the
performance of our approach, we contrast the neural network performance with that of
a linear model (which would have limited ability to discern interactions between feature
sets) (Figure 3A).
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For both the task of predicting hospitalization and death in the UKBB, we found that
clinical features (based on PCA scores of ICD10 codes) to be the most predictive individual
feature set. For hospitalization, but not death, we find that the neural network architectures
significantly outperformed the simple linear model for every feature set except the genetic
principal components by themselves. Similarly, for hospitalization, but not death, we find a
combined model including multi-drug GCN features significantly improves the predictive
performance of the model compared to one without those features (R2 0.364 vs. 0.331,
p = 0.00004, Figure 3A).

As a final evaluation of feature importance in the combined model, we use the In-
tegrated Gradients approach to assess contributions of the non-drug features [24]. Sur-
prisingly, we find that despite the fact that the both DNA and demographic features had
relatively low predictive performance individually, they were amongst the most predictive
features in the combined model (Figure 3B).

To highlight the improvements made possible by our multi-drug framework com-
pared to a single-drug framework, we revaluated performance on the task of predicting
hospitalization for the subset of patients who are on 2 or more medications. We compare
the performance of a model that only considers one randomly selected drug per patient to
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a model that considers all drugs (Figure 3C). We find a highly significant improvement in
model performance (R2 of 0.035 vs. 0.14, p < 10−10).

3.2. Predicting Adverse Events in the FDA FAERS Dataset

We next sought to apply our framework to the FDA FAERS dataset. It contains a larger
volume of data and a more targeted set of adverse event labels. Specifically, we attempted
to predict the outcomes codes using a similar set of features to those available in the UK
Biobank (except for DNA/genetic features which are not available in FAERS).

With the exception of congenital abnormality, which can be significantly predicted
with demographic information such as age, the best single feature set for predicting the
majority of outcomes was drug structure specific features (Figure 4A). For most categories,
an integrated model of demographic, clinical, and drug structure significantly outper-
formed any of the individual feature set models. These categories included hospitalization
(p < 10−5) and death (p < 10−5).
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Figure 4. Performance comparisons on the FAERS dataset. (A) Predictive utility of various features and model architectures
for predicting adverse events in the FAERS dataset. X-axis labels correspond to adverse event categories for a particular case.
Y-axis is the AUC at predicting each of the labels. Colors correspond to various feature subsets tested. Error bars correspond
to 95% confidence interval derived from bootstrapping on 5-fold cross-validation (each fold contains 28,682 records).
(B) Power analysis demonstrating improvement in performance as a function of the number of patient records examined.
Blue corresponds to hospitalization model performance and orange corresponds to performance of model predicting death.
X-axis is log10 (number of records) Y-axis is AUC. Shaded error region corresponds to 95% confidence interval derived
from bootstrapping on 5-fold cross-validation in a subsampled dataset corresponding to the X-axis location. (C) Plot
demonstrating relationship between model error across all outcomes and age, (D) average molecular weight of drugs
patient is taking, and (E) patient sex.

We examined the extent to which model performance would be expected to improve
through the incorporation of additional data and find that the model would continue to
improve for both the prediction of hospitalization and death (Figure 4B). Additionally,
we examine the extent to which the model performs better or worse as a function of the
covariates we used. We find weak, but significant relationships between age, average
molecular weight, and sex and model error (p < 10−6) (Figure 4C–E).
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4. Discussion

The two datasets analyzed in this paper have contrasting strengths and weaknesses.
The UK Biobank includes deep genetic and phenotype information to compare the relative
predictive performance of a wide range of well annotated features, but is generally limited
to adults 40 years and older in the United Kingdom. It does not have a well-curated a
collection of adverse event labels and, as such, surrogate labels such as hospitalization
or death were used in this paper. In contrast FDA FAERS collection, is solely focused
on adverse events with detailed event labels, however, the database contains selection
bias against patients who did not suffer any adverse events on a medication. As such, a
predictor built on FDA FAERS will overestimate the likelihood of a particular patient in the
general population on a particular combination of medications having an adverse event
without performing an additional calibration for how widely those particular medications
are prescribed.

There are several promising directions for expanding upon and improving the ap-
proach described in this paper. These range from feature expansion for the representation
of each atom (including aspects such as drug route of administration and dosage) in each
chemical to optimization of the model architecture. One particularly promising area is the
incorporation of convolutions which incorporate bond features and the spatial relationships
between atoms [25,26].

The Integrated Gradients approach that we used can also be used to increase model
interpretability on drug features. Specifically, the relative importance of particular chemical
motifs (and interactions between motifs across medications) that drive the prediction a
particular individual to experience an adverse event can be visualized [24].

We also note several limitations of the work we present here. Modification of model
architecture would likely be required to incorporate and model the impact of biologic
therapies. Additionally, for the FAERS dataset, we filtered to around 3% of the overall
dataset, this limited dataset may have reduced the ability of the GCN approach to learn
improved featurizations. As such, we could either use less strict filtering or pre-train the
GCN using other datasets such as the Tox21 Data Challenge or UKBB data sets.

Despite the limited performance of genetic features as standalone predictors of ADRs,
we were encouraged by the feature importance of several genetic principal components in
the combined model to predict hospitalization in the UKBB dataset. As such we explored
using a more comprehensive genetic feature set and developed a companion manuscript,
which describes a more thorough variant level prediction of the genetic basis of ADRs
across the millions of genetic variants present in the UKBB.

Finally, we highlight two specific examples to illustrate situations in which our model
performs poorly and when it performs well. In the first example, we describe the case
of a 30-year-old female on Nexplanon who experienced a hospitalization and related
life-threatening event that our model failed to predict. We find multiple similar cases
of patients on Nexplanon or Nuvaring (implantable birth control medications that the
model performed poorly on (there are 659 such cases in our FAERS dataset, and we
find they have a 32% higher error than other cases, p < 10−4). We hypothesize that
this is due to the route of administration not being a component of our model (i.e., pill,
infusion, eluting implantable device, etc). In our second example, we highlight the case
of a 35-year-old female taking multiple medications who is likely immunocompromised
on medications for multiple infections and HIV antiretrovirals whose four adverse events
were predicted almost perfectly (difference between actual adverse event outcomes and
predicted probabilities was 0.82 out of 7).

5. Conclusions

In this work, we compare the relative predictive utility of demographic, genetic, clinical,
multiple drug structures, and the integration of these features to predict adverse outcomes in
real world evidence databases including the UKBB and FAERS dataset (Table 3).
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Table 3. Summary and support of key findings in each of the two datasets examined.

Attribute UKBB FAERS

Neural network outperforms
linear model for individual

features

For hospitalization across all
features except genetic

principal components, but not
death

For most categories except
congenital abnormality, and
disability and most models
except those only involving

clinical features

Combined multi-drug model
improves performance

relative to other feature sets

For hospitalization, but not
death

For both hospitalization and
death

Most important single feature Clinical ICD10 features Multi-drug features

In the UKBB, we find that in many cases the incorporation of a neural network
framework significantly improved predictive performance relative to a standard linear
model suggesting the presence of nonlinear interactions between features. We also find that
in an integrated model of all features, which outperformed and of the single feature models
for hospitalization, demographic and genetic features had significant weights despite not
having strong individual level performance.

Similarly, in the FAERS dataset we find that a combined model of demographic,
clinical, and multi-drug feature sets is able to outperform any individual feature set for
key outcomes like hospitalization and death. This result suggests a role for personalized
medicine approaches to predictive toxicology that incorporate patient specific and multi-
drug structure features into joint models.

As part of this work we outline and implement a multi-drug GCN framework that is
able to flexibly incorporate the variable numbers of medications that real-world patient
populations are taking. Built on a deep neural network architecture and deployed on
GPU frameworks, it has the potential to rapidly learn complex interactions from growing
databases of real-world evidence.

Overall, we believe that these methods will facilitate more accurate predictive person-
alized toxicology efforts in the future.
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