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Abstract: This article presents a geographic information system (GIS)-based artificial neural network
(GANN) model for flood susceptibility assessment of Keelung City, Taiwan. Various factors, including
elevation, slope angle, slope aspect, flow accumulation, flow direction, topographic wetness index
(TWI), drainage density, rainfall, and normalized difference vegetation index, were generated using a
digital elevation model and LANDSAT 8 imagery. Historical flood data from 2015 to 2019, including
307 flood events, were adopted for a comparison of flood susceptibility. Using these factors, the
GANN model, based on the back-propagation neural network (BPNN), was employed to provide
flood susceptibility. The validation results indicate that a satisfactory result, with a correlation
coefficient of 0.814, was obtained. A comparison of the GANN model with those from the SOBEK
model was conducted. The comparative results demonstrated that the proposed method can provide
good accuracy in predicting flood susceptibility. The results of flood susceptibility are categorized
into five classes: Very low, low, moderate, high, and very high, with coverage areas of 60.5%, 27.4%,
8.6%, 2.5%, and 1%, respectively. The results demonstrate that nearly 3.5% of the study area, including
the core district of the city and an exceedingly populated area including the financial center of the
city, can be categorized as high to very high flood susceptibility zones.

Keywords: geographic information system; back-propagation neural network; rainfall; historical
flood; prediction

1. Introduction

Coastal areas are vulnerable to climate change, particularly sea-level rises and floods
related to extreme rainfall [1,2]. Taiwan is an island which is prone to flood disasters trig-
gered by heavy rainfall and typhoons every year. In Taiwan, extreme weather conditions,
such as heavy precipitation and typhoons generated by climate change, strengthen the phe-
nomenon of flood disasters [3]. Keelung City, one of the coastal cities in Northern Taiwan,
has become highly urbanized and densely populated in recent years [4]. Flooding events
have frequently occurred in the past because typhoons and rainstorms typically sweep
over the upstream basins between May and October; this trend is expected to increase in
the future [5–7].

Various approaches have been proposed to evaluate flood disaster risk based on the
susceptibility of the system and hydrology [8–10]. The artificial neural network (ANN)
is one of the most implemented machine-learning techniques in engineering risk assess-
ment [11]. The ANN model is a network of machine learning that is based on the human
brain [12]. Nowadays, ANNs and computational intelligence (CI) methods are often used
for flood disaster modeling [13]. Machine-learning technologies have been applied for anal-
ysis of flood susceptibility assessment, including logistic regression, radial basis function
(RBF) neural network, and support vector machine (SVM) [14–16]. For logistic regression,
this algorithm is easier to implement and interpret, and more efficient to train [14]. How-
ever, it may lead to overfitting. For the RBF neural network, it performs more robustly and
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tolerantly than conventional neural networks, especially when dealing with noisy data [15].
For SVMs, it is more effective in high-dimensional spaces [16]. Despite the success of
the above machine-learning technologies as effective numerical tools for engineering risk
assessment, there is still growing interest in the development of a more accurate predictive
risk model. The analysis of the spatial distribution of flood disaster risk plays an important
role, especially regarding disasters occurring along coasts and rivers [17–19]. Spatial anal-
ysis is applied to define the relationship between flood factors in hazards, vulnerability,
and risk through the map, without focusing on complex hydrological modeling [20]. For
flood analysis, studies using geographic information system (GIS) technologies, remote
sensing, and numerical models, and adopting an artificial neural network approach, have
been widely used around the world [21–26].

This article presents a GIS-based artificial neural network (GANN) model for the flood
susceptibility assessment of Keelung City, Taiwan. Various factors, including elevation,
slope angle, slope aspect, flow accumulation, flow direction, topographic wetness index
(TWI), drainage density, rainfall, and normalized difference vegetation index, were gen-
erated using a digital elevation model and LANDSAT 8 imagery. Historical flood data
from 2015 to 2019, including 307 flood events, were adopted for a comparison of flood
susceptibility. Using these factors, the GANN model, based on the back-propagation neural
network (BPNN), was employed to assess flood susceptibility. The main contribution of
this work is that the proposed method, based on ANN and GIS, may improve the ability
to establish further precise flood models, and present the results in a spatial environment.
The advantages of the GIS spatial analysis capability were integrated into the artificial
neural network model. This work is organized as follows. In Section 2, the methodology
is introduced. Results are presented in Section 3. Discussions are presented in Section 4,
and key findings of this pioneering work are summarized in this section. Conclusions are
made in Section 5.

2. Materials and Methods
2.1. Description of the Study Area

The research area was Keelung City, which is located in the northeastern part of
Taiwan. The city area covers 132.7589 km2, and is divided into 7 districts and 157 villages,
as shown in Figure 1. The city is also known as the rainy port for its high frequency of rain,
with a yearly rainfall average upwards of 3700 mm. Keelung City is one of the major coastal
cities in Northern Taiwan which has become highly urbanized and densely populated in
the last few years [4].

2.2. Preparation of Data and Geospatial Layer

Table 1 depicts the source data of the factors. The geomorphologic area of Keelung
City and the relevant factors are shown in Figure 2. Factors including elevation, slope
angle, slope aspect, flow accumulation, flow direction, and TWI were generated from the
digital elevation model (DEM), with a resolution of 20 m. The LANDSAT 8 imagery, with
a resolution of 30 m, from the United States Geological Survey, was used to generate the
normalized difference vegetation index. Detailed descriptions of the factors are as follows.
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Figure 1. Administration map of Keelung City, Taiwan.

Table 1. Source data of the factors and outliers. DEM: Digital elevation model.

Source Data Factors Resolution (m) Maximum Outliers

DEM Elevation 20 704

DEM Slope 20 60.40

DEM Slope aspect 20 358.95

DEM Flow direction 20 128

DEM Flow accumulation 20 247,638

DEM Topographic wetness index (TWI) 20 19.74

Stream river Drainage density 20 4.07

Rainfall data from the Central
Weather Bureau (CWB) of Taiwan Rainfall interpolation 96 102.65

LANDSAT 8 imagery Normalized difference vegetation index 30 0.41
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Figure 2. Geomorphologic area of Keelung City and relevant factors: (a) Elevation; (b) slope; (c) slope aspect; (d) flow
direction; (e) flow accumulation; (f) TWI; (g) drainage density; (h) rainfall interpolation; (i) normalized difference vegetation
index (NDVI); and (j) historical flood data.
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2.2.1. Elevation

The elevation map is a representation of altitude, with ranges between 0 and 783 m.
Elevation is another frequently used parameter and one of the key factors controlling the
floods of an area [21,22]. Flood disasters tend to occur in low altitude areas, compared
with landslides that have a tendency to happen at higher altitudes [23]. Generally, water
continually flows from higher elevations to lower elevation areas.

2.2.2. Slope

This topographic factor is fundamental in hydrological studies. The relationship
with rainfall is likely that the slope is directly influenced by the infiltration of rainfall [24].
The slope of an area and the surface flow velocity could have a positive correlation. The
slope is also very closely connected to the flow of runoff directly toward downstream; a
higher magnitude of slope in an area might accelerate precipitation-related runoff. The
surface runoff increases significantly as the gradient increases; consequently, the infiltration
decreases. As an outcome of this, regions with a sudden decrease in the slope have a higher
probability of flooding as a massive volume of water becomes stationary, which causes a
severe flood disaster situation.

2.2.3. Slope Aspect

This aspect recognizes the downslope direction, and is also thought of as the slope
orientation [24]. The aspect of the slope presents the steepness of the surface, and is
represented by three groups based on color brightness or saturation. The pixel values in
the output aspect–slope raster represent a combination of aspect and slope. The aspect is
one of the significant factors in producing flood susceptibility maps [25].

2.2.4. Flow Direction

The hydrologic characteristics of a surface are the capacity to establish the flow
direction of each raster cell. The flow direction is a grid whose value indicates the direction
of flow for every cell to its steepest downslope neighbor in the DEM [26].

2.2.5. Flow Accumulation

The flow accumulation tool generates accumulated flow as the accumulated weight
of all cells flowing into each downslope cell in the output raster. The results of flow
accumulation can be used to create a stream network by applying a threshold value to
select cells with a high accumulated flow.

2.2.6. Topographic Wetness Index

The TWI is a physical representation of flood inundation areas, which is an important
component of a river catchment. The TWI of a catchment indicates two types of measure-
ments: Flat lands and hydrographic positions. The TWI is commonly used to quantify
topographic control of hydrological processes. It is expressed as

TWI = ln
(

α

tan β

)
, (1)

where α is the cumulative upslope contribution area draining through a point (per unit
contour length), and tan β is the slope angle at the point. It affects the spatial distribution
of soil moisture, and the groundwater flow often follows the surface topography. In this
study, TWI is considered another contributing factor. Areas with a high wetness index
occur where there is a combination of low slope and high flow accumulation and, therefore,
may indicate locations that are at greater flood risk [27].

2.2.7. Drainage Density

The calculation of the drainage system raster was done by using the line density
method, with rivers (polyline) as the main input data. The unit of calculated density was
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the length per unit of area. A higher probability of flooding is strongly associated with
higher drainage density, as it represents greater surface runoff. The drainage density map
of Keelung City was calculated from the drainage network map using line density tool in
the ArcGIS, and ranges from 0 to 4 km/km2.

2.2.8. Rainfall Interpolation

Rainfall-induced flooding is associated with tropical storms, hurricanes, tropical
depressions, and west trade winds that directly strike the windward side of the highlands.
A large number of previous studies in the literature have established a relationship between
the rainfall and the flood occurrence of an area [28–30]. Preparation of a rainfall map in this
study used the pixel-based highest hourly rainfall data of several decades, spread around
four rain gauge stations around Keelung City, with the Kriging interpolation method [31].
The rainfall data were collected from Keelung station, Xizhi station, Ruifang station, and
Daping station through the Central Weather Bureau (CWB) of Taiwan.

2.2.9. Normalized Difference Vegetation Index (NDVI)

The NDVI is one of the most extensively adopted vegetation indexes using satellite
imagery, and for monitoring of global vegetation cover [32]. The NDVI, developed by
Rouse in 1973, is used to monitor vegetation health, and to compare outputs across sensors
with slightly different specifications [33]. The NDVI equation is defined as

NDVI =
NIR− RED
NIR + RED

, (2)

where NIR is the reflection in the near-infrared spectrum and RED is the reflection in the
red range of the spectrum. NIR and RED represent near-infrared (λ ~ 0.8 µm) regions
of the spectrum and surface reflectance averaged over the visible spectrum (λ ~ 0.6 µm),
respectively. The NDVI data source for this layer was the LANDSAT 8 OLI/TIRS C1 Level
1, to match the multispectral bands captured on 13 March 2018 and the area coverage of
the study area on path 117 and row 43. The satellite imagery was rendered as NDVI, and
colorized for use in the visualization analysis. Specifically, the source of the NDVI layer is
the metadata of the imagery, which shows land cloud cover of only 0.8% and scene cloud
cover of 1.91%. The NDVI response indicates the effective flood extent as an influential
factor for the strength and capacity of an area against flood hazards.

2.2.10. Historical Flood Density

Information on the historical floods in Keelung City was collected from the Emergency
Management Information Cloud (EMIC) of Taiwan from 2015 to 2019, and comprised
307 events. The number of events each year is shown in Figure 3. The flood history, also
known as the disaster experience, assumes that such areas have higher adaption ability, but
also a high probability of flood occurrence in the future [3,34]. The density of point features
in the raster cell unit is generated using the kernel density to fit a smoothly tapered surface
to each point of the flood history. The kernel density tool in ArcGIS calculates the density
of features in a neighborhood around the features, to find the spatial analysis and previous
flood history of the area. By calculating the values of all the kernel surfaces, the density of
each output raster cell feature is determined.

2.3. Artificial Neural Network

The ANN is considered a quantitative black-box approach that tries to simulate the
functional human biological nervous system [12]. Moreover, the environment nonlinearity
analysis and the forecast can be studied by applying this effective and affordable machine-
learning tool. Even though the ANN has also been effectively applied to flood analysis in
previous investigations [21,28], the GANN model is still rarely used for flood susceptibility
assessment. Furthermore, the ANN has been considered as an alternative to physically-
based models due to its simplicity regarding the minimum requirements for collecting
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detailed data [35]. The schematic and conceptual flowchart of this study is depicted in
Figure 4. From Figure 4, three major factors, including topography factors, geology and
geomorphology factors, and meteorology factors, were considered as a multi-resource
aspect of the database in this study. Various factors, including elevation, slope angle, slope
aspect, flow accumulation, flow direction, TWI, drainage density, rainfall, and NDVI, were
generated using the digital elevation model, as well as LANDSAT 8 imagery. Historical
flood data from 2015 to 2019, including 307 flood events, were adopted for the comparison
of flood susceptibility. After collecting the possible factors, the proposed GANN model,
based on the BPNN, was employed to assess the flood susceptibility. Finally, the accuracy of
proposed GANN model predictions was evaluated by calculating the correlation coefficient.
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The GANN was employed to assess the flood susceptibility of Keelung City. This
research focuses on a BPNN [36,37]. A typical algorithm of artificial neurons comprises
three layers: Input, hidden, and output layers. The BPNN algorithm of feedforward shows
an essential feature of the training phase, and the progress result is expressed as follows:

yi = F(Xj) =

(
Woj +

I

∑
i=1

Wijxi

)
, (3)

Zk = F(Yk) =

(
Wok +

J

∑
j=1

Wkjyi

)
, (4)

where xi, yi, and Zk indicate the input, hidden, and output layers, respectively. The bias
weights for setting the threshold values are represented as Woj and Wok. Meanwhile, Xj and
Yk indicate temporarily calculated results before using the activation function, and F is the
activation function applied in the hidden and output layers. The F value ranges from 0 to
1. In this study, we adopted the hyperbolic tangent sigmoid function. A sigmoid function
is a mathematical function with a characteristic S-shape curve or sigmoid curve. The
sigmoid activation function is a widely used activation function for neural networks [38,39].
The positive input value to the function is transformed into a value between 0.0 and 1.0.
Inputs that are much larger than 1.0 are transformed to the value 1.0; similarly, values
much smaller than 0.0 are snapped to 0.0. The shape of the function for all possible inputs
is an S-shape from zero up through 0.5 to 1.0. Since the probability of anything exists
only between the range of 0.0 and 1.0, the sigmoid activation function is adopted as the
activation function for the proposed neural networks. Thus, the output yi and Zk can be
expressed as

yi = F(Xj) = F
(

1
1 + e−Xj

)
, (5)

Zk = F(Yk) = F
(

1
1 + e−Yk

)
. (6)

For the error back-propagation weight training, the error function can be established as

E =
1
2

K

∑
k=1

ε2
k =

1
2

K

∑
k=1

(tk − zk)
2, (7)

where tk and εk are the target value and error in each output node, respectively. The goal
is to minimize E, the error between the actual output values of the network. The weight
adjustment in the link between the hidden and output layers can be expressed as

∆wjk = η × yj × δk, (8)

where η is the learning rate, with values ranging between 0 and 1. The learning rate values
correlate with the speed of convergence of the network of the BPNN. Conversely, a learning
rate that is overly large can lead to a widely oscillating network. The new weight herein is
updated by the following equation:

wjk(n + 1) = wjk(n) + ∆wjk(n), (9)

where n is the number of iterations in the network. Similarly, the error gradient in links
between the input and hidden layers can be derived from the partial derivative with respect
to wij:

∂E
∂wij

=

[
K

∑
k=1

∂E
∂zk

∂z
∂Yk

∂k
∂yj

]
×
(

∂yj

∂Xj

)
×
(

∂Xj

∂wij

)
= −∆jxi, (10)
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∆j = F′(Xj)
K

∑
k=1

δkwjk. (11)

The new weight in the hidden and input links can be regenerated as

∆wij = η × xi × ∆j , (12)

wij(n + 1) = wij(1) + ∆wij(n). (13)

To evaluate the prediction performance of the proposed GANN model, the correlation
coefficient (R) is utilized and expressed as

R =

n
∑

i=1
(ti − t)(oi − o)√

n
∑

i=1
(ti − t)2 n

∑
i=1

(oi − o)2
, (14)

where ti represents the target value and oi is the output value. Meanwhile, t and o are the
average values of the target and output values, respectively.

The BPNN algorithm is used in the feedforward GANN, and the structure of the neural
network model is displayed in Figure 5. The selected input, containing nine quantitative
input variables and one quantitative output variable, includes elevation, slope, TWI,
rainfall, NDVI, flow accumulation, drainage density, flow direction, and slope aspect, as
shown in Figure 5. The flood history data from 2015 to 2019 in Keelung City were the only
output of this model. All the input data in the GANN model were normalized in the range
0–1, with the initial weights automatically assigned to random values.Int. J. Environ. Res. Public Health 2021, 18, x  14  of  21 
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3. Results
3.1. Results of the Artificial Neural Network Model

The network architecture was designed to determine the flood susceptibility of
Keelung City; an output layer of the flood history was required for the architecture of the
model. This was used to evaluate the prediction performance of the train validation and
test the model using the mean squared normalized error performance function, which
measures the network’s performance function according to the mean squared error (MSE).

The GANN study needed to classify the variation data in the training process. Kia
et al. [21] indicated that 60% should be used for training, 20% for validation, and 20% as
testing data, while Aziz et al. [29] and Latt and Wittenberg [40] used a combination of 80%
and 20% for training and the testing process, respectively. In this study, the flood data were
divided into three groups: 70% for training the network, 15% for validating the model, and
15% for testing the data to completely independently test the network generalization. The
chosen training algorithm of this research was Levenberg–Marquardt (LM), which has the
fastest training compared to Bayesian regulation back-propagation. This latter method
takes longer, but may be better for challenging problems, while scaled conjugate gradient
back-propagation is suitable for low-memory situations and was not used here [41]. The
LM algorithm was selected as the training function, which combines the Gauss–Newton
method and the gradient descent method. The LM algorithm was used to solve non-linear
least squares problems and for its fault tolerance and fast convergence ability.

The number of hidden layers, along with neurons inside the model, is frequently
defined by trial and error. The number of neurons in the output layers is fixed by the
application, and is represented by the class being processed. The GANN model of flood
susceptibility used 10 hidden layers, as at that point the model starts to reach the minimum
requirement for the correlation coefficient, according to some research [8,28,42].

Figure 6 shows that the correlation coefficient value is very low, with only single nodes,
and increases rapidly in five hidden layers, finally gradually stabilizing in 10 hidden layers.
This is despite the fact that several researchers used only one hidden layer in their ANN
architecture, or a small value of hidden layers from 1 to 7 [29,40]. Some studies show that
using more hidden layers obtains the best result, such as Campolo et al. [43], who trained
the variables with 20, 25, 30, 35, and 40 hidden layers, and Islam [35] as a comparison, with
15, 20, 25, 30, and 35 hidden layers. There are no strict rules for assigning the number of
hidden layers and neurons in the literature [21]. The best design for GANN architecture
depends on the problem type under investigation. In this study, the GANN model of flood
susceptibility used 9 input layers, 10 hidden layers, and 1 output layer.
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The training process reduced the MSE value from 103 to 9.27 in 161 iterations. How-
ever, the best performance, at epoch 155, was 9.7189. The performance declined sharply in
the first 20 epochs, and then gradually decreased until epoch 161. Figure 7 presents the
linear regression for targets relative to the output of the different sub-divisions after the
training process was completed.
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The efficiency of training the network is represented by the correlation coefficient
(R). The cumulative R value was equal to 0.814, which reached the minimum standard of
the study requirement (R > 0.8). The training, validation, and testing data sub-division
were R = 0.818, 0.808, and 0.801, respectively. The results show that there is a good
correlation between the historical flood data and those predicted by the proposed GANN
model. According to previous studies [44,45], correlation coefficients whose magnitudes
are between 0.7 and 0.9 demonstrate variables which can be considered highly correlated.
These results highlight the efficiency of the constructed neural network during the training
process and in forecasting flood susceptibility. Our results show that the proposed GANN
model could efficiently predict flood susceptibility.
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3.2. Flood Susceptibility Map

The flood susceptibility map is helpful for disaster planning, in addition to being
useful during an actual emergency response to floods. Mapping flood susceptibility could
be the first step toward mitigating flooding, because flood susceptibility identifies the
most vulnerable locations and provides sufficient lead time for an individual to respond
to flooding in an anticipatory rather than reactive manner [46]. The computation of the
weight of the factors and artificial neural network modeling was performed in MATLAB;
the outputs were exported to GIS for map production and visual interpretation. The flood
susceptibility map was analyzed qualitatively using natural breaks (jenks) classification
schemes [47,48]. The classification of flood susceptibility mapping in Keelung City could
be categorized into five classes [23,27,30] based on the value of GANN prediction of the
output: Very low, low, moderate, high, and very high. The flood susceptibility index of the
five classes is shown in Table 2, and the flood sustainability of Keelung City is displayed
in Figure 8. In Figure 8, the results show that a total of 12.1% of the Keelung City area is
classified as flood-prone (very high, high, and moderate), according to the GANN model,
with a coverage area of 16.14 km2. Nearly 3.5% of the study area is in high to very high flood
susceptibility zones, as shown in Table 2. The highest susceptibility area was only 1% of
the total, and should be prioritized for flood management. To prevent urban inundation in
the study, the Water Resources Agency, Ministry of Economic Affairs, ROC has developed
a two-dimensional flood forecasting system using the Delft-FEWS platform to integrate
the SOBEK models and the precipitation data from the Central Weather Bureau [49]. The
flood sustainability obtained from the SOBEK model is adopted for comparison. The
comparative results can be seen in Figure 9. It is demonstrated that the overall flood-
prone areas from both approaches agree with each other. However, it was also found that
the flood sustainability from the SOBEK model was much more conservative than our
proposed GANN model.

Table 2. Classification of the flood susceptibility area in Keelung City.

Classification Flood Susceptibility Index Area (km2) Percentage (%)

Very low −3.0–1.7 80.30 60.5
Low 1.7–5.3 36.32 27.4

Moderate 5.3–11.6 11.48 8.6
High 11.6–22.5 3.31 2.5

Very high 22.5–38.2 1.35 1
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The proposed method, based on ANN and GIS, may improve the ability to establish
further precise flood models, and present results in a spatial environment. The outcomes
of the research could be used to help local authorities to develop appropriate new infras-
tructure to protect lives and property in Keelung City.

4. Discussion

In this research, high elevations occurred in the western part of Qidu District and
the southeastern part of Nuannuan District. Meanwhile, the lowland area covered the
seashore, especially in the north of Keelung City and the central part, near the Keelung
river. The flats area was located in the center of Keelung City, near the flood plain, and
a very steep slope is located in the Nuannuan and Qidu District. Based on the GANN
results, the most common floods were predicted to occur on the flats, and the northwest
(NW), south (S), and southwest (SW) facing slopes. The floods were particularly rare on the
north (N) and southeast (SE) facing slopes. Generally, the slopes of the study area are most
commonly oriented to the north (N) and southeast (SE) quadrants. To produce a map of
the vegetation index using the NDVI method, data from the LANDSAT 8 and high-density
vegetation located in the southwest of Qidu District and eastern part of Xinyi District were
used. Meanwhile, the non-vegetation area was the built-up area in the downtown region
of Keelung City, especially the port area in the Ren’ai District, Xinyi District, Zhongzheng
District, Zhongshan District, and southeast of Qidu District.

Finally, the high and very high prone areas were located in the northern part of the
city, as well as in the central part of Keelung City alongside the river. Ren’ai District has the
highest susceptibility, followed by Xinyi, Zhongzheng, and Zhongshan District. However,
this very high susceptibility area is a core district of the city, which is highly populated,
and the economic center of the city. The areas with a classification of very low and low
potential coverage were, cumulatively, 87.9% or 116.62 km2. These are located at high
elevation, especially in the western and southeastern parts of Keelung City, which includes
the western part of Qidu and Anle District, as well as the southeast of Nuannuan District.
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The novel aspect of this work was to develop a GANN model for flood susceptibility
assessment of Keelung, Taiwan. The main contribution of this work is that the proposed
method, based on ANN and GIS, may improve the ability to establish further precise flood
models, and present results in a spatial environment. The advantages of the GIS spatial
analysis capability were integrated into the artificial neural network model. Accordingly,
the proposed methodology may represent spatial continuity and the influence of parame-
ters on flood-generating mechanisms. In addition, historical flood data from 2015 to 2019,
including 307 flood events, were adopted for the comparison of the flood susceptibility on
the regional spatial scale using the GIS. The finding observed in this work may provide a
fundamental contribution to environmental protection engineering for flood in areas with
higher occurrence and vulnerability to extreme precipitation.

5. Conclusions

In this research, the GANN model was developed using 10 flood causative factors.
The thematic layers, including elevation, slope angle, slope aspect, flow direction, flow
accumulation, TWI, NDVI, and drainage density, were generated using GIS. Rainfall data
were also used as input, while historical flood events from 2015 to 2019 were the output of
the GANN model.

The proposed GANN model produced satisfactory results, with a coefficient of corre-
lation of 0.81. The susceptibility was categorized into five classes: Very low, low, moderate,
high, and very high, with coverage areas of 60.5%, 27.4%, 8.6%, 2.5%, and 1%, respectively.
Just 3.5% of the study area was included in the high to very high flood susceptibility zones;
however, this area is a core district of the city, with a dense population, and the economic
center of the city.

Furthermore, mapping flood susceptibility is crucial to mitigating flood disasters,
since flood susceptibility can identify the most vulnerable areas and predict the potential
locations of susceptibility, which can provide authorities responsible for emergency re-
sponse and evacuation procedures with more information for planning and responses in
very high susceptibility areas.
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